1
|
Jin M, Yu M, Feng X, Li Y, Zhang M. Characterization and comparative genomic analysis of a marine Bacillus phage reveal a novel viral genus. Microbiol Spectr 2024; 12:e0003724. [PMID: 39162547 PMCID: PMC11448403 DOI: 10.1128/spectrum.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Bacillus pumilus exhibits substantial economic significance, with its metabolism, adaptability, and ecological functions regulated by its bacteriophages. Here, we isolated and characterized a novel temperate phage vB_BpuM-ZY1 from B. pumilus derived from mangrove sediments by mitomycin C induction. Phage vB_BpuM-ZY1 is a typical myophage, which has an icosahedral head with a diameter of 43.34 ± 2.14 nm and a long contractible tail with a length of 238.58 ± 5.18 nm. Genomic analysis indicated that vB_BpuM-ZY1 encodes genes for lysogeny control, and its life cycle may be intricately regulated by multiple mechanisms. vB_BpuM-ZY1 was predicted to employ P2-like 5'-extended-cos packaging strategy. In addition, genome-wide phylogenetic tree and proteome tree analyses indicated that vB_BpuM-ZY1 belongs to the Peduoviridae family but forms a separate branch at a deeper taxonomic level. Particularly, the comparative genomic analysis showed that vB_BpuM-ZY1 has less than 70% intergenomic similarities with its most similar phages. Thus, we propose that vB_BpuM-ZY1 is a novel Bacillus phage belonging to a new genus under the Peduoviridae family. The protein-sharing network analysis identified 44 vB_BpuM-ZY1-related phages. Interestingly, these evolutionarily related myophages infect a broad range of hosts across different phyla, which may be explained by the high structural variations of the host recognition domain in their central spike proteins. Collectively, our study will contribute to our understanding of Bacillus phage diversity and Bacillus-phage interactions, as well as provide essential knowledge for the industrial application of B. pumilus. IMPORTANCE Although recent metagenomics research has obtained a wealth of phage genetic information, much of it is considered "dark matter" because of the lack of similarity with known sequences in the database. Therefore, the isolation and characterization of novel phages will help to interpret the vast unknown viral metagenome data and improve our understanding of phage diversity and phage-host interactions. Bacillus pumilus shows high economic relevance due to its wide applications in biotechnology, industry, biopharma, and environmental sectors. Since phages influence the abundance, metabolism, evolution, fitness, and ecological functions of bacteria through complex interactions, the significance of isolation and characterization of novel phages infecting B. pumilus is apparent. In this study, we isolated and characterized a B. pumilus phage belonging to a novel viral genus, which provides essential knowledge for phage biology as well as the industrial application of B. pumilus.
Collapse
Affiliation(s)
- Min Jin
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Meishun Yu
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xuejin Feng
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yinfang Li
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Menghui Zhang
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Beauvois SG, Flaugnatti N, Ilbert M, Boyer M, Gavello-Fernandez E, Fronzes R, Jurėnas D, Journet L. The tip protein PAAR is required for the function of the type VI secretion system. Microbiol Spectr 2023; 11:e0147823. [PMID: 37800964 PMCID: PMC10715212 DOI: 10.1128/spectrum.01478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The type VI secretion system (T6SS) is a bacterial contractile injection system involved in bacterial competition by the delivery of antibacterial toxins. The T6SS consists of an envelope-spanning complex that recruits the baseplate, allowing the polymerization of a contractile tail structure. The tail is a tube wrapped by a sheath and topped by the tip of the system, the VgrG spike/PAAR complex. Effectors loaded onto the puncturing tip or into the tube are propelled in the target cells upon sheath contraction. The PAAR protein tips and sharpens the VgrG spike. However, the importance and the function of this protein remain unclear. Here, we provide evidence for association of PAAR at the tip of the VgrG spike. We also found that the PAAR protein is a T6SS critical component required for baseplate and sheath assembly.
