1
|
Liu R, Yang C, Yang X, Yu J, Tang W. Network toxicology, molecular docking technology, and experimental verification revealed the mechanism of cantharidin-induced testicular injury in mice. Toxicol Appl Pharmacol 2024; 486:116921. [PMID: 38582374 DOI: 10.1016/j.taap.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
As a protein kinase inhibitor, cantharidin (CTD) exhibits antitumor activities. However, CTD is highly toxic, thereby limiting clinical applications. Moreover, relatively few studies have investigated CTD-induced reproductive toxicity, thus the underlying mechanism remains unclear. In this study, the toxic effects of CTD on mouse testis were confirmed in vivo and the potential mechanism was predicted by network toxicology (NT) and molecular docking technology. Proteins involved in the signaling pathways and core targets were verified. The results showed that different concentrations of CTD induced weight loss increased the testicular coefficient, and caused obvious pathological damage to testicular cells. The NT results showed that the main targets of CTD-induced testicular injury (TI) included AKT1, Caspase 3, Bcl-2, and Bax. The results of pathway enrichment analysis showed that CTD-induced TI was closely related to apoptosis and the PI3K/AKT and HIF-1 signaling pathways. Molecular docking methods confirmed high affinity between CTD and key targets. Western blot analysis showed that CTD inhibited expression of PI3K, AKT, and the anti-apoptotic protein Bcl-2, while promoting expression of the pro-apoptotic proteins Bax and Caspase 3. These results suggest that CTD-induced TI involves multiple targets and pathways, and the underlying mechanism was associated with inhibition of the apoptosis-related PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ruxia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changfu Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xin Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jia Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
2
|
Iqbal N, Sadiq N, Naqqash MN, Usman M, Khan HAA, Abid AD, Shahzad MS. Transgenerational effects of pyriproxyfen in a field strain of Musca domestica L. (Diptera: Muscidae). PLoS One 2024; 19:e0300922. [PMID: 38517921 PMCID: PMC10959378 DOI: 10.1371/journal.pone.0300922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Musca domestica L. (Muscidae: Diptera) is a human and livestock pest especially in tropical and sub-tropical areas. Different insecticides have been used to control this pest that pose serious harmful effects on humans and the environment. The current study was planned to investigate the effects of two concentrations (LC25 and LC50) of pyriproxyfen on biological and population parameters of a field strain of M. domestica. The exposed parents (F0) and their progeny (F1) were studied to examine the transgenerational effects. The results indicated that preadult duration was higher in control (13.68 days) compared to LC50 treated individuals (12.44 days). The male and female longevity was relatively lower in the LC25 treated population i.e. 24.62 and 26.62 days, respectively. The adult pre-oviposition period (APOP) and total pre-oviposition period (TPOP) values were higher in the LC25 treated individuals than those of control. Moreover, oviposition days and fecundity were reduced in the treated individuals as compared to the control treatment. A gradual decrease in the net reproductive rate (R0) was observed (8.46-14.07 per day) while the value of R0 was significantly higher in control. The results suggested that pyriproxyfen can be effectively utilized and incorporated in the management programs of M. domestica.
Collapse
Affiliation(s)
- Naeem Iqbal
- Institute of Plant Protection, MNS University of Agriculture, Multan, Pakistan
| | - Nauman Sadiq
- Institute of Plant Protection, MNS University of Agriculture, Multan, Pakistan
- Department of Plant Protection, Ministry of National Food Security & Research, Pakistan
| | | | - Muhammad Usman
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | | | - Allah Ditta Abid
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | | |
Collapse
|
3
|
Xiao Y, Liu R, Tang W, Yang C. Cantharidin-induced toxic injury, oxidative stress, and autophagy attenuated by Astragalus polysaccharides in mouse testis. Reprod Toxicol 2024; 123:108520. [PMID: 38056682 DOI: 10.1016/j.reprotox.2023.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Cantharidin (CTD) is a chemical constituent derived from Mylabris and has good antitumor effects, but its clinical use is restricted by its inherent toxicity. However, few researches have reported its reproductive toxicity and mechanisms. This study aims to assess CTD's toxicity on mouse testes and the protective effect of Astragalus polysaccharides (APS). Briefly, biochemical analysis, histopathology, transmission electron microscopy, immunohistochemistry, and Western blotting were used to evaluate the oxidative damage of mouse testicular tissue after exposure to CTD and treatment by APS. Our research suggests a dramatic decrease in testicular index and serum testosterone levels after CTD exposure. The testis showed obvious oxidative damage accompanied by an increase in mitochondrial autophagy, the Nfr2-Keap1 pathway was inhibited, and the blood-testis barrier was destroyed. Notably, these changes were significantly improved after APS treatment. The internal mechanisms of APS ameliorate CTD-induced testicular oxidative damage in mice may be closely connected to regulatory the Nrf2-Keap1 signaling pathway, restraining autophagy, and repairing the blood-testis barrier, providing theoretical support for further study on the reproductive toxicity mechanism of CTD and clinical treatments to ameliorate it.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Traditional Chinese medicine health preservation, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ruxia Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Changfu Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
