1
|
Hirota K, Yamauchi R, Miyata M, Kojima M, Kako K, Fukamizu A. Dietary methionine functions in proliferative zone maintenance and egg production via sams-1 in Caenorhabditis elegans. J Biochem 2024; 176:359-367. [PMID: 39046461 DOI: 10.1093/jb/mvae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024] Open
Abstract
The maintenance of germ cells is critical for the prosperity of offspring. The amount of food consumption is known to be closely related to reproduction, i.e. the number of eggs decreases under calorie-restricted conditions in various organisms. Previous studies in Caenorhabditis elegans have reported that calorie restriction reduces the number of eggs and the reduction can be rescued by methionine. However, the effect of methionine on the reproductive process has not been fully understood. In this study, to assess the gonadal function of methionine metabolism, we firstly demonstrated that a depletion in dietary methionine resulted in reduced levels of S-adenosyl-l-methionine (SAM) and S-adenosyl homocysteine in wild-type N2, but not in glp-1 mutants, which possess only a few germ cells. Second, we found no recovery in egg numbers upon methionine administration in SAM synthase (sams)-1 mutants. Furthermore, a reduced number of proliferative zone nuclei exhibited in the sams-1 mutants was not rescued via methionine. Thus, our results have shown that dietary methionine is required for the normal establishment of both the germline progenitor pool and fecundity, mediated by sams-1.
Collapse
Affiliation(s)
- Keiko Hirota
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
- Department of Hygiene and Public Health, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo,162-8666, Japan
| | - Rieko Yamauchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mai Miyata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mariko Kojima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Koichiro Kako
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
2
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. A bioinformatics approach to elucidate conserved genes and pathways in C. elegans as an animal model for cardiovascular research. Sci Rep 2024; 14:7471. [PMID: 38553458 PMCID: PMC10980734 DOI: 10.1038/s41598-024-56562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in CVD research. Caenorhabditis elegans, a nematode species, has emerged as a prominent experimental organism widely utilized in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilization for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signaling pathway, the FoxO signaling pathway, the MAPK signaling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | | | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Science for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Chirashree Ghosh
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Hirota K, Matsuoka M. SAMS-1 is required for the normal defecation motor program in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001101. [PMID: 38571512 PMCID: PMC10988289 DOI: 10.17912/micropub.biology.001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Defecation is an ultradian rhythmic behavior in Caenorhabditis elegans . We investigated the involvement of sams family genes in regulating the defecation motor program. We found that sams-1 mutants exhibited longer cycles than wild-type animals. With aging, the sams-1 mutants also frequently skipped the expulsion (Exp) step of defecation behavior. The sams-1 knockdown is known to reduce phosphatidylcholine (PC) levels, which are reversed by choline supplementation. We examined the effect of choline supplementation on defecation cycle times and Exp steps from adult days 1-4. Although choline supplementation did not alter the longer defecation cycle times of sams-1 mutants, it restored the loss of the Exp step in sams-1 mutants on adult days 3 and 4, suggesting a link between the regulation of the Exp step in sams-1 mutants and PC production.
Collapse
Affiliation(s)
- Keiko Hirota
- Department of Hygiene and Public Health, School of medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Masato Matsuoka
- Department of Hygiene and Public Health, School of medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. Conserved Cardiovascular Network: Bioinformatics Insights into Genes and Pathways for Establishing Caenorhabditis elegans as an Animal Model for Cardiovascular Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573256. [PMID: 38234826 PMCID: PMC10793405 DOI: 10.1101/2023.12.24.573256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in cardiovascular disease (CVD) research. Caenorhabditis elegans , a nematode species, has emerged as a prominent experimental organism widely utilised in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilisation for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signalling pathway, the FoxO signalling pathway, the MAPK signalling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
|
5
|
Kang WK, Florman JT, Araya A, Fox BW, Thackeray A, Schroeder FC, Walhout AJM, Alkema MJ. Vitamin B 12 produced by gut bacteria modulates cholinergic signalling. Nat Cell Biol 2024; 26:72-85. [PMID: 38168768 DOI: 10.1038/s41556-023-01299-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.
Collapse
Affiliation(s)
- Woo Kyu Kang
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy T Florman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Antonia Araya
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Andrea Thackeray
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha J M Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Castillo-Quan JI, Steinbaugh MJ, Fernández-Cárdenas LP, Pohl NK, Wu Z, Zhu F, Moroz N, Teixeira V, Bland MS, Lehrbach NJ, Moronetti L, Teufl M, Blackwell TK. An antisteatosis response regulated by oleic acid through lipid droplet-mediated ERAD enhancement. SCIENCE ADVANCES 2023; 9:eadc8917. [PMID: 36598980 PMCID: PMC9812393 DOI: 10.1126/sciadv.adc8917] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/23/2022] [Indexed: 05/19/2023]
Abstract
Although excessive lipid accumulation is a hallmark of obesity-related pathologies, some lipids are beneficial. Oleic acid (OA), the most abundant monounsaturated fatty acid (FA), promotes health and longevity. Here, we show that OA benefits Caenorhabditis elegans by activating the endoplasmic reticulum (ER)-resident transcription factor SKN-1A (Nrf1/NFE2L1) in a lipid homeostasis response. SKN-1A/Nrf1 is cleared from the ER by the ER-associated degradation (ERAD) machinery and stabilized when proteasome activity is low and canonically maintains proteasome homeostasis. Unexpectedly, OA increases nuclear SKN-1A levels independently of proteasome activity, through lipid droplet-dependent enhancement of ERAD. In turn, SKN-1A reduces steatosis by reshaping the lipid metabolism transcriptome and mediates longevity from OA provided through endogenous accumulation, reduced H3K4 trimethylation, or dietary supplementation. Our findings reveal an unexpected mechanism of FA signal transduction, as well as a lipid homeostasis pathway that provides strategies for opposing steatosis and aging, and may mediate some benefits of the OA-rich Mediterranean diet.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Michael J. Steinbaugh
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Laura Paulette Fernández-Cárdenas
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nancy K. Pohl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ziyun Wu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Feimei Zhu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Natalie Moroz
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biology Department, Emmanuel College, Boston, MA, USA
| | - Veronica Teixeira
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Monet S. Bland
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nicolas J. Lehrbach
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lorenza Moronetti
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Magdalena Teufl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - T. Keith Blackwell
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
7
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
8
|
Wang C, Wang B, Pandey T, Long Y, Zhang J, Oh F, Sima J, Guo R, Liu Y, Zhang C, Mukherjee S, Bassik M, Lin W, Deng H, Vale G, McDonald JG, Shen K, Ma DK. A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience. Nat Commun 2022; 13:6805. [PMID: 36357390 PMCID: PMC9649747 DOI: 10.1038/s41467-022-34450-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Cells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through conserved homeostatic mechanisms. Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that mediates lipid trafficking to confer cold resilience. We identify lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7. LPD-3 bridges the endoplasmic reticulum (ER) and plasma membranes (PM), forming a structurally predicted hydrophobic tunnel for lipid trafficking. lpd-3 mutants exhibit abnormal phospholipid distribution, diminished FAT-7 abundance, organismic vulnerability to cold, and are rescued by Lecithin comprising unsaturated phospholipids. Deficient lpd-3 homologues in Zebrafish and mammalian cells cause defects similar to those observed in C. elegans. As mutations in BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, LPD-3 family proteins may serve as evolutionarily conserved highway bridges critical for ER-associated non-vesicular lipid trafficking and resilience to cold stress in eukaryotic cells.