Collapse
Affiliation(s)
- Solène G. Beauvois
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Nicolas Flaugnatti
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Marianne Ilbert
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7281, Marseille, France
| | - Marie Boyer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Esther Gavello-Fernandez
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Laure Journet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| |
Collapse
|
3
|
Anderson AJG, Morrell B, Lopez Campos G, Valvano MA. Distribution and diversity of type VI secretion system clusters in Enterobacter bugandensis and Enterobacter cloacae. Microb Genom 2023; 9:001148. [PMID: 38054968 PMCID: PMC10763514 DOI: 10.1099/mgen.0.001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Gram-negative bacteria use type VI secretion systems (T6SSs) to antagonize neighbouring cells. Although primarily involved in bacterial competition, the T6SS is also implicated in pathogenesis, biofilm formation and ion scavenging. Enterobacter species belong to the ESKAPE pathogens, and while their antibiotic resistance has been well studied, less is known about their pathogenesis. Here, we investigated the distribution and diversity of T6SS components in isolates of two clinically relevant Enterobacter species, E. cloacae and E. bugandensis. T6SS clusters are grouped into four types (T6SSi-T6SSiv), of which type i can be further divided into six subtypes (i1, i2, i3, i4a, i4b, i5). Analysis of a curated dataset of 31 strains demonstrated that most of them encode T6SS clusters belonging to the T6SSi type. All T6SS-positive strains possessed a conserved i3 cluster, and many harboured one or two additional i2 clusters. These clusters were less conserved, and some strains displayed evidence of deletion. We focused on a pathogenic E. bugandensis clinical isolate for comprehensive in silico effector prediction, with comparative analyses across the 31 isolates. Several new effector candidates were identified, including an evolved VgrG with a metallopeptidase domain and a Tse6-like protein. Additional effectors included an anti-eukaryotic catalase (KatN), M23 peptidase, PAAR and VgrG proteins. Our findings highlight the diversity of Enterobacter T6SSs and reveal new putative effectors that may be important for the interaction of these species with neighbouring cells and their environment.
Collapse
Affiliation(s)
- Amy J. G. Anderson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Becca Morrell
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
4
|
Meir A, Macé K, Vegunta Y, Williams SM, Waksman G. Substrate recruitment mechanism by gram-negative type III, IV, and VI bacterial injectisomes. Trends Microbiol 2023; 31:916-932. [PMID: 37085348 DOI: 10.1016/j.tim.2023.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/23/2023]
Abstract
Bacteria use a wide arsenal of macromolecular substrates (DNA and proteins) to interact with or infect prokaryotic and eukaryotic cells. To do so, they utilize substrate-injecting secretion systems or injectisomes. However, prior to secretion, substrates must be recruited to specialized recruitment platforms and then handed over to the secretion apparatus for secretion. In this review, we provide an update on recent advances in substrate recruitment and delivery by gram-negative bacterial recruitment platforms associated with Type III, IV, and VI secretion systems.
Collapse
Affiliation(s)
- Amit Meir
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK; Current address: MRC Centre for Virus Research, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Yogesh Vegunta
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Sunanda M Williams
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Allsopp LP, Bernal P. Killing in the name of: T6SS structure and effector diversity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001367. [PMID: 37490402 PMCID: PMC10433429 DOI: 10.1099/mic.0.001367] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.
Collapse
Affiliation(s)
- Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| |
Collapse
|
6
|
Manera K, Kamal F, Burkinshaw B, Dong TG. Essential functions of chaperones and adaptors of protein secretion systems in Gram-negative bacteria. FEBS J 2021; 289:4704-4717. [PMID: 34092034 DOI: 10.1111/febs.16056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023]
Abstract
Equipped with a plethora of secreted toxic effectors, protein secretion systems are essential for bacteria to interact with and manipulate their neighboring environment to survive in host microbiota and other highly competitive communities. While effectors have received spotlight attention in secretion system studies, many require accessory chaperone and adaptor proteins for proper folding/unfolding and stability throughout the secretion process. Here, we review the functions of chaperones and adaptors of three protein secretions systems, type 3 secretion system (T3SS), type 4 secretion system (T4SS), and type 6 secretion system (T6SS), which are employed by many Gram-negative bacterial pathogens to deliver toxins to bacterial, plant, and mammalian host cells through direct contact. Since chaperone and adaptor functions of the T3SS and the T4SS are relatively well studied, we discuss in detail the methods of chaperone-facilitated effector secretion by the T6SS and highlight commonalities between the effector chaperone/adaptor proteins of these diverse secretion systems. While the chaperones and adaptors are generally referred to as accessory proteins as they are not directly involved in toxicities to target cells, they are nonetheless vital for the biological functions of the secretion systems. Future research on biochemical and structural properties of these chaperones will not only elucidate the mechanisms of chaperone-effector binding and release process but also facilitate custom design of cargo effectors to be translocated by these widespread secretion systems for biotechnological applications.
