1
|
Rahimi E, Jung C. Spatial Modeling of Insect Pollination Services in Fragmented Landscapes. INSECTS 2024; 15:662. [PMID: 39336630 PMCID: PMC11432557 DOI: 10.3390/insects15090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Pollination mapping and modeling have opened new avenues for comprehending the intricate interactions between pollinators, their habitats, and the plants they pollinate. While the Lonsdorf model has been extensively employed in pollination mapping within previous studies, its conceptualization of bee movement in agricultural landscapes presents notable limitations. Consequently, a gap exists in exploring the effects of forest fragmentation on pollination once these constraints are addressed. In this study, our objective is to model pollination dynamics in fragmented forest landscapes using a modified version of the Lonsdorf model, which operates as a distance-based model. Initially, we generated several simulated agricultural landscapes, incorporating forested and agricultural habitats with varying forest proportions ranging from 10% to 50%, along with a range of fragmentation degrees from low to high. Subsequently, employing the modified Lonsdorf model, we evaluated the nesting suitability and consequent pollination supply capacity across these diverse scenarios. We found that as the degree of forest fragmentation increases, resulting in smaller and more isolated patches with less aggregation, the pollination services within landscapes tend to become enhanced. In conclusion, our research suggests that landscapes exhibiting fragmented forest patch patterns generally display greater nesting suitability due to increased floral resources in their vicinity. These findings highlight the importance of employing varied models for pollination mapping, as modifications to the Lonsdorf model yield distinct outcomes compared to studies using the original version.
Collapse
Affiliation(s)
- Ehsan Rahimi
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea;
- Department of Plant Medical, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
2
|
Farder-Gomes CF, de Oliveira MA, Malaspina O, Nocelli RFC. Exposure of the stingless bee Melipona scutellaris to imidacloprid, pyraclostrobin, and glyphosate, alone and in combination, impair its walking activity and fat body morphology and physiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123783. [PMID: 38490525 DOI: 10.1016/j.envpol.2024.123783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The stingless bee Melipona scutellaris performs buzz pollination, effectively pollinating several wild plants and crops with economic relevance. However, most research has focused on honeybees, leaving a significant gap in studies concerning native species, particularly regarding the impacts of pesticide combinations on these pollinators. Thus, this study aimed to evaluate the sublethal effects of imidacloprid (IMD), pyraclostrobin (PYR), and glyphosate (GLY) on the behavior and fat body cell morphology and physiology of M. scutellaris. Foragers were orally exposed to the different pesticides alone and in combination for 48 h. Bees fed with contaminated solution walked less, moved slower, presented morphological changes in the fat body, including vacuolization, altered cell shape and nuclei morphology, and exhibited a higher count of altered oenocytes and trophocytes. In all exposed groups, alone and in combination, the number of cells expressing caspase-3 increased, but the TLR4 number of cells expressing decreased compared to the control groups. The intensity of HSP70 immunolabeling increased compared to the control groups. However, the intensity of the immunolabeling of HSP90 decreased in the IMD, GLY, and I + G (IMD + GLY) groups but increased in I + P-exposed bees (IMD + PYR). Alternatively, exposure to PYR and P + G (PYR + GLY) did not affect the immunolabeling intensity. Our findings demonstrate the hazardous effects and environmental consequences of isolated and combined pesticides on a vital neotropical pollinator. Understanding how pesticides impact the fat body can provide crucial insights into the overall health and survival of native bee populations, which can help develop more environmentally friendly approaches to agricultural practices.
Collapse
Affiliation(s)
- Cliver Fernandes Farder-Gomes
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP, 13600-970, Brazil.
| | - Marco Antônio de Oliveira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa Campus Florestal, Florestal, MG, 35690-000, Brazil.
