1
|
Yamazaki S. The Nuclear NF-κB Regulator IκBζ: Updates on Its Molecular Functions and Pathophysiological Roles. Cells 2024; 13:1467. [PMID: 39273036 PMCID: PMC11393961 DOI: 10.3390/cells13171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
More than a decade after the discovery of the classical cytoplasmic IκB proteins, IκBζ was identified as an additional member of the IκB family. Unlike cytoplasmic IκB proteins, IκBζ has distinct features, including its nuclear localization, preferential binding to NF-κB subunits, unique expression properties, and specialized role in NF-κB regulation. While the activation of NF-κB is primarily controlled by cytoplasmic IκB members at the level of nuclear entry, IκBζ provides an additional layer of NF-κB regulation in the nucleus, enabling selective gene activation. Human genome-wide association studies (GWAS) and gene knockout experiments in mice have elucidated the physiological and pathological roles of IκBζ. Despite the initial focus to its role in activated macrophages, IκBζ has since been recognized as a key player in the IL-17-triggered production of immune molecules in epithelial cells, which has garnered significant clinical interest. Recent research has also unveiled a novel molecular function of IκBζ, linking NF-κB and the POU transcription factors through its N-terminal region, whose role had remained elusive for many years.
Collapse
Affiliation(s)
- Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
2
|
O’Neil JD, Bolimowska OO, Clayton SA, Tang T, Daley KK, Lara-Reyna S, Warner J, Martin CS, Mahida RY, Hardy RS, Arthur JSC, Clark AR. Dexamethasone impairs the expression of antimicrobial mediators in lipopolysaccharide-activated primary macrophages by inhibiting both expression and function of interferon β. Front Immunol 2023; 14:1190261. [PMID: 37942320 PMCID: PMC10628473 DOI: 10.3389/fimmu.2023.1190261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Glucocorticoids potently inhibit expression of many inflammatory mediators, and have been widely used to treat both acute and chronic inflammatory diseases for more than seventy years. However, they can have several unwanted effects, amongst which immunosuppression is one of the most common. Here we used microarrays and proteomic approaches to characterise the effect of dexamethasone (a synthetic glucocorticoid) on the responses of primary mouse macrophages to a potent pro-inflammatory agonist, lipopolysaccharide (LPS). Gene ontology analysis revealed that dexamethasone strongly impaired the lipopolysaccharide-induced antimicrobial response, which is thought to be driven by an autocrine feedback loop involving the type I interferon IFNβ. Indeed, dexamethasone strongly and dose-dependently inhibited the expression of IFNβ by LPS-activated macrophages. Unbiased proteomic data also revealed an inhibitory effect of dexamethasone on the IFNβ-dependent program of gene expression, with strong down-regulation of several interferon-induced antimicrobial factors. Surprisingly, dexamethasone also inhibited the expression of several antimicrobial genes in response to direct stimulation of macrophages with IFNβ. We tested a number of hypotheses based on previous publications, but found that no single mechanism could account for more than a small fraction of the broad suppressive impact of dexamethasone on macrophage type I interferon signaling, underlining the complexity of this pathway. Preliminary experiments indicated that dexamethasone exerted similar inhibitory effects on primary human monocyte-derived or alveolar macrophages.