Collapse
Affiliation(s)
- Kevin Manera
- Department of Ecosystem and Public Health, University of Calgary, Canada
| | - Fatima Kamal
- Department of Ecosystem and Public Health, University of Calgary, Canada
| | | | - Tao G Dong
- Department of Ecosystem and Public Health, University of Calgary, Canada.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| |
Collapse
|
7
|
The β-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion. Proc Natl Acad Sci U S A 2020; 117:33540-33548. [PMID: 33323487 DOI: 10.1073/pnas.1919350117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria deploy rearrangement hotspot (Rhs) proteins as toxic effectors against both prokaryotic and eukaryotic target cells. Rhs proteins are characterized by YD-peptide repeats, which fold into a large β-cage structure that encapsulates the C-terminal toxin domain. Here, we show that Rhs effectors are essential for type VI secretion system (T6SS) activity in Enterobacter cloacae (ECL). ECL rhs - mutants do not kill Escherichia coli target bacteria and are defective for T6SS-dependent export of hemolysin-coregulated protein (Hcp). The RhsA and RhsB effectors of ECL both contain Pro-Ala-Ala-Arg (PAAR) repeat domains, which bind the β-spike of trimeric valine-glycine repeat protein G (VgrG) and are important for T6SS activity in other bacteria. Truncated RhsA that retains the PAAR domain is capable of forming higher-order, thermostable complexes with VgrG, yet these assemblies fail to restore secretion activity to ∆rhsA ∆rhsB mutants. Full T6SS-1 activity requires Rhs that contains N-terminal transmembrane helices, the PAAR domain, and an intact β-cage. Although ∆rhsA ∆rhsB mutants do not kill target bacteria, time-lapse microscopy reveals that they assemble and fire T6SS contractile sheaths at ∼6% of the frequency of rhs + cells. Therefore, Rhs proteins are not strictly required for T6SS assembly, although they greatly increase secretion efficiency. We propose that PAAR and the β-cage provide distinct structures that promote secretion. PAAR is clearly sufficient to stabilize trimeric VgrG, but efficient assembly of T6SS-1 also depends on an intact β-cage. Together, these domains enforce a quality control checkpoint to ensure that VgrG is loaded with toxic cargo before assembling the secretion apparatus.
Collapse
|
8
|
Jurėnas D, Journet L. Activity, delivery, and diversity of Type VI secretion effectors. Mol Microbiol 2020; 115:383-394. [PMID: 33217073 DOI: 10.1111/mmi.14648] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
The bacterial type VI secretion system (T6SS) system is a contractile secretion apparatus that delivers proteins to neighboring bacterial or eukaryotic cells. Antibacterial effectors are mostly toxins that inhibit the growth of other species and help to dominate the niche. A broad variety of these toxins cause cell lysis of the prey cell by disrupting the cell envelope. Other effectors are delivered into the cytoplasm where they affect DNA integrity, cell division or exhaust energy resources. The modular nature of T6SS machinery allows different means of recruitment of toxic effectors to secreted inner tube and spike components that act as carriers. Toxic effectors can be translationally fused to the secreted components or interact with them through specialized structural domains. These interactions can also be assisted by dedicated chaperone proteins. Moreover, conserved sequence motifs in effector-associated domains are subject to genetic rearrangements and therefore engage in the diversification of the arsenal of toxic effectors. This review discusses the diversity of T6SS secreted toxins and presents current knowledge about their loading on the T6SS machinery.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, UMR 7255, Marseille, France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, UMR 7255, Marseille, France
| |
Collapse
|
9
|
Ruhe ZC, Low DA, Hayes CS. Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Annu Rev Microbiol 2020; 74:497-520. [PMID: 32680451 DOI: 10.1146/annurev-micro-020518-115638] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
10
|
Flaugnatti N, Rapisarda C, Rey M, Beauvois SG, Nguyen VA, Canaan S, Durand E, Chamot‐Rooke J, Cascales E, Fronzes R, Journet L. Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike. EMBO J 2020; 39:e104129. [PMID: 32350888 PMCID: PMC7265238 DOI: 10.15252/embj.2019104129] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/09/2022] Open
Abstract
The bacterial type VI secretion system (T6SS) is a macromolecular machine that injects effectors into prokaryotic and eukaryotic cells. The mode of action of the T6SS is similar to contractile phages: the contraction of a sheath structure pushes a tube topped by a spike into target cells. Effectors are loaded onto the spike or confined into the tube. In enteroaggregative Escherichia coli, the Tle1 phospholipase binds the C-terminal extension of the VgrG trimeric spike. Here, we purify the VgrG-Tle1 complex and show that a VgrG trimer binds three Tle1 monomers and inhibits their activity. Using covalent cross-linking coupled to high-resolution mass spectrometry, we provide information on the sites of contact and further identify the requirement for a Tle1 N-terminal secretion sequence in complex formation. Finally, we report the 2.6-Å-resolution cryo-electron microscopy tri-dimensional structure of the (VgrG)3 -(Tle1)3 complex revealing how the effector binds its cargo, and how VgrG inhibits Tle1 phospholipase activity. The inhibition of Tle1 phospholipase activity once bound to VgrG suggests that Tle1 dissociation from VgrG is required upon delivery.
