1
|
Chen J, Jiang K, Li Y, Wang S, Bu W. Climate change effects on the diversity and distribution of soybean true bugs pests. PEST MANAGEMENT SCIENCE 2024; 80:5157-5167. [PMID: 39392090 DOI: 10.1002/ps.8243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/21/2024] [Accepted: 06/01/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Climate change and pests are two major factors in the reduction of global soybean yields. The diversity and geographic distribution of soybean true bug pests vary across soybean production areas worldwide, and climate change impacts are different across species and regions. Therefore, we integrated spatial and temporal predictions at the global scale to predict the impact of global warming on the distribution of 84 soybean true bug pests by the maximum entropy niche model (MaxEnt) under present (1970-2000) and future (2041-2060) scenarios. We produced an ensemble projection of the potential distribution of pests and crop production areas to estimate how and where climate warming will augment the threat of soybean true bug pests to soybean production areas. RESULTS Our results indicated that Southeast North America, Central South America, Europe and East Asia were the regions with the higher richness of soybean true bug and the most vulnerable areas to invasion threats. Climate change would promote the expansion of the distribution range and facilitate pest movement pole wards, affecting more soybean cultivated areas located in mid-latitudes. Moreover, species with different distribution patterns responded differently to climate change in that large-ranged species tended to increase in occupancy over time, whereas small-ranged species tended to decrease. CONCLUSION This result indicates that some pests that have not yet become notable may have the chance to develop into serious pests in the future due to the expansion of their geographical range. Our findings highlight that soybean cultivated regions at mid-latitudes would face general infestations from soybean true bug pests under global warming. These results will further facilitate the formulation of adaptation planning to minimize local environmental impacts in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kun Jiang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystems in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China
| | - Yanfei Li
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shujing Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Walt HK, King JG, Towles TB, Ahn SJ, Hoffmann FG. Comparative Genomics and the Salivary Transcriptome of the Redbanded Stink Bug Shed Light on Its High Damage Potential to Soybean. Genome Biol Evol 2024; 16:evae121. [PMID: 38864488 PMCID: PMC11226756 DOI: 10.1093/gbe/evae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
The redbanded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), is a significant soybean pest in the Americas, which inflicts more physical damage on soybean than other native stink bugs. Studies suggest that its heightened impact is attributed to the aggressive digestive properties of its saliva. Despite its agricultural importance, the factors driving its greater ability to degrade plant tissues have remained unexplored in a genomic evolutionary context. In this study, we hypothesized that lineage-specific gene family expansions have increased the copy number of digestive genes expressed in the salivary glands. To investigate this, we annotated a previously published genome assembly of the redbanded stink bug, performed a comparative genomic analysis on 11 hemipteran species, and reconstructed patterns of gene duplication, gain, and loss in the redbanded stink bug. We also performed RNA-seq on the redbanded stink bug's salivary tissues, along with the rest of the body without salivary glands. We identified hundreds of differentially expressed salivary genes, including a subset lost in other stink bug lineages, but retained and expressed in the redbanded stink bug's salivary glands. These genes were significantly enriched with protein families involved in proteolysis, potentially explaining the redbanded stink bug's heightened damage to soybeans. Contrary to our hypothesis, we found no support for an enrichment of duplicated digestive genes that are also differentially expressed in the salivary glands of the redbanded stink bug. Nonetheless, these results provide insight into the evolution of this important crop pest, establishing a link between its genomic history and its agriculturally important physiology.