Collapse
Affiliation(s)
- John D. O’Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Oliwia O. Bolimowska
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Sally A. Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Tina Tang
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kalbinder K. Daley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jordan Warner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Claire S. Martin
- School of Biomedical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rahul Y. Mahida
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- School of Biomedical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrew R. Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Bousquet E, Chenevier-Gobeaux C, Jaworski T, Torres-Villaros H, Zola M, Mantel I, Kowalczuk L, Matet A, Daruich A, Zhao M, Yzer S, Behar-Cohen F. High Levels of C-Reactive Protein with Low Levels of Pentraxin 3 as Biomarkers for Central Serous Chorioretinopathy. OPHTHALMOLOGY SCIENCE 2023; 3:100278. [PMID: 36950301 PMCID: PMC10025279 DOI: 10.1016/j.xops.2023.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Purpose To investigate the association between the 2 acute phase proteins, C-reactive protein (CRP) and pentraxin 3 (PTX3) with central serous chorioretinopathy (CSCR), as PTX3 is a glucocorticoid-induced protein. Design Cross-sectional multicenter study. Participants Patients with CSCR compared with age- and sex-matched healthy participants. Methods Patients with CSCR from 3 centers in Europe were included in the study. The clinical form of CSCR was recorded. Blood samples from patients with CSCR and healthy participants were sampled, and high-sensitivity CRP and PTX3 levels were measured in the serum. Main Outcome Measures C-reactive protein and PTX3 serum level comparison between patients with CSCR with age- and sex-matched healthy participants. Results Although CRP levels were higher in patients with CSCR (n = 216) than in age- and sex-matched controls (n = 130) (2.2 ± 3.2 mg/l vs. 1.5 mg/l ± 1.4, respectively, P = 0.037), PTX3 levels were lower in patients with CSCR (10.5 ± 19.9 pg/ml vs. 87.4 ± 73.2 pg/ml, respectively, P < 0.001). There was no significant difference in CRP or PTX3 levels between patients with acute/recurrent and chronic CSCR. Conclusions In patients with CSCR, high CRP and low PTX3 levels suggest a form of low-grade systemic inflammation together with a lack of glucocorticoid pathway activation, raising new hypotheses on the pathophysiology of CSCR. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Elodie Bousquet
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | - Camille Chenevier-Gobeaux
- Service de diagnostic biologique automatisé, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
| | - Thara Jaworski
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | - Héloïse Torres-Villaros
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
| | - Marta Zola
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | - Irmela Mantel
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| | - Laura Kowalczuk
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| | - Alexandre Matet
- Department of Ophthalmology, Institut Curie, University of Paris Cité, Paris, France
| | - Alejandra Daruich
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
- Department of Ophthalmology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | - Suzanne Yzer
- Department of Ophthalmology, Rotterdam Eye Hospital, Rotterdam, the Netherlands
| | - Francine Behar-Cohen
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
- Correspondence: Francine Behar-Cohen, MD, PhD, centre de recherche des cordeliers, 15 rue de l’école de médecine, 75006 Paris, France.
| |
Collapse
|
4
|
Zola M, Mejlachowicz D, Gregorio R, Naud MC, Jaisser F, Zhao M, Behar-Cohen F. Chronic Systemic Dexamethasone Regulates the Mineralocorticoid/Glucocorticoid Pathways Balance in Rat Ocular Tissues. Int J Mol Sci 2022; 23:ijms23031278. [PMID: 35163201 PMCID: PMC8836134 DOI: 10.3390/ijms23031278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Central serous chorioretinopathy (CSCR) is a retinal disease affecting the retinal pigment epithelium (RPE) and the choroid. This is a recognized side-effect of glucocorticoids (GCs), administered through nasal, articular, oral and dermal routes. However, CSCR does not occur after intraocular GCs administration, suggesting that a hypothalamic-pituitary-adrenal axis (HPA) brake could play a role in the mechanistic link between CSCR and GS. The aim of this study was to explore this hypothesis. To induce HPA brake, Lewis rats received a systemic injection of dexamethasone daily for five days. Control rats received saline injections. Baseline levels of corticosterone were measured by Elisa at baseline and at 5 days in the serum and the ocular media and dexamethasone levels were measured at 5 days in the serum and ocular media. The expression of genes encoding glucocorticoid receptor (GR), mineralocorticoid receptors (MR), and the 11 beta hydroxysteroid dehydrogenase (HSD) enzymes 1 and 2 were quantified in the neural retina and in RPE/ choroid. The expression of MR target genes was quantified in the retina (Scnn1A (encoding ENac-α, Kir4.1 and Aqp4) and in the RPE/choroid (Shroom 2, Ngal, Mmp9 and Omg, Ptx3, Plaur and Fosl-1). Only 10% of the corticosterone serum concentration was measured in the ocular media. Corticosterone levels in the serum and in the ocular media dropped after 5 days of dexamethasone systemic treatment, reflecting HPA axis brake. Whilst both GR and MR were downregulated in the retina without MR/GR imbalance, in the RPE/choroid, both MR/GR and 11β-hsd2/11β-hsd1 ratio increased, indicating MR pathway activation. MR-target genes were upregulated in the RPE/ choroid but not in the retina. The psychological stress induced by the repeated injection of saline also induced HPA axis brake with a trend towards MR pathway activation in RPE/ choroid. HPA axis brake causes an imbalance of corticoid receptors expression in the RPE/choroid towards overactivation of MR pathway, which could favor the occurrence of CSCR.
