1
|
Regulation of Multifunctional Calcium/Calmodulin Stimulated Protein Kinases by Molecular Targeting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:649-679. [PMID: 31646529 DOI: 10.1007/978-3-030-12457-1_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multifunctional calcium/calmodulin-stimulated protein kinases control a broad range of cellular functions in a multitude of cell types. This family of kinases contain several structural similarities and all are regulated by phosphorylation, which either activates, inhibits or modulates their kinase activity. As these protein kinases are widely or ubiquitously expressed, and yet regulate a broad range of different cellular functions, additional levels of regulation exist that control these cell-specific functions. Of particular importance for this specificity of function for multifunctional kinases is the expression of specific binding proteins that mediate molecular targeting. These molecular targeting mechanisms allow pools of kinase in different cells, or parts of a cell, to respond differently to activation and produce different functional outcomes.
Collapse
|
2
|
Senga Y, Akizuki K, Katayama S, Shigeri Y, Kameshita I, Ishida A, Sueyoshi N. High-performance CaMKI: A highly active and stable form of CaMKIδ produced by high-level soluble expression in Escherichia coli. Biochem Biophys Res Commun 2016; 475:277-82. [DOI: 10.1016/j.bbrc.2016.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
|
3
|
Shetty J, Sinville R, Shumilin IA, Minor W, Zhang J, Hawkinson JE, Georg GI, Flickinger CJ, Herr JC. Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2. Protein Expr Purif 2016; 121:88-96. [PMID: 26777341 PMCID: PMC4866589 DOI: 10.1016/j.pep.2016.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 11/26/2022]
Abstract
The testis-specific serine/threonine kinase 2 (TSSK2) has been proposed as a candidate male contraceptive target. Development of a selective inhibitor for this kinase first necessitates the production of highly purified, soluble human TSSK2 and its substrate, TSKS, with high yields and retention of biological activity for crystallography and compound screening. Strategies to produce full-length, soluble, biologically active hTSSK2 in baculovirus expression systems were tested and refined. Soluble preparations of TSSK2 were purified by immobilized-metal affinity chromatography (IMAC) followed by gel filtration chromatography. The biological activities of rec.hTSSK2 were verified by in vitro kinase and mobility shift assays using bacterially produced hTSKS (isoform 2), casein, glycogen synthase peptide (GS peptide) and various TSKS peptides as target substrates. Purified recombinant hTSSK2 showed robust kinase activity in the in vitro kinase assay by phosphorylating hTSKS isoform 2 and casein. The ATP Km values were similar for highly and partially purified fractions of hTSSK2 (2.2 and 2.7 μM, respectively). The broad spectrum kinase inhibitor staurosporine was a potent inhibitor of rec.hTSSK2 (IC50 = 20 nM). In vitro phosphorylation experiments carried out with TSKS (isoform 1) fragments revealed particularly strong phosphorylation of a recombinant N-terminal region representing aa 1-150 of TSKS, indicating that the N-terminus of human TSKS is phosphorylated by human TSSK2. Production of full-length enzymatically active recombinant TSSK2 kinase represents the achievement of a key benchmark for future discovery of TSSK inhibitors as male contraceptive agents.
Collapse
Affiliation(s)
- Jagathpala Shetty
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA, USA
| | - Rondedrick Sinville
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota, USA
| | - Igor A Shumilin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jianhai Zhang
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA, USA; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota, USA
| | - Gunda I Georg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota, USA
| | - Charles J Flickinger
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA, USA
| | - John C Herr
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Kameshita I. In-gel phosphatase assay using fluorogenic and radioactive substrates. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2011; Chapter 13:Unit13.12. [PMID: 21842466 DOI: 10.1002/0471140864.ps1312s65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To investigate the regulatory mechanisms of cellular signaling by protein phosphorylation, it is important to analyze protein phosphatases, as well as protein kinases expressed in cells and tissues. In this unit, two different types of in-gel phosphatase assays are described. The first is an in-gel phosphatase assay using fluorogenic substrates. Protein samples containing phosphatase activities are resolved by native polyacrylamide gel electrophoresis (native-PAGE) and phosphatase activities detected in situ using fluorogenic substrates, such as 4-methylumbelliferyl phosphate (MUP) or 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP). The other assay is an in-gel phosphatase assay using (32)P-labeled substrates. In this method, protein samples are resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) using polyacrylamide gels containing (32)P -labeled substrates, renatured in situ, and the dephosphorylating activities detected by autoradiography. Each method has advantages and disadvantages that are discussed in the commentary.
