1
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
2
|
Li H, Luo Q, Cai S, Tie R, Meng Y, Shan W, Xu Y, Zeng X, Qian P, Huang H. Glia maturation factor-γ is required for initiation and maintenance of hematopoietic stem and progenitor cells. Stem Cell Res Ther 2023; 14:117. [PMID: 37122014 PMCID: PMC10150485 DOI: 10.1186/s13287-023-03328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND In vertebrates, hematopoietic stem and progenitor cells (HSPCs) emerge from hemogenic endothelium in the floor of the dorsal aorta and subsequently migrate to secondary niches where they expand and differentiate into committed lineages. Glia maturation factor γ (gmfg) is a key regulator of actin dynamics that was shown to be highly expressed in hematopoietic tissue. Our goal is to investigate the role and mechanism of gmfg in embryonic HSPC development. METHODS In-depth bioinformatics analysis of our published RNA-seq data identified gmfg as a cogent candidate gene implicated in HSPC development. Loss and gain-of-function strategies were applied to study the biological function of gmfg. Whole-mount in situ hybridization, confocal microscopy, flow cytometry, and western blotting were used to evaluate changes in the number of various hematopoietic cells and expression levels of cell proliferation, cell apoptosis and hematopoietic-related markers. RNA-seq was performed to screen signaling pathways responsible for gmfg deficiency-induced defects in HSPC initiation. The effect of gmfg on YAP sublocalization was assessed in vitro by utilizing HUVEC cell line. RESULTS We took advantage of zebrafish embryos to illustrate that loss of gmfg impaired HSPC initiation and maintenance. In gmfg-deficient embryos, the number of hemogenic endothelium and HSPCs was significantly reduced, with the accompanying decreased number of erythrocytes, myelocytes and lymphocytes. We found that blood flow modulates gmfg expression and gmfg overexpression could partially rescue the reduction of HSPCs in the absence of blood flow. Assays in zebrafish and HUVEC showed that gmfg deficiency suppressed the activity of YAP, a well-established blood flow mediator, by preventing its shuttling from cytoplasm to nucleus. During HSPC initiation, loss of gmfg resulted in Notch inactivation and the induction of Notch intracellular domain could partially restore the HSPC loss in gmfg-deficient embryos. CONCLUSIONS We conclude that gmfg mediates blood flow-induced HSPC maintenance via regulation of YAP, and contributes to HSPC initiation through the modulation of Notch signaling. Our findings reveal a brand-new aspect of gmfg function and highlight a novel mechanism for embryonic HSPC development.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ye Meng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- School of Medicine, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
| |
Collapse
|
3
|
Tan G, Wolski WE, Kummer S, Hofstetter M, Theocharides APA, Manz MG, Aebersold R, Meier-Abt F. Proteomic identification of proliferation and progression markers in human polycythemia vera stem and progenitor cells. Blood Adv 2022; 6:3480-3493. [PMID: 35008095 PMCID: PMC9198936 DOI: 10.1182/bloodadvances.2021005344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Polycythemia vera (PV) is a stem cell disorder characterized by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. To elucidate mechanisms controlling PV stem and progenitor cell biology, we applied a recently developed highly sensitive data-independent acquisition mass spectrometry workflow to purified hematopoietic stem and progenitor cell (HSPC) subpopulations of patients with chronic and progressed PV. We integrated proteomic data with genomic, transcriptomic, flow cytometry, and in vitro colony formation data. Comparative analyses revealed added information gained by proteomic compared with transcriptomic data in 30% of proteins with changed expression in PV patients. Upregulated biological pathways in hematopoietic stem and multipotent progenitor cells (HSC/MPPs) of PV included mammalian target of rapamycin (MTOR), STAT, and interferon signaling. We further identified a prominent reduction of clusterin (CLU) protein expression and a corresponding activation of nuclear factor-κB (NF-κB) signaling in HSC/MPPs of untreated PV patients compared with controls. Reversing the reduction of CLU and inhibiting NF-κB signaling decreased proliferation and differentiation of PV HSC/MPPs in vitro. Upon progression of PV, we identified upregulation of LGALS9 and SOCS2 protein expression in HSC/MPPs. Treatment of patients with hydroxyurea normalized the expression of CLU and NF-κB2 but not of LGALS9 and SOCS2. These findings expand the current understanding of the molecular pathophysiology underlying PV and provide new potential targets (CLU and NF-κB) for antiproliferative therapy in patients with PV.