Collapse
Affiliation(s)
- Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Fiona Oh
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Sima
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Ruyin Guo
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Zhang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Nikonorova IA, Wang J, Cope AL, Tilton PE, Power KM, Walsh JD, Akella JS, Krauchunas AR, Shah P, Barr MM. Isolation, profiling, and tracking of extracellular vesicle cargo in Caenorhabditis elegans. Curr Biol 2022; 32:1924-1936.e6. [PMID: 35334227 PMCID: PMC9491618 DOI: 10.1016/j.cub.2022.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) may mediate intercellular communication by carrying protein and RNA cargo. The composition, biology, and roles of EVs in physiology and pathology have been primarily studied in the context of biofluids and in cultured mammalian cells. The experimental tractability of C. elegans makes for a powerful in vivo animal system to identify and study EV cargo from its cellular source. We developed an innovative method to label, track, and profile EVs using genetically encoded, fluorescent-tagged EV cargo and conducted a large-scale isolation and proteomic profiling. Nucleic acid binding proteins (∼200) are overrepresented in our dataset. By integrating our EV proteomic dataset with single-cell transcriptomic data, we identified and validated ciliary EV cargo: CD9-like tetraspanin (TSP-6), ectonucleotide pyrophosphatase/phosphodiesterase (ENPP-1), minichromosome maintenance protein (MCM-3), and double-stranded RNA transporter SID-2. C. elegans EVs also harbor RNA, suggesting that EVs may play a role in extracellular RNA-based communication.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Juan Wang
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Alexander L Cope
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Kaiden M Power
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jonathon D Walsh
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Amber R Krauchunas
- University of Delaware, Department of Biological Sciences, 105 The Green, Newark, DE 19716, USA
| | - Premal Shah
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Tsuji A, Ikeda Y, Murakami M, Kitagishi Y, Matsuda S. Reduction of oocyte lipid droplets and meiotic failure due to biotin deficiency was not rescued by restoring the biotin nutritional status. Nutr Res Pract 2022; 16:314-329. [PMID: 35663441 PMCID: PMC9149319 DOI: 10.4162/nrp.2022.16.3.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ai Tsuji
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Mutsumi Murakami
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
11
|
Watabe E, Togo-Ohno M, Ishigami Y, Wani S, Hirota K, Kimura-Asami M, Hasan S, Takei S, Fukamizu A, Suzuki Y, Suzuki T, Kuroyanagi H. m 6 A-mediated alternative splicing coupled with nonsense-mediated mRNA decay regulates SAM synthetase homeostasis. EMBO J 2021; 40:e106434. [PMID: 34152017 DOI: 10.15252/embj.2020106434] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing of pre-mRNAs can regulate gene expression levels by coupling with nonsense-mediated mRNA decay (NMD). In order to elucidate a repertoire of mRNAs regulated by alternative splicing coupled with NMD (AS-NMD) in an organism, we performed long-read RNA sequencing of poly(A)+ RNAs from an NMD-deficient mutant strain of Caenorhabditis elegans, and obtained full-length sequences for mRNA isoforms from 259 high-confidence AS-NMD genes. Among them are the S-adenosyl-L-methionine (SAM) synthetase (sams) genes sams-3 and sams-4. SAM synthetase activity autoregulates sams gene expression through AS-NMD in a negative feedback loop. We furthermore find that METT-10, the orthologue of human U6 snRNA methyltransferase METTL16, is required for the splicing regulation in␣vivo, and specifically methylates the invariant AG dinucleotide at the distal 3' splice site (3'SS) in␣vitro. Direct RNA sequencing coupled with machine learning confirms m6 A modification of endogenous sams mRNAs. Overall, these results indicate that homeostasis of SAM synthetase in C. elegans is maintained by alternative splicing regulation through m6 A modification at the 3'SS of the sams genes.