Collapse
Affiliation(s)
- Nicolas Flaugnatti
- Laboratoire d'Ingénierie des Systèmes MacromoléculairesInstitut de Microbiologie de la MéditerranéeAix‐Marseille Université—CNRS UMR7255MarseilleFrance
- Present address:
Laboratory of Molecular MicrobiologyGlobal Health InstituteSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Chiara Rapisarda
- Institut Européen de Chimie et BiologieUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Microbiologie Fondamentale et PathogénicitéBordeauxFrance
- Present address:
UCB PharmaSloughUK
| | - Martial Rey
- Mass Spectrometry for Biology UnitInstitut PasteurCNRS USR 2000CITECHParisFrance
| | - Solène G Beauvois
- Laboratoire d'Ingénierie des Systèmes MacromoléculairesInstitut de Microbiologie de la MéditerranéeAix‐Marseille Université—CNRS UMR7255MarseilleFrance
| | - Viet Anh Nguyen
- Laboratoire d'Ingénierie des Systèmes MacromoléculairesInstitut de Microbiologie de la MéditerranéeAix‐Marseille Université—CNRS UMR7255MarseilleFrance
| | - Stéphane Canaan
- Laboratoire d'Ingénierie des Systèmes MacromoléculairesInstitut de Microbiologie de la MéditerranéeAix‐Marseille Université—CNRS UMR7255MarseilleFrance
| | - Eric Durand
- Laboratoire d'Ingénierie des Systèmes MacromoléculairesInstitut de Microbiologie de la MéditerranéeAix‐Marseille Université—CNRS UMR7255MarseilleFrance
| | - Julia Chamot‐Rooke
- Mass Spectrometry for Biology UnitInstitut PasteurCNRS USR 2000CITECHParisFrance
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes MacromoléculairesInstitut de Microbiologie de la MéditerranéeAix‐Marseille Université—CNRS UMR7255MarseilleFrance
| | - Rémi Fronzes
- Institut Européen de Chimie et BiologieUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Microbiologie Fondamentale et PathogénicitéBordeauxFrance
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes MacromoléculairesInstitut de Microbiologie de la MéditerranéeAix‐Marseille Université—CNRS UMR7255MarseilleFrance
| |
Collapse
|
11
|
Vazquez-Lopez J, Navarro-Garcia F. In silico Analyses of Core Proteins and Putative Effector and Immunity Proteins for T6SS in Enterohemorrhagic E. coli. Front Cell Infect Microbiol 2020; 10:195. [PMID: 32432054 PMCID: PMC7216683 DOI: 10.3389/fcimb.2020.00195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) has become an important pathogen that can cause diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. Recent reports show that the type VI secretion system (T6SS) from EHEC is required to produce infection in a murine model and its expression has been related to a higher prevalence of HUS. In this work, we use bioinformatics analyses to identify the core genes of the T6SS and compared the differences between these components among the two published genomes for EHEC O157:H7 strain EDL933. Prototype strain EDL933 was further compared with other O157:H7 genomes. Unlike other typical T6SS effectors found in E. coli, we identified that there are several rhs family genes in EHEC, which could serve as T6SS effectors. In-silico and PCR analyses of the differences between rhs genes in the two existing genomes, allowed us to determine that the most recently published genome is more reliable to study the rhs genes. Analyzing the putative tridimensional structure of Rhs proteins, as well as the motifs found in their C-terminal end, allowed us to predict their possible functions. A phylogenetic analysis showed that the orphan rhs genes are more closely related between them than the rhs genes belonging to vgrG islands and that they are divided into three clades. Analyses of the downstream region of the rhs genes for identifying hypothetical immunity proteins showed that every gene has an associated small ORF (129-609 nucleotides). These genes could serve as immunity proteins as they had several interaction motifs as well as structural homology with other known immunity proteins. Our findings highlight the relevance of the T6SS in EHEC as well as the possible function of the Rhs effectors of EHEC O157:H7 during pathogenesis and bacterial competition, and the identification of novel effectors for the T6SS using a structural approach.