Collapse
|
5
|
Shimomura S, Nagamine T, Hatano N, Sueyoshi N, Kameshita I. Identification of an endogenous substrate of zebrafish doublecortin-like protein kinase using a highly active truncation mutant. J Biochem 2010; 147:711-22. [PMID: 20097902 DOI: 10.1093/jb/mvq005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Doublecortin-like protein kinase (DCLK), a Ser/Thr protein kinase predominantly expressed in brain and eyes, is believed to play crucial roles in neuronal functions. However, the regulatory mechanisms for DCLK activation and its physiological targets are still unknown. In the present study, we found that a deletion mutant consisting of the catalytic domain of zebrafish DCLK, zDCLK(377-677), exhibited the highest activity among various mutants. Since fully active zDCLK(377-677) showed essentially the same substrate specificity as wild-type zDCLK, we used it to search for physiological substrates of zDCLK. When a zebrafish brain extract was resolved by isoelectric focusing and then phosphorylated by zDCLK(377-677), a highly basic protein with a molecular mass of approximately 90 kDa was detected. This protein was identified as synapsin II by mass spectrometric analysis. Synapsin II was found to interact with the catalytic domain of zDCLK and was phosphorylated at Ser-9 and Ser-58. When synaptosomes were isolated from zebrafish brain, both synapsin II and zDCLK were found to coexist in this preparation. Furthermore, synapsin II in the synaptosomes was efficiently phosphorylated by zDCLK. These results suggest that zDCLK mediates its neuronal functions through phosphorylation of physiological substrates such as synapsin II.
Collapse
Affiliation(s)
- Sachiko Shimomura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | | | | | |
Collapse
|
6
|
Skelding KA, Suzuki T, Gordon S, Xue J, Verrills NM, Dickson PW, Rostas JAP. Regulation of CaMKII by phospho-Thr253 or phospho-Thr286 sensitive targeting alters cellular function. Cell Signal 2010; 22:759-69. [PMID: 20060891 DOI: 10.1016/j.cellsig.2009.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 12/31/2009] [Indexed: 11/26/2022]
Abstract
Calcium/calmodulin-stimulated protein kinase II (CaMKII) is an important mediator of synaptic function that is regulated by multi-site phosphorylation and targeting through interactions with proteins. A new phosphorylation site at Thr253 has been identified in vivo, that does not alter CaMKII activity, but does alter CaMKII function through interactions with binding proteins. To identify these proteins, as well as to examine the specific effects following Thr253 or Thr286 phosphorylation on these interactions, we developed an in vitro overlay binding assay. We demonstrated that the interaction between CaMKII and its binding proteins was altered by the phosphorylation state of both the CaMKII and the partner, and identified a CaMKII-specific sequence that was responsible for the interaction between CaMKII and two interacting proteins. By comparing CaMKII binding profiles in tissue and cell extracts, we demonstrated that the CaMKII binding profiles varied with cell type, and also showed that overexpression of a CaMKII Thr253 phospho-mimic mutant in human neuroblastoma and breast cancer cells dramatically altered the morphology and growth rates when compared to overexpression of non-phosphorylated CaMKII. This data highlights the importance of the microenvironment in regulating CaMKII function, and describes a potentially new mechanism by which the functions of CaMKII can be regulated.