Collapse
Affiliation(s)
- Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Marina Togo-Ohno
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Wani
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Keiko Hirota
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Mariko Kimura-Asami
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Sharmin Hasan
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Satomi Takei
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan.,Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| |
Collapse
|
12
|
Li YX, Wang NN, Zhou YX, Lin CG, Wu JS, Chen XQ, Chen GJ, Du ZJ. Planococcus maritimus ML1206 Isolated from Wild Oysters Enhances the Survival of Caenorhabditis elegans against Vibrio anguillarum. Mar Drugs 2021; 19:md19030150. [PMID: 33809116 PMCID: PMC7999227 DOI: 10.3390/md19030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
With the widespread occurrence of aquaculture diseases and the broad application of antibiotics, drug-resistant pathogens have increasingly affected aquatic animals’ health. Marine probiotics, which live under high pressure in a saltwater environment, show high potential as a substitute for antibiotics in the field of aquatic disease control. In this study, twenty strains of non-hemolytic bacteria were isolated from the intestine of wild oysters and perch, and a model of Caenorhabditis elegans infected by Vibrio anguillarum was established. Based on the model, ML1206, which showed a 99% similarity of 16S rRNA sequence to Planococcus maritimus, was selected as a potential marine probiotic, with strong antibacterial capabilities and great acid and bile salt tolerance, to protect Caenorhabditis elegans from being damaged by Vibrio anguillarum. Combined with plate counting and transmission electron microscopy, it was found that strain ML1206 could significantly inhibit Vibrio anguillarum colonization in the intestinal tract of Caenorhabditis elegans. Acute oral toxicity tests in mice showed that ML1206 was safe and non-toxic. The real-time qPCR results showed a higher expression level of genes related to the antibacterial peptide (ilys-3) and detoxification (ugt-22, cyp-35A3, and cyp-14A3) in the group of Caenorhabditis elegans protected by ML1206 compared to the control group. It is speculated that ML1206, as a potential probiotic, may inhibit the infection caused by Vibrio anguillarum through stimulating Caenorhabditis elegans to secrete antibacterial effectors and detoxification proteins. This paper provides a new direction for screening marine probiotics and an experimental basis to support the potential application of ML1206 as a marine probiotic in aquaculture.
Collapse
Affiliation(s)
- Ying-Xiu Li
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Nan-Nan Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Chun-Guo Lin
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Jing-Shan Wu
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Xin-Qi Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
- Correspondence: (G.J.C.); (Z.-J.D.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (Y.-X.L.); (N.-N.W.); (Y.-X.Z.); (C.-G.L.); (J.-S.W.); (X.-Q.C.)
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
- Correspondence: (G.J.C.); (Z.-J.D.)
| |
Collapse
|
13
|
S-adenosyl methionine synthetase SAMS-5 mediates dietary restriction-induced longevity in Caenorhabditis elegans. PLoS One 2020; 15:e0241455. [PMID: 33175851 PMCID: PMC7657561 DOI: 10.1371/journal.pone.0241455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 01/25/2023] Open
Abstract
S-adenosyl methionine synthetase (SAMS) catalyzes the biosynthesis of S-adenosyl methionine (SAM), which serves as a universal methyl group donor for numerous biochemical reactions. Previous studies have clearly demonstrated that SAMS-1, a C. elegans homolog of mammalian SAMS, is critical for dietary restriction (DR)-induced longevity in Caenorhabditis elegans. In addition to SAMS-1, three other SAMS paralogs have been identified in C. elegans. However, their roles in longevity regulation have never been explored. Here, we show that depletion of sams-5, but not sams-3 or sams-4, can extend lifespan in worms. However, the phenotypes and expression pattern of sams-5 are distinct from sams-1, suggesting that these two SAMSs might regulate DR-induced longevity via different mechanisms. Through the genetic epistasis analysis, we have identified that sams-5 is required for DR-induced longevity in a pha-4/FOXA dependent manner.
Collapse
|
14
|
Giese GE, Walker MD, Ponomarova O, Zhang H, Li X, Minevich G, Walhout AJ. Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. eLife 2020; 9:60259. [PMID: 33016879 PMCID: PMC7561351 DOI: 10.7554/elife.60259] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
Vitamin B12 is an essential micronutrient that functions in two metabolic pathways: the canonical propionate breakdown pathway and the methionine/S-adenosylmethionine (Met/SAM) cycle. In Caenorhabditis elegans, low vitamin B12, or genetic perturbation of the canonical propionate breakdown pathway results in propionate accumulation and the transcriptional activation of a propionate shunt pathway. This propionate-dependent mechanism requires nhr-10 and is referred to as ‘B12-mechanism-I’. Here, we report that vitamin B12 represses the expression of Met/SAM cycle genes by a propionate-independent mechanism we refer to as ‘B12-mechanism-II’. This mechanism is activated by perturbations in the Met/SAM cycle, genetically or due to low dietary vitamin B12. B12-mechanism-II requires nhr-114 to activate Met/SAM cycle gene expression, the vitamin B12 transporter, pmp-5, and adjust influx and efflux of the cycle by activating msra-1 and repressing cbs-1, respectively. Taken together, Met/SAM cycle activity is sensed and transcriptionally adjusted to be in a tight metabolic regime.