4
|
Jia B, Zhang J, Hong S, Chang X, Li X. Sublethal effects of chlorfenapyr on Plutella xylostella (Lepidoptera: Plutellidae). PEST MANAGEMENT SCIENCE 2023; 79:88-96. [PMID: 36087295 DOI: 10.1002/ps.7175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/26/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The diamondback moth (DBM), Plutella xylostella (L.), is the most destructive pest of cruciferous vegetables worldwide. Chlorfenapyr is an important insecticide for controlling DBM. The impacts of three sublethal doses (LC1 , LC10 and LC30 ) of chlorfenapyr on the chlorfenapyr-exposed DBM individuals and their unexposed F1 and F2 offspring were investigated in order to reveal the non-lethal deleterious effects of chlorfenapyr and its potential hormetic effects. RESULTS LC1 significantly increased female pupa weight of F0 and F1 generations, and F0 fecundity as well as F1 gross reproduction rate (GRR). The LC1 -elicited rise in emergency rate and fecundity was significantly greater in F0 than in F1 . By contrast, LC30 significantly decreased age-specific survival rates, pupation rate, male pupal weight, emergence rate and fecundity of F0 and F1 generations as well as female adult proportion and GRR, net reproduction rate (R0 ), intrinsic rate of increase (rm ) and finite rate of increase (λ) of F1 generation. The LC30 -induced reductions in pupation rate, adult emergence rate, male and female pupa weight, and fecundity were greater in F1 than in F0 . While LC10 elicited only a mild inhibition (extension of pupal duration) in F0 , it yielded both deleterious (drops in female proportion and age-specific survivals) and hormetic effects (ups in male longevity and female fecundity) in F1 . CONCLUSION The results demonstrate that the sublethal effects of chlorfenapyr on DBM vary from inhibition to stimulatory hormesis, depending on the dose and generation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Biantao Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Junliang Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Shanshan Hong
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Xiaoli Chang
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Sun H, Wang P, Wei C, Li Y, Zhang Y. The Detoxification Enzymatic Responses of Plutella xylostella (Lepidoptera: Plutellidae) to Cantharidin. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1551-1556. [PMID: 36073195 DOI: 10.1093/jee/toac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Plutella xylostella (L.) (Lepidoptera: Plutellidae) is one of the most destructive pests of Brassicaceae vegetables. Cantharidin is an insect-derived defensive toxin, which has been reported to have toxicity to a variety of pests and especially lepidopteran pests. Although the toxicity of cantharidin on P. xylostella has been demonstrated, there is little information available on the specific detoxification response of P. xylostella against cantharidin. This study investigates the enzymatic response (including serine/threonine phosphatases [PSPs], carboxylesterases [CarEs], glutathione-S-transferases [GSTs], and cytochrome P450 monooxygenases [P450]) in P. xylostella to the sublethal and low lethal concentrations of cantharidin (LC10 and LC25). Results showed that the inhibitory activity of PSPs was increased and then decreased in vivo, while PSPs activity could be almost completely inhibited in vitro. Interestingly, the activities of detoxification enzymes (GST, CarE, and P450) in P. xylostella displayed a trend of decreasing and then increasing after exposure to the two concentrations of cantharidin. Notably, the increase in P450 enzyme activity was the most significant. The increasing trend of detoxification enzyme activity was congruent with the recovery trend of PSPs activity. This study contributes to our understanding of the detoxification mechanism of cantharidin in P. xylostella and helps in the further development of biogenic agents.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pei Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunqi Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Li Y, Sun H, Yasoob H, Tian Z, Li Y, Li R, Zheng S, Liu J, Zhang Y. Biogenetic cantharidin is a promising leading compound to manage insecticide resistance of Mythimna separata (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104769. [PMID: 33518040 DOI: 10.1016/j.pestbp.2020.104769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Cantharidin (CTD) is a natural toxin with effective toxicity to lepidopteran pests. Nevertheless, little information is available on whether pests develop resistance to CTD. After being exposed to CTD (50 mg/L to 90 mg/L) or 10 generations, the resistance ratio of laboratory selected cantharidin-resistant Mythimna separata (Cantharidin-SEL) strain was only elevated 1.95-fold. Meanwhile, the developmental time for M. separata was prolonged (delayed1.65 in males and 1.84 days in females). The reported CTD target, the serine/threonine phosphatases (PSPs), have not been shown significant activity variation during the whole process of CTD-treatment. The activity of detoxification enzymes (cytochrome monooxygenase P450, glutathione-S-transferase (GST) and carboxylesterase) were affected by CTD selection, but this change was not mathematically significant. More importantly, no obvious cross-resistance with other commonly used insecticides was observed in the M. separata population treated with CTD for 10 generations (resistance ratios were all lower 2.5). Overall, M. separata is unlikely to produce target-site insensitivity resistance, metabolic resistance to CTD. Meanwhile, cantharidin-SEL is not prone to develop cross-resistance with other insecticides. These results indicate that CTD is a promising biogenetic lead compound which can be applied in the resistance management on M. separata.