Collapse
Affiliation(s)
- Jaime Vazquez-Lopez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
12
|
Lopez J, Ly PM, Feldman MF. The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii. mBio 2020; 11:e02761-19. [PMID: 31937641 PMCID: PMC6960284 DOI: 10.1128/mbio.02761-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
The type VI secretion system (T6SS) is a critical weapon in bacterial warfare between Gram-negative bacteria. Although invaluable for niche establishment, this machine represents an energetic burden to its host bacterium. Acinetobacter baumannii is an opportunistic pathogen that poses a serious threat to public health due to its high rates of multidrug resistance. In some A. baumannii strains, the T6SS is transcriptionally downregulated by large multidrug resistance plasmids. Other strains, such as the clinical isolate AbCAN2, express T6SS-related genes but lack T6SS activity under laboratory conditions, despite not harboring these plasmids. This suggests that alternative mechanisms exist to repress the T6SS. Here, we used a transposon mutagenesis approach in AbCAN2 to identify novel T6SS repressors. Our screen revealed that the T6SS of this strain is inhibited by a homolog of VgrG, an essential structural component of all T6SSs reported to date. We named this protein inhibitory VgrG (VgrGi). Biochemical and in silico analyses demonstrated that the unprecedented inhibitory capability of VgrGi is due to a single amino acid mutation in a widely conserved C-terminal domain of unknown function, DUF2345. We also show that unlike in other bacteria, the C terminus of VgrG is essential for functional T6SS assembly in A. baumannii Our study provides insight into the architectural requirements underlying functional assembly of the T6SS of A. baumannii We propose that T6SS-inactivating point mutations are beneficial to the host bacterium, since they eliminate the energy cost associated with maintaining a functional T6SS, which appears to be unnecessary for A. baumannii virulence.IMPORTANCE Despite the clinical relevance of A. baumannii, little is known about its fundamental biology. Here, we show that a single amino acid mutation in VgrG, a critical T6SS structural protein, abrogates T6SS function. Given that this mutation was found in a clinical isolate, we propose that the T6SS of A. baumannii is probably not involved in virulence; this idea is supported by multiple genomic analyses showing that the majority of clinical A. baumannii strains lack proteins essential to the T6SS. We also show that, unlike in other species, the C terminus of VgrG is a unique architectural requirement for functional T6SS assembly in A. baumannii, suggesting that over evolutionary time, bacteria have developed changes to their T6SS architecture, leading to specialized systems.
Collapse
Affiliation(s)
- Juvenal Lopez
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Pek Man Ly
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Peñil-Celis A, Garcillán-Barcia MP. Crosstalk Between Type VI Secretion System and Mobile Genetic Elements. Front Mol Biosci 2019; 6:126. [PMID: 31799257 PMCID: PMC6863884 DOI: 10.3389/fmolb.2019.00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Many bacterial processes require cell-cell contacts. Such are the cases of bacterial conjugation, one of the main horizontal gene transfer mechanisms that physically spreads DNA, and the type VI secretion systems (T6SSs), which deploy antibacterial activity. Bacteria depend on conjugation to adapt to changing environments, while T6SS killing activity could pose a threat to mating partners. Here we review the experimental evidences of overlapping and interaction between the T6SSs, bacterial conjugation, and conjugative genetic elements.
Collapse
Affiliation(s)
- Arancha Peñil-Celis
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| |
Collapse
|
14
|
Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front Microbiol 2019; 10:1965. [PMID: 31543869 PMCID: PMC6730261 DOI: 10.3389/fmicb.2019.01965] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ángel Cataldi
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| | - Mariano Larzábal
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. Structure and Activity of the Type VI Secretion System. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0031-2019. [PMID: 31298206 PMCID: PMC10957189 DOI: 10.1128/microbiolspec.psib-0031-2019] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 12/16/2022] Open
Abstract
The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells. The injection apparatus is composed of a baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by the spike complex, is propelled outside of the cell by the contraction of the sheath. The injection system is anchored to the cell envelope and oriented towards the cell exterior by a trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or on the spike complex and can target prokaryotic and/or eukaryotic cells. Here we summarize the structure, assembly, and mechanism of action of the T6SS. We also review the function of effectors and their mode of recruitment and delivery.