Collapse
Affiliation(s)
- Marta Zola
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
- Assistance Publique-Hôpitaux de Paris, Department of Ophthalmology, Ophtalmopôle, Hôpital Cochin, 75014 Paris, France
| | - Dan Mejlachowicz
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Raquel Gregorio
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Marie-Christine Naud
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Min Zhao
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
- Assistance Publique-Hôpitaux de Paris, Department of Ophthalmology, Ophtalmopôle, Hôpital Cochin, 75014 Paris, France
- Correspondence:
| |
Collapse
|
5
|
Ma D, Qin X, Zhong ZA, Liao H, Chen P, Zhang B. Systematic analysis of myocardial immune progression in septic cardiomyopathy: Immune-related mechanisms in septic cardiomyopathy. Front Cardiovasc Med 2022; 9:1036928. [PMID: 36911241 PMCID: PMC10002421 DOI: 10.3389/fcvm.2022.1036928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/29/2022] [Indexed: 02/26/2023] Open
Abstract
Background The immune infiltration and molecular mechanisms underlying septic cardiomyopathy (SC) have not been completely elucidated. This study aimed to identify key genes related to SC and elucidate the potential molecular mechanisms. Methods The weighted correlation network analysis (WGCNA), linear models for microarray analysis (LIMMA), protein-protein interaction (PPI) network, CIBERSORT, Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and gene set enrichment analysis (GSEA) were applied to assess the key pathway and hub genes involved in SC. Results We identified 10 hub genes, namely, LRG1, LCN2, PTX3, E LANE, TCN1, CLEC4D, FPR2, MCEMP1, CEACAM8, and CD177. Furthermore, we used GSEA for all genes and online tools to explore the function of the hub genes. Finally, we took the intersection between differential expression genes (DEGs) and hub genes to identify LCN2 and PTX3 as key genes. We found that immune-related pathways played vital roles in SC. LCN2 and PTX3 were key genes in SC progression, which mainly showed an anti-inflammatory effect. The significant immune cells in cardiomyocytes of SC were neutrophils and M2 macrophages. Conclusion These cells may have the potential to be prognostic and therapeutic targets in the clinical management of SC. Excessive anti-inflammatory function and neutrophil infiltration are probably the primary causes of SC.
Collapse
Affiliation(s)
- Dunliang Ma
- Guangdong Provincial People's Hospital's Nanhai Hospital, The Second People's Hospital of Nanhai District, Foshan, China
| | - Xianyu Qin
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-An Zhong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong People's Hospital, Guangzhou, China
| | - Hongtao Liao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong People's Hospital, Guangzhou, China
| | - Pengyuan Chen
- Guangdong Provincial People's Hospital's Nanhai Hospital, The Second People's Hospital of Nanhai District, Foshan, China
| | - Bin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong People's Hospital, Guangzhou, China
| |
Collapse
|
6
|
Koussih L, Atoui S, Tliba O, Gounni AS. New Insights on the Role of pentraxin-3 in Allergic Asthma. FRONTIERS IN ALLERGY 2021; 2:678023. [PMID: 35387000 PMCID: PMC8974764 DOI: 10.3389/falgy.2021.678023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.