Collapse
Affiliation(s)
- Ge Tan
- Functional Genomics Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Witold E. Wolski
- Functional Genomics Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Kummer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mara Hofstetter
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Alexandre P. A. Theocharides
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland; and
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Schlieren (Zurich), Switzerland
| |
Collapse
|
4
|
Abstract
Over 50 years after its discovery in early chick embryos, the concept of epithelial-mesenchymal transition (EMT) is now widely applied to morphogenetic studies in both physiological and pathological contexts. Indeed, the EMT field has witnessed exponential growth in recent years, driven primarily by a rapid expansion of cancer-oriented EMT research. This has led to EMT-based therapeutic interventions that bear the prospect of fighting cancer, and has given developmental biologists new impetus to investigate EMT phenomena more closely and to find suitable models to address emerging EMT-related questions. Here, and in the accompanying poster, I provide a brief summary of the current status of EMT research and give an overview of EMT models that have been used in developmental studies. I also highlight dynamic epithelialization and de-epithelialization events that are involved in many developmental processes and that should be considered to provide a broader perspective of EMT. Finally, I put forward a set of criteria to separate morphogenetic phenomena that are EMT-related from those that are not.
Collapse
Affiliation(s)
- Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
5
|
Wirsik NM, Ehlers J, Mäder L, Ilina EI, Blank AE, Grote A, Feuerhake F, Baumgarten P, Devraj K, Harter PN, Mittelbronn M, Naumann U. TGF-β activates pericytes via induction of the epithelial-to-mesenchymal transition protein SLUG in glioblastoma. Neuropathol Appl Neurobiol 2021; 47:768-780. [PMID: 33780024 DOI: 10.1111/nan.12714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/22/2021] [Accepted: 03/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS In primary central nervous system tumours, epithelial-to-mesenchymal transition (EMT) gene expression is associated with increased malignancy. However, it has also been shown that EMT factors in gliomas are almost exclusively expressed by glioma vessel-associated pericytes (GA-Peris). In this study, we aimed to identify the mechanism of EMT in GA-Peris and its impact on angiogenic processes. METHODS In glioma patients, vascular density and the expression of the pericytic markers platelet derived growth factor receptor (PDGFR)-β and smooth muscle actin (αSMA) were examined in relation to the expression of the EMT transcription factor SLUG and were correlated with survival of patients with glioblastoma (GBM). Functional mechanisms of SLUG regulation and the effects on primary human brain vascular pericytes (HBVP) were studied in vitro by measuring proliferation, cell motility and growth characteristics. RESULTS The number of PDGFR-β- and αSMA-positive pericytes did not change with increased malignancy nor showed an association with the survival of GBM patients. However, SLUG-expressing pericytes displayed considerable morphological changes in GBM-associated vessels, and TGF-β induced SLUG upregulation led to enhanced proliferation, motility and altered growth patterns in HBVP. Downregulation of SLUG or addition of a TGF-β antagonising antibody abolished these effects. CONCLUSIONS We provide evidence that in GA-Peris, elevated SLUG expression is mediated by TGF-β, a cytokine secreted by most glioma cells, indicating that the latter actively modulate neovascularisation not only by modulating endothelial cells, but also by influencing pericytes. This process might be responsible for the formation of an unstructured tumour vasculature as well as for the breakdown of the blood-brain barrier in GBM.
Collapse
Affiliation(s)
- Naita M Wirsik
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jakob Ehlers
- Laboratory of Molecular Neuro-Oncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Lisa Mäder
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Department of Neurology, Klinikum Darmstadt, Darmstadt, Germany
| | - Elena I Ilina
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Anna-Eva Blank
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Pediatric Cardiology, University Hospital of Giessen, Gießen, Germany
| | - Anne Grote
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Friedrich Feuerhake
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Peter Baumgarten
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Department of Neurosurgery, Goethe University, Frankfurt/Main, Germany
| | - Kavi Devraj
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Patrick N Harter
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger Institute (Neurological Institute), Goethe University Hospital, Frankfurt/Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg.,National Center of Pathology (NCP), Laboratoire Nationale de Santé (LNS), Luxembourg, Luxembourg
| | - Ulrike Naumann
- Laboratory of Molecular Neuro-Oncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Abstract
As our understanding of Epithelial Mesenchymal Transition (EMT) increases, the original binary concept of E versus M no longer fits with experimental evidence. Re-definition of the EMT paradigm as spectral transitions between a full epithelium and a full mesenchyme suggests the existence of a virtual infinity of intermediate cellular states. The new challenge is to develop technical tools needed to contextualize each of these states and identify biologically significant cellular mechanisms that could be targeted in combatting EMT-related diseases.