Collapse
Affiliation(s)
- Gabrielle E Giese
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Melissa D Walker
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Olga Ponomarova
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Hefei Zhang
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Xuhang Li
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Gregory Minevich
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Albertha Jm Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
15
|
Schifano E, Cicalini I, Pieragostino D, Heipieper HJ, Del Boccio P, Uccelletti D. In vitro and in vivo lipidomics as a tool for probiotics evaluation. Appl Microbiol Biotechnol 2020; 104:8937-8948. [PMID: 32875367 DOI: 10.1007/s00253-020-10864-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/18/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The probiotic bacteria are helpful for nutritional and therapeutic purposes, and they are commercially available in various forms, such as capsules or powders. Increasing pieces of evidence indicate that different growth conditions and variability in manufacturing processes can determine the properties of probiotic products. In recent years, the lipidomic approach has become a useful tool to evaluate the impact that probiotics induce in host physiology. In this work, two probiotic formulations with identical species composition, produced in two different sites, the USA and Italy, were utilized to feed Caenorhabditis elegans, strains and alterations in lipid composition in the host and bacteria were investigated. Indeed, the multicellular organism C. elegans is considered a simple model to study the in vivo effects of probiotics. Nematodes fat metabolism was assessed by gene expression analysis and by mass spectrometry-based lipidomics. Lipid droplet analysis revealed a high accumulation of lipid droplets in worms fed US-made products, correlating with an increased expression of genes involved in the fatty acid synthesis. We also evaluated the lifespan of worms defective in genes involved in the insulin/IGF-1-mediated pathway and monitored the nuclear translocation of DAF-16. These data demonstrated the involvement of the signaling in C. elegans responses to the two diets. Lipidomics analysis of the two formulations was also conducted, and the results indicated differences in phosphatidylglycerol (PG) and phosphatidylcholine (PC) contents that, in turn, could influence nematode host physiology. Results demonstrated that different manufacturing processes could influence probiotics and host properties in terms of lipid composition. KEY POINTS: • Probiotic formulations impact on Caenorhabditis elegans lipid metabolism; • Lipidomic analysis highlighted phospholipid abundance in the two products; • Phosphocholines and phosphatidylglycerols were analyzed in worms fed the two probiotic formulations.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Ilaria Cicalini
- Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Damiana Pieragostino
- Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
16
|
Rashid S, Pho KB, Mesbahi H, MacNeil LT. Nutrient Sensing and Response Drive Developmental Progression in Caenorhabditis elegans. Bioessays 2020; 42:e1900194. [PMID: 32003906 DOI: 10.1002/bies.201900194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022]
Abstract
In response to nutrient limitation, many animals, including Caenorhabditis elegans, slow or arrest their development. This process requires mechanisms that sense essential nutrients and induce appropriate responses. When faced with nutrient limitation, C. elegans can induce both short and long-term survival strategies, including larval arrest, decreased developmental rate, and dauer formation. To select the most advantageous strategy, information from many different sensors must be integrated into signaling pathways, including target of rapamycin (TOR) and insulin, that regulate developmental progression. Here, how nutrient information is sensed and integrated into developmental decisions that determine developmental rate and progression in C. elegans is reviewed.
Collapse
Affiliation(s)
- Sabih Rashid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| |
Collapse
|
17
|
Koh JH, Wang L, Beaudoin-Chabot C, Thibault G. Lipid bilayer stress-activated IRE-1 modulates autophagy during endoplasmic reticulum stress. J Cell Sci 2018; 131:jcs.217992. [PMID: 30333136 DOI: 10.1242/jcs.217992] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), are emerging as epidemics that affect the global population. One facet of these disorders is attributed to the disturbance of membrane lipid composition. Perturbation of endoplasmic reticulum (ER) homeostasis through alteration in membrane phospholipids activates the unfolded protein response (UPR) and causes dramatic transcriptional and translational changes in the cell. To restore cellular homeostasis, the three highly conserved UPR transducers ATF6, IRE1 (also known as ERN1 in mammals) and PERK (also known as EIF2AK3 in mammals) mediate adaptive responses upon ER stress. The homeostatic UPR cascade is well characterised under conditions of proteotoxic stress, but much less so under lipid bilayer stress-induced UPR. Here, we show that disrupted phosphatidylcholine (PC) synthesis in Caenorhabditis elegans causes lipid bilayer stress, lipid droplet accumulation and ER stress induction. Transcriptional profiling of PC-deficient worms revealed a unique subset of genes regulated in a UPR-dependent manner that is independent from proteotoxic stress. Among these, we show that autophagy is modulated through the conserved IRE-1-XBP-1 axis, strongly suggesting of the importance of autophagy in maintaining cellular homeostasis during the lipid bilayer stress-induced UPR.
Collapse
Affiliation(s)
- Jhee Hong Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Lei Wang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
18
|
Kaletsky R, Yao V, Williams A, Runnels AM, Tadych A, Zhou S, Troyanskaya OG, Murphy CT. Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression. PLoS Genet 2018; 14:e1007559. [PMID: 30096138 PMCID: PMC6105014 DOI: 10.1371/journal.pgen.1007559] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/22/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
The biology and behavior of adults differ substantially from those of developing animals, and cell-specific information is critical for deciphering the biology of multicellular animals. Thus, adult tissue-specific transcriptomic data are critical for understanding molecular mechanisms that control their phenotypes. We used adult cell-specific isolation to identify the transcriptomes of C. elegans' four major tissues (or "tissue-ome"), identifying ubiquitously expressed and tissue-specific "enriched" genes. These data newly reveal the hypodermis' metabolic character, suggest potential worm-human tissue orthologies, and identify tissue-specific changes in the Insulin/IGF-1 signaling pathway. Tissue-specific alternative splicing analysis identified a large set of collagen isoforms. Finally, we developed a machine learning-based prediction tool for 76 sub-tissue cell types, which we used to predict cellular expression differences in IIS/FOXO signaling, stage-specific TGF-β activity, and basal vs. memory-induced CREB transcription. Together, these data provide a rich resource for understanding the biology governing multicellular adult animals.
Collapse
Affiliation(s)
- Rachel Kaletsky
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Victoria Yao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - April Williams
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Alexi M. Runnels
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Alicja Tadych
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Flatiron Institute, Simons Foundation, New York, New York, United States of America
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
19
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
20
|
Arndt DA, Oostveen EK, Triplett J, Butterfield DA, Tsyusko OV, Collin B, Starnes DL, Cai J, Klein JB, Nass R, Unrine JM. The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:1-10. [PMID: 28888877 DOI: 10.1016/j.cbpc.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2-5nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials.
Collapse
Affiliation(s)
- Devrah A Arndt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Judy Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Blanche Collin
- CNRS, IRD, Coll. France, CEREGE, Aix Marseille Université, Aix-en-Provence, France
| | - Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Jian Cai
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Jon B Klein
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
21
|
Rashid S, MacNeil LT. Packing on the Pounds in Response to Bacterial Growth Conditions. Dev Cell 2017; 41:335-336. [PMID: 28535369 DOI: 10.1016/j.devcel.2017.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reporting in Nature Cell Biology, Lin and Wang (2017) show that bacterial methyl metabolism impacts host mitochondrial dynamics and lipid storage in C. elegans. The authors propose a model whereby bacterial metabolic products regulate a nuclear hormone receptor that promotes lipid accumulation through expression of a secreted Hedgehog-like protein.