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Rio Claro, SP, 13506-900, Brazil.
| | - Roberta Ferreira Cornélio Nocelli
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
3
|
Conceição de Assis J, Eduardo da Costa Domingues C, Tadei R, Inês da Silva C, Soares Lima HM, Decio P, Silva-Zacarin ECM. Sublethal doses of imidacloprid and pyraclostrobin impair fat body of solitary bee Tetrapedia diversipes (Klug, 1810). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119140. [PMID: 35301028 DOI: 10.1016/j.envpol.2022.119140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Solitary bees present greater species diversity than social bees. However, they are less studied than managed bees, mainly regarding the harmful effects of pesticides present in agroecosystems commonly visited by them. This study aimed to evaluate the effect of residual doses of imidacloprid and pyraclostrobin, alone and in combination, on the fat body (a multifunctional organ) of the neotropical solitary bee Tetrapedia diversipes by means of morphological and histochemical evaluation of oenocytes and trophocytes. Males and females of newly-emerged adults were submitted to bioassays of acute topical exposure. Experimental groups were essayed: control (CTR), solvent control (ACT), imidacloprid (IMI, 0.0028 ng/μL), pyraclostrobin (PYR, 2.7 ng/μL) and imidacloprid + pyraclostrobin (I + P). The data demonstrated that the residual doses applied in T. diversipes adults are sublethal at 96 h. Both oenocytes and trophocytes cells responded to topical exposure to the pesticides, showing morphological changes. In the IMI group, the bee oenocytes showed the greatest proportion of vacuolization and altered nuclei. The pyraclostrobin exposure increased the intensity of PAS-positive labeling (glycogen) in trophocytes. This increase was also observed in the I + P group. Changes in energy reserve (glycogen) of trophocytes indicate a possible mobilization impairment of this neutral polysaccharide to the hemolymph, which can compromise the fitness of exposed individuals. Also, changes in oenocytes can compromise the detoxification function performed by the fat body. This is the first study to show sublethal effects in neotropical solitary bees and highlight the importance of studies with native bees.
Collapse
Affiliation(s)
- Josimere Conceição de Assis
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil
| | | | - Rafaela Tadei
- São Paulo State University, UNESP, Postgraduate Program in Biological Sciences, Rio Claro, São Paulo State, Brazil
| | - Cláudia Inês da Silva
- Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Environmental Sciences, Sorocaba, São Paulo State, Brazil
| | - Hellen Maria Soares Lima
- Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil
| | - Pâmela Decio
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil
| | - Elaine C M Silva-Zacarin
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil.
| |
Collapse
|
4
|
Tay Fernandez CG, Nestor BJ, Danilevicz MF, Gill M, Petereit J, Bayer PE, Finnegan PM, Batley J, Edwards D. Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species. Int J Mol Sci 2022; 23:2671. [PMID: 35269811 PMCID: PMC8910360 DOI: 10.3390/ijms23052671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Pangenomes are a rich resource to examine the genomic variation observed within a species or genera, supporting population genetics studies, with applications for the improvement of crop traits. Major crop species such as maize (Zea mays), rice (Oryza sativa), Brassica (Brassica spp.), and soybean (Glycine max) have had pangenomes constructed and released, and this has led to the discovery of valuable genes associated with disease resistance and yield components. However, pangenome data are not available for many less prominent crop species that are currently under-utilised. Despite many under-utilised species being important food sources in regional populations, the scarcity of genomic data for these species hinders their improvement. Here, we assess several under-utilised crops and review the pangenome approaches that could be used to build resources for their improvement. Many of these under-utilised crops are cultivated in arid or semi-arid environments, suggesting that novel genes related to drought tolerance may be identified and used for introgression into related major crop species. In addition, we discuss how previously collected data could be used to enrich pangenome functional analysis in genome-wide association studies (GWAS) based on studies in major crops. Considering the technological advances in genome sequencing, pangenome references for under-utilised species are becoming more obtainable, offering the opportunity to identify novel genes related to agro-morphological traits in these species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; (C.G.T.F.); (B.J.N.); (M.F.D.); (M.G.); (J.P.); (P.E.B.); (P.M.F.); (J.B.)
| |
Collapse
|
5
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
6
|
Lopes AV, Porto RG, Cruz-Neto O, Peres CA, Viana BF, Giannini TC, Tabarelli M. Neglected diversity of crop pollinators: Lessons from the world’s largest tropical country. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|