Collapse
Affiliation(s)
- Sofiane Hamidi
- International Research Centre for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Nagai
- International Research Centre for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guojun Sheng
- International Research Centre for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Wang H, Wang M, Wen Y, Xu C, Chen X, Wu D, Su P, Zhou W, Cheng T, Shi L, Zhou J. Biphasic Regulation of Mesenchymal Genes Controls Fate Switches During Hematopoietic Differentiation of Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001019. [PMID: 33101849 PMCID: PMC7578858 DOI: 10.1002/advs.202001019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Indexed: 05/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) or its reverse process mesenchymal-epithelial transition (MET) occurs in multiple physiological and pathological processes. However, whether an entire EMT-MET process exists and the potential function during human hematopoiesis remain largely elusive. Utilizing human pluripotent stem cell (hPSC)-based systems, it is discovered that while EMT occurs at the onset of human hematopoietic differentiation, MET is not detected subsequently during differentiation. Instead, a biphasic activation of mesenchymal genes during hematopoietic differentiation of hPSCs is observed. The expression of mesenchymal genes is upregulated during the fate switch from pluripotency to the mesoderm, sustained at the hemogenic endothelium (HE) stage, and attenuated during hemogenic endothelial cell (HEP) differentiation to hematopoietic progenitor cells (HPCs). A similar expression pattern of mesenchymal genes is also observed during human and murine hematopoietic development in vivo. Wnt signaling and its downstream gene SNAI1 mediate the up-regulation of mesenchymal genes and initiation of mesoderm induction from pluripotency. Inhibition of transforming growth factor-β (TGF-β) signaling and downregulation of HAND1, a downstream gene of TGF-β, are required for the downregulation of mesenchymal genes and the capacity of HEPs to generate HPCs. These results suggest that the biphasic regulation of mesenchymal genes is an essential mechanism during human hematopoiesis.
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Mengge Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Yuqi Wen
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Changlu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Dan Wu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Pei Su
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research InstituteCentral South UniversityChangsha410013China
| | - Tao Cheng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Lihong Shi
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
- CAMS Center for Stem Cell MedicinePUMC Department of Stem Cell and Regenerative MedicineTianjin300020China
| |
Collapse
|
8
|
Lie-a-ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. RUNX1 Dosage in Development and Cancer. Mol Cells 2020; 43:126-138. [PMID: 31991535 PMCID: PMC7057845 DOI: 10.14348/molcells.2019.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Collapse
Affiliation(s)
- Michael Lie-a-ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Esther Baena
- Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| |
Collapse
|
9
|
Li J, Ma J, Fei X, Zhang T, Zhou J, Lin J. Roles of cell migration and invasion mediated by Twist in endometriosis. J Obstet Gynaecol Res 2019; 45:1488-1496. [PMID: 31250947 DOI: 10.1111/jog.14001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/20/2019] [Indexed: 12/24/2022]
Abstract
AIM To investigate the roles of cell migration and invasion mediated by Twist in endometriosis. METHODS The protein levels and locations of Twist, N-cadherin and E-cadherin were measured by Western blot and immunohistochemistry in ectopic endometrium and eutopic endometrium of ovarian endometriosis as well as normal endometrium of nonendometriosis patients. The messenger RNA (mRNA) expressions of Twist, N-cadherin and E-cadherin in these tissues were measured by quantitative reverse transcription polymerase chain reaction. Stable overexpression of Twist in eutopic endometrial stromal cells was transfected with a plasmid-mediated delivery system. The protein and mRNA expressions of N-cadherin and E-cadherin were detected by western blot and reverse transcription polymerase chain reaction. The changes of migration and invasion of endometrial stromal cells were explored by transwell. RESULTS Levels of protein and mRNA of Twist and N-cadherin showed the highest expression in ectopic endometrium of ovarian endometriosis, while lowest in normal endometrium of nonendometriosis patients. On the contrary, the expression of E-cadherin showed highest in normal endometrium of nonendometriosis patients. The overexpression of Twist after transfection significantly upregulated the protein and mRNA expression of N-cadherin, while downregulated the protein and mRNA expression of E-cadherin. There is significant difference between groups. For transwell, the overexpression of Twist in eutopic endometrial stromal cell significantly promoted cell migration and invasion. CONCLUSION Twist might be related with the increase of migration and invasion in endometrial stromal cells, mediated by epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Juanqing Li
- Gynecology Department, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Junyan Ma
- Gynecology Department, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangwei Fei
- Gynecology Department, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Zhang
- Gynecology Department, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhong Zhou
- Gynecology Department, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Lin
- Gynecology Department, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|