Collapse
Affiliation(s)
- Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department des Sciences Experimentales, Universite de Saint-Boniface, Winnipeg, MB, Canada
| | - Samira Atoui
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Abdelilah S. Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Abdelilah S. Gounni
| |
Collapse
|
7
|
Qin S, Chen X, Gao M, Zhou J, Li X. Prenatal Exposure to Lipopolysaccharide Induces PTX3 Expression and Results in Obesity in Mouse Offspring. Inflammation 2018; 40:1847-1861. [PMID: 28770376 PMCID: PMC5656716 DOI: 10.1007/s10753-017-0626-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study tested the hypothesis whether inflammation will directly lead to obesity. This study was designed to investigate the relationship between inflammation and obesity by intraperitoneally injecting pregnant mice with lipopolysaccharide (LPS) (75 μg kg-1). The results showed that inflammation during pregnancy could lead to a significant increase in the levels of the inflammatory factor PTX3. The offspring of the LPS-treated mice displayed abnormal levels of fat development, blood lipids, and glucose metabolism, and fat differentiation markers were significantly increased. Our study also confirmed that PTX3 can increase the susceptibility to obesity by regulating the expression of adipogenic markers; this regulatory role of PTX3 is most likely caused by MAPK pathway hyperactivation. Our study is the first to find strong evidence of inflammation as a cause of obesity. We determined that PTX3 was an important moderator of obesity, and we elucidated its mechanism, thus providing new targets and theories for obesity therapy. Moreover, our study provides new ideas and directions for the early intervention of anti-inflammation in pregnancy.
Collapse
Affiliation(s)
- Shugang Qin
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xin Chen
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Meng Gao
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jianzhi Zhou
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Xiaohui Li
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
8
|
Conde J, Lazzaro V, Scotece M, Abella V, Villar R, López V, Gonzalez-Gay MÁ, Pino J, Gómez R, Mera A, Gualillo O. Corticoids synergize with IL-1 in the induction of LCN2. Osteoarthritis Cartilage 2017; 25:1172-1178. [PMID: 28185846 DOI: 10.1016/j.joca.2017.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/10/2017] [Accepted: 01/29/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Lipocalin-2 (LCN2) is an adipokine that was first identified in neutrophil granules. In the last years it was recognized as a factor that could impair chondrocyte phenotype, cartilage homeostasis as well as growth plate development. Both pro-inflammatory cytokines and glucocorticoids (GCs) modulate LCN2 expression. Actually, GCs were found to be LCN2 inducers, suggesting that part of the negative actions exerted by these anti-inflammatory drugs at cartilage level could be mediated by this adipokine. So, in this study we wanted to investigate whether corticoids were able to act in synergy with IL-1 in the induction of LCN2 and the signaling pathway involved in this process. MATERIALS AND METHODS For the realization of this work, ATDC5 mouse chondrogenic cell line was used. We determined the mRNA and protein expression of LCN2 by real-time reverse transcription-polymerase chain reaction (RT-qPCR) and western blot respectively, after GC or mineralcorticoid treatment. Different signaling pathways inhibitors were also used. RESULTS GC and mineralcorticoid were able to induce the expression of LCN2 in ATDC5 cells. Interestingly, both corticoids synergized with IL-1 in the induction of LCN2. The effect of these corticoids on the expression of LCN2 occurred through GC or mineralcorticoid receptors and the kinases PI3K, ERK1/2 and JAK2. CONCLUSIONS Prolonged use of corticoids may have detrimental effects on cartilage homeostasis. Based on our results, we conclude that corticoids could increase the negative actions exerted by IL-1 by increasing the expression of LCN2.
Collapse
Affiliation(s)
- J Conde
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| | - V Lazzaro
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - M Scotece
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - V Abella
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - R Villar
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - V López
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - M Á Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - J Pino
- SERGAS (Servizo Galego de Saude), Division of Orthopaedics Surgery and Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - R Gómez
- Musculoskeletal Pathology Laboratory, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - A Mera
- SERGAS (Servizo Galego de Saude), Division of Rheumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - O Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Role of PTX3 in corneal epithelial innate immunity against Aspergillus fumigatus infection. Exp Eye Res 2016; 167:152-162. [PMID: 27889356 DOI: 10.1016/j.exer.2016.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
Pentraxin3 (PTX3), a member of long pentraxin family, plays a non-redundant role in human humoral innate immunity. However, whether PTX3 is expressed by corneal epithelial cells and its role during corneal fungi infection has not yet been investigated. To identify the presence of PTX3 in cornea, the possible mechanisms involved in its expression, and also the effects on corneal anti-fungi innate immune response, clinic human corneal tissues and cultured human corneal epithelial cells (HCECs) were resorted. PTX3 mRNA and protein were detected in corneal samples and cultured HCECs, which was significantly up-regulated after exposing to Aspergillus fumigatus (A. fumigatus). Pretreated with specific inhibitors, only Syk contributed to the regulation of PTX3 expression in Dectin-1/Syk signal axis. Furthermore, among the MAPK members (p38 MAPK, ERK1/2 and JNK), only ERK1/2 and JNK were responsible for A. fumigatus induced PTX3 production. Blocking of endogenous PTX3 by siRNA down-regulated the production of IL-1β at both mRNA and protein levels. Meanwhile, blocking of PTX3 also inhibited the phosphorylation of ERK1/2 and JNK, but not p38 MAPK. These findings demonstrate that PTX3 is expressed in human corneal epithelial cells and Syk, ERK1/2, JNK signaling pathways play an important role in the regulation of PTX3 induction. PTX3 plays a proinflammatory role in corneal epithelial anti-fungi immune response by affecting the production of IL-1β and activation of some proinflammatory signaling pathways (ERK1/2 and JNK).