Collapse
Affiliation(s)
- Hunter K Walt
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Tyler B Towles
- Macon Ridge Research Station, Louisiana State University, Winnsboro, LA 71295, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
3
|
Wang S, Li Y, Jiang K, Zhou J, Chen J, Liang J, Ndoni A, Xue H, Ye Z, Bu W. Identifying a potentially invasive population in the native range of a species: The enlightenment from the phylogeography of the yellow spotted stink bug, Erthesina fullo (Hemiptera: Pentatomidae). Mol Phylogenet Evol 2024; 195:108056. [PMID: 38493987 DOI: 10.1016/j.ympev.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The yellow spotted stink bug (YSSB), Erthesina fullo (Thunberg, 1783) is an important Asian pest that has recently successfully invaded Europe and an excellent material for research on the initial stage of biological invasion. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of YSSB for the first time based on population genetic methods [using double digest restriction-site associated DNA (ddRAD) data and mitochondrial COI and CYTB] and ecological niche modelling. The results showed that four lineages (east, west, southwest, and Hainan Island) were established in the native range with a strong east-west differentiation phylogeographical structure, and the violent climate fluctuation might cause population divergence during the Middle and Upper Pleistocene. In addition, land bridges and monsoon promote dispersal and directional genetic exchanging between island populations and neighboring continental populations. The east lineage (EA) was identified as the source of invasion in Albania. EA had the widest geographical distribution among all other lineages, with a star-like haplotype network with the main haplotype as the core. It also had a rapid population expansion history, indicating that the source lineage might have stronger diffusion ability and adaptability. Our findings provided a significant biological basis for fine tracking of invasive source at the lineage or population level and promote early invasion warning of potential invasive species on a much subtler lineage level.
Collapse
Affiliation(s)
- Shujing Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yanfei Li
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kun Jiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, PR China
| | - Jiayue Zhou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jingyu Liang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
4
|
Jinga P, Manyangadze T. Variable intraspecific response to climate change in a medicinally important African tree species, Vachellia sieberiana (DC.) (paperbark thorn). Ecol Evol 2024; 14:e11314. [PMID: 38694755 PMCID: PMC11056962 DOI: 10.1002/ece3.11314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Climate change is predicted to disproportionately impact sub-Saharan Africa, with potential devastating consequences on plant populations. Climate change may, however, impact intraspecific taxa differently. The aim of the study was to determine the current distribution and impact of climate change on three varieties of Vachellia sieberiana, that is, var. sieberiana, var. villosa and var. woodii. Ensemble species distribution models (SDMs) were built in "biomod2" using 66, 45, and 137 occurrence records for var. sieberiana, var. villosa, and var. woodii, respectively. The ensemble SDMs were projected to 2041-2060 and 2081-2100 under three general circulation models (GCMs) and two shared socioeconomic pathways (SSPs). The three GCMs were the Canadian Earth System Model version 5, the Institut Pierre-Simon Laplace Climate Model version 6A Low Resolution, and the Model for Interdisciplinary Research on Climate version 6. The suitable habitat of var. sieberiana predominantly occurs in the Sudanian and Zambezian phytochoria while that of var. villosa largely occurs in the Sudanian phytochorion. The suitable habitat of var. woodii mainly occurs in the Zambezian phyotochorion. There is coexistence of var. villosa and var. sieberiana in the Sudanian phytochorion while var. sieberiana and var. woodii coexist in the Zambezian phytochorion. Under SSP2-4.5 in 2041-2060 and averaged across the three GCMs, the suitable habitat expanded by 33.8% and 119.7% for var. sieberiana and var. villosa, respectively. In contrast, the suitable habitat of var. woodii contracted by -8.4%. Similar trends were observed in 2041-2060 under SSP5-8.5 [var. sieberiana (38.6%), var. villosa (139.0%), and var. woodii (-10.4%)], in 2081-2100 under SSP2-4.5 [var. sieberiana (4.6%), var. villosa (153.4%), and var. woodii (-14.4%)], and in 2081-2100 under SSP5-8.5 [var. sieberiana (49.3%), var. villosa (233.4%), and var. woodii (-30.7%)]. Different responses to climate change call for unique management and conservation decisions for the varieties.
Collapse
Affiliation(s)
- Percy Jinga
- Biological Sciences DepartmentBindura University of Science EducationBinduraZimbabwe
| | - Tawanda Manyangadze
- Geosciences DepartmentBindura University of Science EducationBinduraZimbabwe
| |
Collapse
|
5
|
Zhao Z, Yang L, Long J, Chang Z, Chen X. Predicting suitable areas for Metcalfa pruinosa (Hemiptera: Flatidae) under climate change and implications for management. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:7. [PMID: 38717262 PMCID: PMC11078062 DOI: 10.1093/jisesa/ieae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.
Collapse
Affiliation(s)
- Zhengxue Zhao
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Key Laboratory of High-efficiency Agricultural Plant Protection Informatization in Central Guizhou, College of Agriculture, Anshun University, Anshun 561000, PR China
| | - Lin Yang
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiankun Long
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhimin Chang
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangsheng Chen
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|