Collapse
Affiliation(s)
- Yassine Cherrak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
- Y.C. and N.F. contributed equally to this review
| | - Nicolas Flaugnatti
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
- Y.C. and N.F. contributed equally to this review
- Present address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Durand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| |
Collapse
|
16
|
Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y, Zheng Y, Hu L, Li P, Chen H, Tan C. Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli. Virulence 2019; 10:118-132. [PMID: 30676217 PMCID: PMC6363058 DOI: 10.1080/21505594.2019.1573491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Porcine extra-intestinal pathogenic Escherichia coli (ExPEC) causes great economic losses to the pig industry and poses a serious threat to public health worldwide. Some secreted virulence factors have been reported to be involved in the pathogenicity of the infection caused by ExPEC. Type-VI secretion system (T6SS) is discovered in many Gram-negative bacteria and contributes to the virulence of pathogenic bacteria. Valine-glycine repeat protein G (VgrG) has been reported as an important component of the functional T6SS. In our previous studies, a functional T6SS was identified in porcine ExPEC strain PCN033. Further analysis of the PCN033 genome identified two putative vgrGs genes (vgrG1 and 0248) located inside T6SS cluster and another two (vgrG2 and 1588) outside it. This study determined the function of the four putative VgrG proteins by constructing a series of mutants and complemented strains. In vitro, the VgrG1 protein was observed to be involved in the antibacterial ability and the interactions with cells. The animal model experiment showed that the deletion of vgrG1 significantly led to the decrease in the multiplication capacity of PCN033. However, the deletion of 0248 and/or the deletion of vgrG2 and 1588 had no effect on the pathogenicity of PCN033. The study of four putative VgrGs in PCN033 indicated that only VgrG1 plays an important role in the interaction between PCN033 and other bacteria or host cells. This study can provide a novel perspective to the pathogenesis of PCN033 and lay the foundation for discovering potential T6SS effectors.
Collapse
Affiliation(s)
- Bingbing Zong
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yanyan Zhang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Xiangru Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Manli Liu
- e Hubei Biopesticide Engineering Research Centre , Hubei Academy of Agricultural Sciences , Wuhan Hubei , China
| | - Tongchao Zhang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yongwei Zhu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Yucheng Zheng
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Linlin Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Pei Li
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Huanchun Chen
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| | - Chen Tan
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , Hubei , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , Hubei , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , Hubei , China.,d International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China , Wuhan , Hubei , China
| |
Collapse
|
17
|
Renault MG, Zamarreno Beas J, Douzi B, Chabalier M, Zoued A, Brunet YR, Cambillau C, Journet L, Cascales E. The gp27-like Hub of VgrG Serves as Adaptor to Promote Hcp Tube Assembly. J Mol Biol 2018; 430:3143-3156. [PMID: 30031895 DOI: 10.1016/j.jmb.2018.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/25/2022]
Abstract
Contractile injection systems are multiprotein complexes that use a spring-like mechanism to deliver effectors into target cells. In addition to using a conserved mechanism, these complexes share a common core known as the tail. The tail comprises an inner tube tipped by a spike, wrapped by a contractile sheath, and assembled onto a baseplate. Here, using the type VI secretion system (T6SS) as a model of contractile injection systems, we provide molecular details on the interaction between the inner tube and the spike. Reconstitution into the Escherichia coli heterologous host in the absence of other T6SS components and in vitro experiments demonstrated that the Hcp tube component and the VgrG spike interact directly. VgrG deletion studies coupled to functional assays showed that the N-terminal domain of VgrG is sufficient to interact with Hcp, to initiate proper Hcp tube polymerization, and to promote sheath dynamics and Hcp release. The interaction interface between Hcp and VgrG was then mapped using docking simulations, mutagenesis, and cysteine-mediated cross-links. Based on these results, we propose a model in which the VgrG base serves as adaptor to recruit the first Hcp hexamer and initiates inner tube polymerization.
Collapse
Affiliation(s)
- Melvin G Renault
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Jordi Zamarreno Beas
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Badreddine Douzi
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex, 09, France
| | - Maïalène Chabalier
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Abdelrahim Zoued
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Yannick R Brunet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex, 09, France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
18
|
Hall D, Takagi J, Nakamura H. Foreword to 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', a special issue in Honour of Fumio Arisaka's 70th birthday. Biophys Rev 2018; 10:105-129. [PMID: 29500796 PMCID: PMC5899743 DOI: 10.1007/s12551-018-0401-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
This issue of Biophysical Reviews, titled 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', is a collection of articles dedicated in honour of Professor Fumio Arisaka's 70th birthday. Initially, working in the fields of haemocyanin and actin filament assembly, Fumio went on to publish important work on the elucidation of structural and functional aspects of T4 phage biology. As his career has transitioned levels of complexity from proteins (hemocyanin) to large protein complexes (actin) to even more massive bio-nanomachinery (phage), it is fitting that the subject of this special issue is similarly reflective of his multiscale approach to structural biology. This festschrift contains articles spanning biophysical structure and function from the bio-molecular through to the bio-nanomachine level.