Collapse
|
10
|
Kohda A, Yamazaki S, Sumimoto H. The Nuclear Protein IκBζ Forms a Transcriptionally Active Complex with Nuclear Factor-κB (NF-κB) p50 and the Lcn2 Promoter via the N- and C-terminal Ankyrin Repeat Motifs. J Biol Chem 2016; 291:20739-52. [PMID: 27489104 DOI: 10.1074/jbc.m116.719302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/18/2022] Open
Abstract
The nuclear protein IκBζ, comprising the N-terminal trans-activation domain and the C-terminal ankyrin repeat (ANK) domain composed of seven ANK motifs, activates transcription of a subset of nuclear factor-κB (NF-κB)-dependent innate immune genes such as Lcn2 encoding the antibacterial protein lipocalin-2. Lcn2 activation requires formation of a complex containing IκBζ and NF-κB p50, a transcription factor that harbors the DNA-binding Rel homology region but lacks a trans-activation domain, on the promoter with the canonical NF-κB-binding site (κB site) and its downstream cytosine-rich element. Here we show that IκBζ productively interacts with p50 via Asp-451 in the N terminus of ANK1, a residue that is evolutionarily conserved among IκBζ and the related nuclear IκB proteins Bcl-3 and IκBNS Threonine substitution for Asp-451 abrogates direct association with the κB-site-binding protein p50, complex formation with the Lcn2 promoter DNA, and activation of Lcn2 transcription. The basic residues Lys-717 and Lys-719 in the C-terminal region of ANK7 contribute to IκBζ binding to the Lcn2 promoter, probably via interaction with the cytosine-rich element required for Lcn2 activation; glutamate substitution for both lysines results in a loss of transcriptionally active complex formation without affecting direct contact of IκBζ with p50. Both termini of the ANK domain in Bcl-3 and IκBNS function in a manner similar to that of IκBζ to interact with promoter DNA, indicating a common mechanism in which the nuclear IκBs form a regulatory complex with NF-κB and promoter DNA via the invariant aspartate in ANK1 and the conserved basic residues in ANK7.
Collapse
Affiliation(s)
- Akira Kohda
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Soh Yamazaki
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Cronk JC, Derecki NC, Litvak V, Kipnis J. Unexpected cellular players in Rett syndrome pathology. Neurobiol Dis 2016; 92:64-71. [PMID: 25982834 PMCID: PMC4644494 DOI: 10.1016/j.nbd.2015.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome is a devastating neurodevelopmental disorder, primarily caused by mutations of methyl CpG-binding protein 2 (MeCP2). Although the genetic cause of disease was identified over a decade ago, a significant gap still remains in both our clinical and scientific understanding of its pathogenesis. Neurons are known to be primary players in pathology, with their dysfunction being the key in Rett syndrome. While studies in mice have demonstrated a clear causative - and potential therapeutic - role for neurons in Rett syndrome, recent work has suggested that other tissues also contribute significantly to progression of the disease. Indeed, Rett syndrome is known to present with several common peripheral pathologies, such as osteopenia, scoliosis, gastrointestinal problems including nutritional defects, and general growth deficit. Mouse models assessing the potential role of non-neuronal cell types have confirmed both roles in disease and potential therapeutic targets. A new picture is emerging in which neurons both initiate and drive pathology, while dysfunction of other cell types and peripheral tissues exacerbate disease, possibly amplifying further neurologic problems, and ultimately result in a positive feedback loop of progressively worsening symptoms. Here, we review what is known about neuronal and non-neuronal cell types, and discuss how this new, integrative understanding of the disease may allow for additional clinical and scientific pathways for treating and understanding Rett syndrome.