Collapse
Affiliation(s)
- Sabih Rashid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
22
|
Lin CCJ, Wang MC. Microbial metabolites regulate host lipid metabolism through NR5A-Hedgehog signalling. Nat Cell Biol 2017; 19:550-557. [PMID: 28436966 PMCID: PMC5635834 DOI: 10.1038/ncb3515] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022]
Abstract
Microorganisms and their hosts share the same environment, and microbial metabolic molecules (metabolites) exert crucial effects on host physiology. Environmental factors not only shape the composition of the host's resident microorganisms, but also modulate their metabolism. However, the exact molecular relationship among the environment, microbial metabolites and host metabolism remains largely unknown. Here, we discovered that environmental methionine tunes bacterial methyl metabolism to regulate host mitochondrial dynamics and lipid metabolism in Caenorhabditis elegans through an endocrine crosstalk involving NR5A nuclear receptor and Hedgehog signalling. We discovered that methionine deficiency in bacterial medium decreases the production of bacterial metabolites that are essential for phosphatidylcholine synthesis in C. elegans. Reductions of diundecanoyl and dilauroyl phosphatidylcholines attenuate NHR-25, a NR5A nuclear receptor, and release its transcriptional suppression of GRL-21, a Hedgehog-like protein. The induction of GRL-21 consequently inhibits the PTR-24 Patched receptor cell non-autonomously, resulting in mitochondrial fragmentation and lipid accumulation. Together, our work reveals an environment-microorganism-host metabolic axis regulating host mitochondrial dynamics and lipid metabolism, and discovers NR5A-Hedgehog intercellular signalling that controls these metabolic responses with critical consequences for host health and survival.
Collapse
Affiliation(s)
- Chih-Chun Janet Lin
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
23
|
A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:2407-19. [PMID: 27261001 PMCID: PMC4978895 DOI: 10.1534/g3.116.030866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion.
Collapse
|
24
|
BLIMP-1/BLMP-1 and Metastasis-Associated Protein Regulate Stress Resistant Development in Caenorhabditis elegans. Genetics 2016; 203:1721-32. [PMID: 27334271 DOI: 10.1534/genetics.116.190793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023] Open
Abstract
Environmental stress triggers multilevel adaptations in animal development that depend in part on epigenetic mechanisms. In response to harsh environmental conditions and pheromone signals, Caenorhabditis elegans larvae become the highly stress-resistant and long-lived dauer. Despite extensive studies of dauer formation pathways that integrate specific environmental cues and appear to depend on transcriptional reprogramming, the role of epigenetic regulation in dauer development has remained unclear. Here we report that BLMP-1, the BLIMP-1 ortholog, regulates dauer formation via epigenetic pathways; in the absence of TGF-β signaling (in daf-7 mutants), lack of blmp-1 caused lethality. Using this phenotype, we screened 283 epigenetic factors, and identified lin-40, a homolog of metastasis-associate protein 1 (MTA1) as an interactor of BLMP-1 The interaction between LIN-40 and BLMP-1 is conserved because mammalian homologs for both MTA1 and BLIMP-1 could also interact. From microarray studies, we identified several downstream target genes of blmp-1: npr-3, nhr-23, ptr-4, and sams-1 Among them S-adenosyl methionine synthase (SAMS-1), is the key enzyme for production of SAM used in histone methylation. Indeed, blmp-1 is necessary for controlling histone methylation level in daf-7 mutants, suggesting BLMP-1 regulates the expression of SAMS-1, which in turn may regulate histone methylation and dauer formation. Our results reveal a new interaction between BLMP-1/BLIMP-1 and LIN-40/MTA1, as well as potential epigenetic downstream pathways, whereby these proteins cooperate to regulate stress-specific developmental adaptations.
Collapse
|
25
|
Klapper M, Findeis D, Koefeler H, Döring F. Methyl group donors abrogate adaptive responses to dietary restriction in C. elegans. GENES & NUTRITION 2016; 11:4. [PMID: 27482296 PMCID: PMC4959552 DOI: 10.1186/s12263-016-0522-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND Almost all animals adapt to dietary restriction through alternative life history traits that affect their growth, reproduction, and survival. Economized management of fat stores is a prevalent type of such adaptations. Because one-carbon metabolism is a critical gauge of food availability, in this study, we used Caenorhabditis elegans to test whether the methyl group donor choline regulates adaptive responses to dietary restriction. We used a modest dietary restriction regimen that prolonged the fecund period without reducing the lifetime production of progeny, which is the best measure of fitness. RESULTS We found that dietary supplementation with choline abrogate the dietary restriction-induced prolongation of the reproductive period as well as the accumulation and delayed depletion of large lipid droplets and whole-fat stores and increased the survival rate in the cold. By contrast, the life span-prolonging effect of dietary restriction is not affected by choline. Moreover, we found that dietary restriction led to the enlargement of lipid droplets within embryos and enhancement of the cold tolerance of the progeny of dietarily restricted mothers. Both of these transgenerational responses to maternal dietary restriction were abrogated by exposing the parental generation to choline. CONCLUSIONS In conclusion, supplementation with the methyl group donor choline abrogates distinct responses to dietary restriction related to reproduction, utilization of fat stored in large lipid droplets, cold tolerance, and thrifty phenotypes in C. elegans.