Collapse
Affiliation(s)
- Damien Hall
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
- Research School of Chemistry, Australian National University, Acton, ACT 2601 Australia
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
19
|
Arisaka F. Forty years of research on the assembly and infection process of bacteriophage. Biophys Rev 2018; 10:131-136. [PMID: 29411257 DOI: 10.1007/s12551-018-0396-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 11/28/2022] Open
Abstract
This short biographical note was written as part of the lead-in material for a festschrift kindly organized for me on the occasion of my 70th birthday. The collection of articles assembled in this issue range within the spectrum of the topics covered in the special issue 'Multiscale structural biology-biophysical principles and practice ranging from biomolecules to bionanomachines.' Here I describe some of the high points of my 40 years of research science conducted in the USA, Switzerland and Japan. I also use this opportunity to express my sincerest thanks to my former colleagues and the very many contributors who so kindly contributed to this special issue.
Collapse
|
20
|
Hayward S, Milner-White EJ. Geometrical principles of homomeric β-barrels and β-helices: Application to modeling amyloid protofilaments. Proteins 2017. [PMID: 28646497 DOI: 10.1002/prot.25341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Examples of homomeric β-helices and β-barrels have recently emerged. Here we generalize the theory for the shear number in β-barrels to encompass β-helices and homomeric structures. We introduce the concept of the "β-strip," the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n-fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β-strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α-hemolysin, T4 phage spike, cylindrin, and the HET-s(218-289) prion. From reported dimensions measured by X-ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in-register β-strands folded into a "β-strip helix." Results suggest both stabilization of an individual β-strip helix and growth by addition of further β-strip helices can involve the same pair of sequence segments associating with β-sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design.
Collapse
Affiliation(s)
- Steven Hayward
- D'Arcy Thompson Centre for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - E James Milner-White
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
21
|
Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis. mBio 2016; 7:mBio.01253-16. [PMID: 27729508 PMCID: PMC5061870 DOI: 10.1128/mbio.01253-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread secretory apparatus produced by Gram-negative bacteria that has emerged as a potent mediator of antibacterial activity during interbacterial interactions. Most Acinetobacter species produce a genetically conserved T6SS, although the expression and functionality of this system vary among different strains. Some pathogenic Acinetobacter baumannii strains activate this secretion system via the spontaneous loss of a plasmid carrying T6SS repressors. In this work, we compared the expression of T6SS-related genes via transcriptome sequencing and differential proteomics in cells with and without the plasmid. This approach, together with the mutational analysis of the T6SS clusters, led to the determination of the genetic components required to elaborate a functional T6SS in the nosocomial pathogen A. baumannii and the nonpathogen A. baylyi By constructing a comprehensive combination of mutants with changes in the T6SS-associated vgrG genes, we delineated their relative contributions to T6SS function. We further determined the importance of two effectors, including an effector-immunity pair, for antibacterial activity. Our genetic analysis led to the identification of an essential membrane-associated structural component named TagX, which we have characterized as a peptidoglycan hydrolase possessing l,d-endopeptidase activity. TagX shows homology to known bacteriophage l,d-endopeptidases and is conserved in the T6SS clusters of several bacterial species. We propose that TagX is the first identified enzyme that fulfills the important role of enabling the transit of T6SS machinery across the peptidoglycan layer of the T6SS-producing bacterium. IMPORTANCE Acinetobacter baumannii is one of the most troublesome and least investigated multidrug-resistant bacterial pathogens. We have previously shown that A. baumannii employs a T6SS to eliminate competing bacteria. Here we provide a comprehensive analysis of the components of the T6SS of Acinetobacter, and our results provide genetic and functional insights into the Acinetobacter T6SS. Through this analysis, we identified a novel peptidoglycan hydrolase, TagX, that is required for biogenesis of the T6SS apparatus. This is the first peptidoglycanase specialized in T6SS function identified in any species. We propose that this enzyme is required for the spatially and temporally regulated digestion of peptidoglycan to allow assembly of the T6SS machinery.
Collapse
|
22
|
Abstract
The type VI secretion system (T6SS) is a multiprotein complex widespread in Proteobacteria and dedicated to the delivery of toxins into both prokaryotic and eukaryotic cells. It thus participates in interbacterial competition as well as pathogenesis. The T6SS is a contractile weapon, related to the injection apparatus of contractile tailed bacteriophages. Basically, it assembles an inner tube wrapped by a sheath-like structure and anchored to the cell envelope via a membrane complex. The energy released by the contraction of the sheath propels the inner tube through the membrane channel and toward the target cell. Although the assembly and the mechanism of action are conserved across species, the repertoire of secreted toxins and the diversity of the regulatory mechanisms and of target cells make the T6SS a highly versatile secretion system. The T6SS is particularly represented in Escherichia coli pathotypes and Salmonella serotypes. In this review we summarize the current knowledge regarding the prevalence, the assembly, the regulation, and the roles of the T6SS in E. coli, Salmonella, and related species.