Collapse
Affiliation(s)
- James C Cronk
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Noel C Derecki
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Vladimir Litvak
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
12
|
Villalvilla A, García-Martín A, Largo R, Gualillo O, Herrero-Beaumont G, Gómez R. The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction. Sci Rep 2016; 6:29243. [PMID: 27385438 PMCID: PMC4935838 DOI: 10.1038/srep29243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Obesity and osteoarthritis (OA) form a vicious circle in which obesity contributes to cartilage destruction in OA, and OA-associated sedentary behaviour promotes weight gain. Lipocalin-2 (LCN2), a novel adipokine with catabolic activities in OA joints, contributes to the obesity and OA pathologies and is associated with other OA risk factors. LCN2 is highly induced in osteoblasts in the absence of mechanical loading, but its role in osteoblast metabolism is unclear. Therefore, because osteochondral junctions play a major role in OA development, we investigated the expression and role of LCN2 in osteoblasts and chondrocytes in the OA osteochondral junction environment. Our results showed that LCN2 expression in human osteoblasts and chondrocytes decreased throughout osteoblast differentiation and was induced by catabolic and inflammatory factors; however, TGF-β1 and IGF-1 reversed this induction. LCN2 reduced osteoblast viability in the presence of iron and enhanced the activity of MMP-9 released by osteoblasts. Moreover, pre-stimulated human osteoblasts induced LCN2 expression in human chondrocytes, but the inverse was not observed. Thus, LCN2 is an important catabolic adipokine in osteoblast and chondrocyte metabolism that is regulated by differentiation, inflammation and catabolic and anabolic stimuli, and LCN2 expression in chondrocytes is regulated in a paracrine manner after osteoblast stimulation.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, Avda Reyes Católicos, Madrid, 28040, Spain
| | - Adela García-Martín
- Department of Bioengineering, Universidad Carlos III de Madrid, CIEMAT-CIBERER, IIS-Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, Avda Reyes Católicos, Madrid, 28040, Spain
| | - Oreste Gualillo
- Research Laboratory 9 (NEIRID LAB), Institute of Medical Research, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, Avda Reyes Católicos, Madrid, 28040, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Laboratory, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| |
Collapse
|
13
|
Banuelos J, Lu NZ. A gradient of glucocorticoid sensitivity among helper T cell cytokines. Cytokine Growth Factor Rev 2016; 31:27-35. [PMID: 27235091 DOI: 10.1016/j.cytogfr.2016.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Helper T (Th) cells secret specific cytokines that promote immune responses whereas glucocorticoids limit the extent of immune responses by inhibiting cytokine secretion and other functions of Th cells. However, glucocorticoid resistance develops in subgroups of patients with Th cell-driven diseases such as asthma and Crohn's disease. Recent evidence supports that Th1, Th2, and Th17 cells have distinct glucocorticoid sensitivity. Th1 cells are sensitive to glucocorticoid-induced apoptosis and cytokine suppression while Th2 cells are sensitive to the latter but not the former and Th17 cells are resistant to both. This gradient of glucocorticoid sensitivity of Th cells corresponds to the glucocorticoid sensitivity of the diseases they underlie. We identify the mechanisms contributing to distinct glucocorticoid sensitivity of Th cells and their cytokines in the literature, as this information is useful to improve treatment strategies for glucocorticoid resistant immunological disorders.
Collapse
Affiliation(s)
- Jesus Banuelos
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States, United States
| | - Nicholas Z Lu
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States, United States.
| |
Collapse
|
14
|
Xavier AM, Anunciato AKO, Rosenstock TR, Glezer I. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses. Front Endocrinol (Lausanne) 2016; 7:31. [PMID: 27148162 PMCID: PMC4835445 DOI: 10.3389/fendo.2016.00031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/04/2016] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC's effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive.
Collapse
Affiliation(s)
- Andre Machado Xavier
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Isaias Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Isaias Glezer,
| |
Collapse
|