Collapse
Affiliation(s)
- Maja Klapper
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrechts University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Daniel Findeis
- Institute of Genetics, TU Braunschweig, 38106 Braunschweig, Germany
| | - Harald Koefeler
- ZMF—Center for Medical Research, University of Graz, Core Facility for Mass Spectrometry, Lipidomics and Metabolomics, A-8010 Graz, Austria
- Omics Center Graz, A-8010 Graz, Austria
| | - Frank Döring
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrechts University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
26
|
Metabolome and proteome changes with aging in Caenorhabditis elegans. Exp Gerontol 2015; 72:67-84. [PMID: 26390854 DOI: 10.1016/j.exger.2015.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/13/2023]
Abstract
To expand the understanding of aging in the model organism Caenorhabditis elegans, global quantification of metabolite and protein levels in young and aged nematodes was performed using mass spectrometry. With age, there was a decreased abundance of proteins functioning in transcription termination, mRNA degradation, mRNA stability, protein synthesis, and proteasomal function. Furthermore, there was altered S-adenosyl methionine metabolism as well as a decreased abundance of the S-adenosyl methionine synthetase (SAMS-1) protein. Other aging-related changes included alterations in free fatty acid levels and composition, decreased levels of ribosomal proteins, decreased levels of NADP-dependent isocitrate dehydrogenase (IDH1), a shift in the cellular redox state, an increase in sorbitol content, alterations in free amino acid levels, and indications of altered muscle function and sarcoplasmic reticulum Ca(2+) homeostasis. There were also decreases in pyrimidine and purine metabolite levels, most markedly nitrogenous bases. Supplementing the culture medium with cytidine (a pyrimidine nucleoside) or hypoxanthine (a purine base) increased lifespan slightly, suggesting that aging-induced alterations in ribonucleotide metabolism affect lifespan. An age-related increase in body size, lipotoxicity from ectopic yolk lipoprotein accumulation, a decline in NAD(+) levels, and mitochondrial electron transport chain dysfunction may explain many of these changes. In addition, dietary restriction in aged worms resulting from sarcopenia of the pharyngeal pump likely decreases the abundance of SAMS-1, possibly leading to decreased phosphatidylcholine levels, larger lipid droplets, and ER and mitochondrial stress. The complementary use of proteomics and metabolomics yielded unique insights into the molecular processes altered with age in C. elegans.
Collapse
|
27
|
Lee SG, Jez JM. Nematode phospholipid metabolism: an example of closing the genome-structure-function circle. Trends Parasitol 2014; 30:241-50. [PMID: 24685202 DOI: 10.1016/j.pt.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/03/2023]
Abstract
Parasitic nematodes that infect humans, animals, and plants cause health problems, livestock and agricultural losses, and economic damage worldwide and are important targets for drug development. The growing availability of nematode genomes supports the discovery of new pathways that differ from host organisms and are a starting point for structural and functional studies of novel antiparasitic targets. As an example of how genome data, structural biology, and biochemistry integrate into a research cycle targeting parasites, we summarize the discovery of the phosphobase methylation pathway for phospholipid synthesis in nematodes and compare the phosphoethanolamine methyltransferases (PMTs) from nematodes, plants, and Plasmodium. Crystallographic and biochemical studies of the PMTs in this pathway provide a foundation that guides the next steps that close the genome-structure-function circle.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA.
| |
Collapse
|
28
|
Ehmke M, Luthe K, Schnabel R, Döring F. S-Adenosyl methionine synthetase 1 limits fat storage in Caenorhabditis elegans. GENES & NUTRITION 2014; 9:386. [PMID: 24510589 PMCID: PMC3968293 DOI: 10.1007/s12263-014-0386-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Cytosolic lipid droplets are versatile, evolutionarily conserved organelles that are important for the storage and utilization of lipids in almost all cell types. To obtain insight into the physiological importance of lipid droplet size, we isolated and characterized a new S-adenosyl methionine synthetase 1 (SAMS-1)-deficient Caenorhabditis elegans mutant, which have enlarged lipid droplets throughout its life cycle. We found that the sams-1 mutant showed a markedly reduced body size and progeny number; impaired synthesis of phosphatidylcholine, a major membrane phospholipid; and elevated expression of key lipogenic genes, such as dgat-2, resulting in the accumulation of triacylglyceride in fewer, but larger, lipid droplets. The sams-1 mutant store more than 50 % (wild type: 10 %) of its intestinal fat in large lipid droplets, ≥10 μm(3) in size. In response to starvation, SAMS-1 deficiency causes reduced depletion of a subset of lipid droplets located in the anterior intestine. Given the importance of liberation of fatty acids from lipid droplets, we propose that the physiological function of SAMS-1, a highly conserved enzyme involved in one-carbon metabolism, is the limitation of fat storage to ensure proper growth and reproduction.
Collapse
Affiliation(s)
- Madeleine Ehmke
- />Department of Molecular Prevention, Institute of Human Nutrition and Food Sciences, University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Katharina Luthe
- />Department of Developmental Genetics, Institute of Genetics, TU Braunschweig, Spielmannstr. 7, 38106 Brunswick, Germany
| | - Ralf Schnabel
- />Department of Developmental Genetics, Institute of Genetics, TU Braunschweig, Spielmannstr. 7, 38106 Brunswick, Germany
| | - Frank Döring
- />Department of Molecular Prevention, Institute of Human Nutrition and Food Sciences, University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
29
|
Kawasaki I, Jeong MH, Yun YJ, Shin YK, Shim YH. Cholesterol-responsive metabolic proteins are required for larval development in Caenorhabditis elegans. Mol Cells 2013; 36:410-6. [PMID: 24218109 PMCID: PMC3887944 DOI: 10.1007/s10059-013-0170-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 01/12/2023] Open
Abstract
Caenorhabditis elegans, a cholesterol auxotroph, showed defects in larval development upon cholesterol starvation (CS) in a previous study. To identify cholesterol-responsive proteins likely responsible for the larval arrest upon CS, a comparative proteomic analysis was performed between C. elegans grown in normal medium supplemented with cholesterol (CN) and those grown in medium not supplemented with cholesterol (cholesterol starvation, CS). Our analysis revealed significant change (more than 2.2-fold, p < 0.05) in nine proteins upon CS. Six proteins were down-regulated [CE01270 (EEF-1A.1), CE08852 (SAMS-1), CE11068 (PMT-2), CE09015 (ACDH-1), CE12564 (R07H5.8), and CE09655 (RLA-0)], and three proteins were up-regulated [CE29645 (LEC-1), CE16576 (LEC-5), and CE01431 (NEX-1)]. RNAi phenotypes of two of the down-regulated genes, R07H5.8 (adenosine kinase) and rla-0 (ribosomal protein), in CN were similar to that of larval arrest in CS, and RNAi of a down-regulated gene, R07H5.8, in CS further enhanced the effects of CS, suggesting that down-regulation of these genes is likely responsible for the larval arrest in CS. All three up-regulated genes contain putative DAF-16 binding sites and mRNA levels of these three genes were all decreased in daf-16 mutants in CN, suggesting that DAF-16 activates expression of these genes.