Collapse
Affiliation(s)
- Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France
| |
Collapse
|
23
|
Flaugnatti N, Le TTH, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L. A phospholipase A1
antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 2016; 99:1099-118. [DOI: 10.1111/mmi.13292] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Nicolas Flaugnatti
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS - Aix-Marseille Université, UMR 7255, Institut de Microbiologie de la Méditerranée; 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 France
| | - Thi Thu Hang Le
- Architecture et Fonction des Macromolécules Biologiques, CNRS - UMR 7257, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
| | - Stéphane Canaan
- Laboratoire d'Enzymologie Interfaciale et de Physiologie de la Lipolyse, CNRS - Aix-Marseille Université, UMR 7282; 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 France
| | - Marie-Stéphanie Aschtgen
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS - Aix-Marseille Université, UMR 7255, Institut de Microbiologie de la Méditerranée; 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 France
| | - Van Son Nguyen
- Architecture et Fonction des Macromolécules Biologiques, CNRS - UMR 7257, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
| | - Stéphanie Blangy
- Architecture et Fonction des Macromolécules Biologiques, CNRS - UMR 7257, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques, CNRS - UMR 7257, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, CNRS - UMR 7257, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, CNRS - UMR 7257, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932; 13288 Marseille Cedex 09 France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS - Aix-Marseille Université, UMR 7255, Institut de Microbiologie de la Méditerranée; 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS - Aix-Marseille Université, UMR 7255, Institut de Microbiologie de la Méditerranée; 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 France
| |
Collapse
|
24
|
Spínola-Amilibia M, Davó-Siguero I, Ruiz FM, Santillana E, Medrano FJ, Romero A. The structure of VgrG1 fromPseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:22-33. [DOI: 10.1107/s2059798315021142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022]
Abstract
The type VI secretion system (T6SS) is a mechanism that is commonly used by pathogenic bacteria to infect host cells and for survival in competitive environments. This system assembles on a core baseplate and elongates like a phage puncturing device; it is thought to penetrate the target membrane and deliver effectors into the host or competing bacteria. Valine–glycine repeat protein G1 (VgrG1) forms the spike at the tip of the elongating tube formed by haemolysin co-regulated protein 1 (Hcp1); it is structurally similar to the T4 phage (gp27)3–(gp5)3puncturing complex. Here, the crystal structure of full-length VgrG1 fromPseudomonas aeruginosais reported at a resolution of 2.0 Å, which through a trimeric arrangement generates a needle-like shape composed of two main parts, the head and the spike, connectedviaa small neck region. The structure reveals several remarkable structural features pointing to the possible roles of the two main segments of VgrG1: the head as a scaffold cargo domain and the β-roll spike with implications in the cell-membrane puncturing process and as a carrier of cognate toxins.
Collapse
|
25
|
Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends Microbiol 2016; 24:51-62. [DOI: 10.1016/j.tim.2015.10.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
|
26
|
Sun J, Zhang H, Guo K, Yuan S. Self-assembly of dipeptide sodium salts derived from alanine: a molecular dynamics study. RSC Adv 2015. [DOI: 10.1039/c5ra19508j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dipeptides self-assemble into a helical structure after a 200 ns MD simulation.
Collapse
Affiliation(s)
- Jichao Sun
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| | - Kai Guo
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
27
|
Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, Journet L, Cambillau C, Cascales E. Architecture and assembly of the Type VI secretion system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1664-73. [PMID: 24681160 DOI: 10.1016/j.bbamcr.2014.03.018] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
The Type VI secretion system (T6SS) delivers protein effectors to diverse cell types including prokaryotic and eukaryotic cells, therefore it participates in inter-bacterial competition and pathogenesis. The T6SS is constituted of an envelope-spanning complex anchoring a cytoplasmic tubular edifice. This tubular structure is evolutionarily, functionally and structurally related to the tail of contractile phages. It is composed of an inner tube tipped by a spike complex, and engulfed within a sheath-like structure. This structure assembles onto a platform called "baseplate" that is connected to the membrane sub-complex. The T6SS functions as a nano-crossbow: upon contraction of the sheath, the inner tube is propelled towards the target cell, allowing effector delivery. This review focuses on the architecture and biogenesis of this fascinating secretion machine, highlighting recent advances regarding the assembly of the membrane or tail complexes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Abdelrahim Zoued
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Yannick R Brunet
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Eric Durand
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Marie-Stéphanie Aschtgen
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Laureen Logger
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Badreddine Douzi
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Laure Journet
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Eric Cascales
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|