Collapse
Affiliation(s)
- Kathryn A Skelding
- Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Skelding KA, Rostas JAP. Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment. Neurochem Res 2009; 34:1792-804. [PMID: 19415486 DOI: 10.1007/s11064-009-9985-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 04/21/2009] [Indexed: 01/05/2023]
Abstract
CaMKII (calcium/calmodulin-stimulated protein kinase II) is a multifunctional protein kinase that regulates normal neuronal function. CaMKII is regulated by multi-site phosphorylation, which can alter enzyme activity, and targeting to cellular microdomains through interactions with binding proteins. These proteins integrate CaMKII into multiple signalling pathways, which lead to varied functional outcomes following CaMKII phosphorylation, depending on the identity and location of the binding partner. A new phosphorylation site on CaMKII (Thr253) has been identified in vivo. Thr253 phosphorylation controls CaMKII purely by targeting, does not effect enzyme activity, and occurs in response to physiological and pathological stimuli in vivo, but only in CaMKII molecules present in specific cellular locations. This new phosphorylation site offers a potentially novel regulatory mechanism for controlling functional responses elicited by CaMKII that are restricted to specific subcellular locations and/or certain cell types, by controlling interactions with proteins that are expressed in the cell at that location.
Collapse
Affiliation(s)
- Kathryn A Skelding
- School of Biomedical Sciences and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
8
|
Lu H, Leung HT, Wang N, Pak WL, Shieh BH. Role of Ca2+/calmodulin-dependent protein kinase II in Drosophila photoreceptors. J Biol Chem 2009; 284:11100-9. [PMID: 19254957 DOI: 10.1074/jbc.m806956200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) modulates the visual response in both vertebrates and invertebrates. In Drosophila photoreceptors, an increase of cytoplasmic Ca(2+) mimics light adaptation. Little is known regarding the mechanism, however. We explored the role of the sole Drosophila Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to mediate light adaptation. CaMKII has been implicated in the phosphorylation of arrestin 2 (Arr2). However, the functional significance of Arr2 phosphorylation remains debatable. We identified retinal CaMKII by anti-CaMKII antibodies and by its Ca(2+)-dependent autophosphorylation. Moreover, we show that phosphorylation of CaMKII is greatly enhanced by okadaic acid, and indeed, purified PP2A catalyzes the dephosphorylation of CaMKII. Significantly, we demonstrate that anti-CaMKII antibodies co-immunoprecipitate, and CaMKII fusion proteins pull down the catalytic subunit of PP2A from fly extracts, indicating that PP2A interacts with CaMKII to form a protein complex. To investigate the function of CaMKII in photoreceptors, we show that suppression of CaMKII in transgenic flies affects light adaptation and increases prolonged depolarizing afterpotential amplitude, whereas a reduced PP2A activity brings about reduced prolonged depolarizing afterpotential amplitude. Taken together, we conclude that CaMKII is involved in the negative regulation of the visual response affecting light adaptation, possibly by catalyzing phosphorylation of Arr2. Moreover, the CaMKII activity appears tightly regulated by the co-localized PP2A.
Collapse
Affiliation(s)
- Haiqin Lu
- Department of Pharmacology, Center for Molecular Neuroscience, and Vision Research Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
9
|
Tyrosine kinase activity of a Ca2+/calmodulin-dependent protein kinase II catalytic fragment. Biochem Biophys Res Commun 2008; 377:648-652. [PMID: 18930024 DOI: 10.1016/j.bbrc.2008.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
Abstract
A 30-kDa fragment of Ca(2+)/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX(40)-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca(2+)/calmodulin-dependent protein kinase I (CX(40)) were fused to the N-terminal end of 30K-CaMKII. Although CX(40)-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX(40) region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed.
Collapse
|
10
|
Sugiyama Y, Shimomura S, Sueyoshi N, Kameshita I. Two-dimensional gel electrophoretic analysis of cyanogen bromide fragments containing subdomain VIB of protein kinases using a Multi-PK antibody. Anal Biochem 2008; 373:173-5. [PMID: 17963683 DOI: 10.1016/j.ab.2007.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 11/27/2022]
Affiliation(s)
- Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | | | |
Collapse
|
11
|
Shoju H, Sueyoshi N, Kameshita I. High-level expression of proteins in Escherichia coli using a pETCX10 expression system. Anal Biochem 2006; 353:290-2. [PMID: 16564486 DOI: 10.1016/j.ab.2006.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Hiroyuki Shoju
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | |
Collapse
|