Collapse
Affiliation(s)
- Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Myung-Hwan Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yu-Joun Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yun-Kyung Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
- Institute of KU Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
30
|
Lee SG, Jez JM. Evolution of structure and mechanistic divergence in di-domain methyltransferases from nematode phosphocholine biosynthesis. Structure 2013; 21:1778-87. [PMID: 24012478 PMCID: PMC3797223 DOI: 10.1016/j.str.2013.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
The phosphobase methylation pathway is the major route for supplying phosphocholine to phospholipid biosynthesis in plants, nematodes, and Plasmodium. In this pathway, phosphoethanolamine N-methyltransferase (PMT) catalyzes the sequential methylation of phosphoethanolamine to phosphocholine. In the PMT, one domain (MT1) catalyzes methylation of phosphoethanolamine to phosphomonomethylethanolamine and a second domain (MT2) completes the synthesis of phosphocholine. The X-ray crystal structures of the di-domain PMT from the parasitic nematode Haemonchus contortus (HcPMT1 and HcPMT2) reveal that the catalytic domains of these proteins are structurally distinct and allow for selective methylation of phosphobase substrates using different active site architectures. These structures also reveal changes leading to loss of function in the vestigial domains of the nematode PMT. Divergence of function in the two nematode PMTs provides two distinct antiparasitic inhibitor targets within the same essential metabolic pathway. The PMTs from nematodes, plants, and Plasmodium also highlight adaptable metabolic modularity in evolutionarily diverse organisms.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| |
Collapse
|
31
|
Miersch C, Döring F. Sex differences in body composition, fat storage, and gene expression profile in Caenorhabditis elegans in response to dietary restriction. Physiol Genomics 2013; 45:539-51. [PMID: 23715261 DOI: 10.1152/physiolgenomics.00007.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The metabolic and health-promoting effects of dietary restriction (DR) have been extensively studied in several species. The response to DR with respect to sex is essentially unknown. To address this question, we used the model organism Caenorhabditis elegans to analyze body composition and gene expression in males and hermaphrodites in response to DR. Unexpectedly, DR increased the fat-to-fat-free mass ratio and enlarged lipid droplets in both sexes to a similar extent. These effects were linked to a downregulation of the lipase-like 5 (lipl-5) gene in both sexes at two developmental stages. By contrast, the reductions in body size, protein content, and total RNA content in response to DR were more pronounced in hermaphrodites than in males. Functional enrichment analysis of gene expression data showed a DR-induced downregulation of several embryogenesis-associated genes concomitant with an ongoing expression of sperm-associated genes in hermaphrodites. In conclusion, DR increases fat stores in both sexes of C. elegans in the form of large and possibly lipolysis-resistant lipid droplets and markedly alters the reproductive program in hermaphrodites but not in males.
Collapse
Affiliation(s)
- Claudia Miersch
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Germany
| | | |
Collapse
|
32
|
Yao Z, Zhou H, Figeys D, Wang Y, Sundaram M. Microsome-associated lumenal lipid droplets in the regulation of lipoprotein secretion. Curr Opin Lipidol 2013; 24:160-70. [PMID: 23123764 DOI: 10.1097/mol.0b013e32835aebe7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Liver is the major organ in mammals that possesses the capacity to release triglyceride within VLDL. VLDL assembly requires apolipoprotein (apo) B-100 with the assistance of microsomal triglyceride transfer protein (MTP), which facilitates the mobilization of triglyceride into the microsomal lumen. Recent experimental evidence has suggested that the lumenal triglyceride associated with endoplasmic reticulum (ER)/Golgi may represent an entity serving as precursors for large VLDL1. RECENT FINDINGS Under lipid-rich conditions, discrete triglyceride-rich lipidic bodies, termed lumenal lipid droplets, are accumulated in association with ER/Golgi microsomes. Formation of the microsome-associated lumenal lipid droplets (MALD) is dependent on the activity of MTP, and the resulting apoB-free lipidic body is associated with a variety of proteins including apolipoproteins that are components of VLDL. Formation and utilization of MALD during the assembly and secretion of VLDL1 have a profound influence on hepatic cell physiology, such as ER stress responses. SUMMARY This review summarizes current understanding of hepatic triglyceride homeostasis in general, and highlights the functional significance of triglyceride compartmentalization between cytosol and microsomes in particular. Understanding of MALD metabolism may shed new light on the prevention and treatment of liver diseases associated with abnormally elevated intracellular triglycerides.
Collapse
Affiliation(s)
- Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
33
|
Zhang Y, Zou X, Ding Y, Wang H, Wu X, Liang B. Comparative genomics and functional study of lipid metabolic genes in Caenorhabditis elegans. BMC Genomics 2013; 14:164. [PMID: 23496871 PMCID: PMC3602672 DOI: 10.1186/1471-2164-14-164] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/06/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Animal models are indispensable to understand the lipid metabolism and lipid metabolic diseases. Over the last decade, the nematode Caenorhabditis elegans has become a popular animal model for exploring the regulation of lipid metabolism, obesity, and obese-related diseases. However, the genomic and functional conservation of lipid metabolism from C. elegans to humans remains unknown. In the present study, we systematically analyzed genes involved in lipid metabolism in the C. elegans genome using comparative genomics. RESULTS We built a database containing 471 lipid genes from the C. elegans genome, and then assigned most of lipid genes into 16 different lipid metabolic pathways that were integrated into a network. Over 70% of C. elegans lipid genes have human orthologs, with 237 of 471 C. elegans lipid genes being conserved in humans, mice, rats, and Drosophila, of which 71 genes are specifically related to human metabolic diseases. Moreover, RNA-mediated interference (RNAi) was used to disrupt the expression of 356 of 471 lipid genes with available RNAi clones. We found that 21 genes strongly affect fat storage, development, reproduction, and other visible phenotypes, 6 of which have not previously been implicated in the regulation of fat metabolism and other phenotypes. CONCLUSIONS This study provides the first systematic genomic insight into lipid metabolism in C. elegans, supporting the use of C. elegans as an increasingly prominent model in the study of metabolic diseases.
Collapse
Affiliation(s)
- Yuru Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| | - Xiaoju Zou
- Department of Life Science and Biotechnology, Kunming University, Kunming 650214, China
| | - Yihong Ding
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| | - Haizhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| |
Collapse
|
34
|
Tamiya H, Hirota K, Takahashi Y, Daitoku H, Kaneko Y, Sakuta G, Iizuka K, Watanabe S, Ishii N, Fukamizu A. Conserved SAMS function in regulating egg-laying in C. elegans. J Recept Signal Transduct Res 2013; 33:56-62. [PMID: 23316847 DOI: 10.3109/10799893.2012.756896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
S-adenosyl-L-methionine (SAM) is an intermediate metabolite of methionine and serves as the methyl donor for many biological methylation reactions. The synthesis of SAM is catalyzed by SAM synthetase (SAMS), which transfers the adenosyl moiety of adenosine-5'-triphosphate to methionine. In the nematode Caenorhabditis elegans, four sams family genes, sams-1, -3, -4 and -5, are predicted to encode SAMS proteins. However, their physiological roles remain unclear. Here we show that the four predicted SAMS proteins in fact have the ability to catalyze the formation of SAM in vitro, and revealed that only sams-1 mutant animals among the family genes exhibited a significant reduction in egg-laying. Using transgenic animals carrying a transcriptional reporter for each sams gene promoter, we observed that each sams promoter confers a distinct expression pattern with respect to tissue, time of expression and expression level (i.e. promoter specificity). Promoter-swap experiments revealed that the ectopic expression of SAMS-3, -4 or -5 driven by the sams-1 promoter completely rescued egg-laying in sams-1 mutants. These data indicate that SAMS protein function is conserved throughout the entire family.
Collapse
Affiliation(s)
- Hiroko Tamiya
- Life Science Center, Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Penno A, Hackenbroich G, Thiele C. Phospholipids and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:589-94. [PMID: 23246574 DOI: 10.1016/j.bbalip.2012.12.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis. Here, we discuss very recent data on the composition, origin, transport and function of the phospholipid monolayer with a particular emphasis on the phosphatidylcholine metabolism on and for lipid droplets. In addition, we highlight two very important quantitative aspects: (i) The amount of phospholipid required for lipid droplet monolayer expansion is remarkably small and (ii) to maintain the invariably round shape of lipid droplets, a cell must have a highly sensitive but so far unknown mechanism that regulates the ratio of phospholipid to neutral lipid in lipid droplets. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Anke Penno
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | | | | |
Collapse
|
36
|
Abstract
S-adenosylmethionine (AdoMet, also known as SAM and SAMe) is the principal biological methyl donor synthesized in all mammalian cells but most abundantly in the liver. Biosynthesis of AdoMet requires the enzyme methionine adenosyltransferase (MAT). In mammals, two genes, MAT1A that is largely expressed by normal liver and MAT2A that is expressed by all extrahepatic tissues, encode MAT. Patients with chronic liver disease have reduced MAT activity and AdoMet levels. Mice lacking Mat1a have reduced hepatic AdoMet levels and develop oxidative stress, steatohepatitis, and hepatocellular carcinoma (HCC). In these mice, several signaling pathways are abnormal that can contribute to HCC formation. However, injury and HCC also occur if hepatic AdoMet level is excessive chronically. This can result from inactive mutation of the enzyme glycine N-methyltransferase (GNMT). Children with GNMT mutation have elevated liver transaminases, and Gnmt knockout mice develop liver injury, fibrosis, and HCC. Thus a normal hepatic AdoMet level is necessary to maintain liver health and prevent injury and HCC. AdoMet is effective in cholestasis of pregnancy, and its role in other human liver diseases remains to be better defined. In experimental models, it is effective as a chemopreventive agent in HCC and perhaps other forms of cancer as well.
Collapse
Affiliation(s)
- Shelly C Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine, Los Angeles, California 90033, USA.
| | | |
Collapse
|
37
|
Lee SG, Jez JM. The Phosphobase Methylation Pathway in Caernorhabditis elegans: A New Route to Phospholipids in Animals. CURRENT CHEMICAL BIOLOGY 2011; 5:183-188. [PMID: 34113540 PMCID: PMC8189325 DOI: 10.2174/2212796811105030183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasitic nematodes are a major cause of human health problems with an estimated 1 billion people infected worldwide by these organisms. Identifying biochemical targets that differ between the parasite and host species is essential for finding effective new anti-parasitic molecules. The free-living nematode Caenorhabditis elegans is a powerful model system for experiments in genetics and developmental biology needed to achieve this goal; however, in-depth understanding of metabolic processes in this organism is limited as it still contains unexplored biochemical pathways. Eukaryotes. including nematodes and humans, share many similar metabolic pathways, which makes specific targeting of nematode parasites challenging. Recent studies suggest that C. elegans and other nematodes may use a plant-like pathway as the major biosynthetic route to phosphatidylcholine. In this pathway, a pair of phosphoethanolamine methyltransferases (PMT) catalyze the sequential methylation of phosphoethanolamine to phosphocholine, which can be incorporated into phosphatidylcholine. RNAi experiments demonstrate that both PMT are required for normal growth and development of C. elegans. Because the PMT are highly conserved across nematode parasites of humans, livestock, and plants, as well as in protozoan parasites, understanding how these enzymes function and the identification of inhibitors will aid in the development of new anti-parasite compounds of potential medical, veterinary, and agricultural value.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Joseph M. Jez
- Department of Biology, Washington University, St. Louis, MO 63130
| |
Collapse
|