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hassan Yasoob
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Entomology, UCA&ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, No.48, Yangzhou, Jiangsu Province 225009, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengli Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Yusoff N, Abd Ghani I, Othman NW, Aizat WM, Hassan M. Toxicity and Sublethal Effect of Farnesyl Acetate on Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). INSECTS 2021; 12:109. [PMID: 33513706 PMCID: PMC7910910 DOI: 10.3390/insects12020109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the most important pest of cruciferous vegetables worldwide. In this study, we evaluated the properties of selected farnesyl derivative compounds against P. xylostella. The toxicity and sublethal concentration (LC50) of farnesyl acetate, farnesyl acetone, farnesyl bromide, farnesyl chloride, and hexahydrofarnesyl acetone were investigated for 96 h. The leaf-dip bioassays showed that farnesyl acetate had a high level of toxicity against P. xylostella compared to other tested farnesyl derivatives. The LC50 value was 56.41 mg/L on the second-instar larvae of P. xylostella. Then, the sublethal effects of farnesyl acetate on biological parameters of P. xylostella were assessed. Compared to the control group, the sublethal concentration of farnesyl acetate decreased pupation and emergence rates, pupal weight, fecundity, egg hatching rate, female ratio, and oviposition period. Furthermore, the developmental time of P. xylostella was extended after being exposed to farnesyl acetate. Moreover, the application of farnesyl acetate on P. xylostella induced morphogenetic abnormalities in larval-pupal intermediates, adults that emerged with twisted wings, or complete adults that could not emerge from the cocoon. These results suggested that farnesyl acetate was highly effective against P. xylostella. The sublethal concentration of farnesyl acetate could reduce the population of P. xylostella by increasing abnormal pupal and adults, and by delaying its development period.
Collapse
Affiliation(s)
- Norazila Yusoff
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| | - Idris Abd Ghani
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (I.A.G.); (N.W.O.)
| | - Nurul Wahida Othman
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (I.A.G.); (N.W.O.)
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| |
Collapse
|
8
|
Li YF, Sun H, Xi N, Zhang Y. Effects of Cantharidin and Norcantharidin on Larval Feeding and Adult Oviposition Preferences of the Diamondback Moth (Lepidoptera: Plutellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1634-1637. [PMID: 30924494 DOI: 10.1093/jee/toz049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 06/09/2023]
Abstract
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a destructive insect pest of cruciferous plants that has developed resistance to almost every listed commercial insecticide. Cantharidin as an animal-derived biopesticide is a natural defensive compound produced by Meloidae insects with toxicity to many insects including P. xylostella. Norcantharidin is an important substitute of cantharidin and has similar insecticidal activities to cantharidin. Although the toxicity of cantharidin and norcantharidin to P. xylostella has been reported, little research has focused on the effects of cantharidin or norcantharidin on the behavior of P. xylostella. In this study, we investigated the feeding behavior of third-instar larvae and the oviposition preference of adult P. xylostella in order to explore the effects of different concentrations of cantharidin and norcantharidin. Results show that cantharidin and norcantharidin have antifeedant effect on P. xylostella larvae. The values for AFC50 were 13.0228 and 149.4210 mg/ml, respectively. Furthermore, the oviposition deterrence rate of cantharidin on P. xylostella ranged from 49.37 to 58.24% and that of norcantharidin was from 20.88 to 33.33%. These results suggest cantharidin and norcantharidin may have repellent and antifeedant effect on P. xylostella, which could contribute toward using biopesticides to manage P. xylostella and may provide a new strategy for integrated pest management.
Collapse
Affiliation(s)
- Yi-Fan Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Xi
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Rural Technology Development Center Ningxia Hui Autonomous Region, China
| | - Yalin Zhang
- Rural Technology Development Center Ningxia Hui Autonomous Region, China
| |
Collapse
|
9
|
Jiang M, Lü SM, Qi ZY, Zhang YL. Characterized cantharidin distribution and related gene expression patterns in tissues of blister beetles, Epicauta chinensis. INSECT SCIENCE 2019; 26:240-250. [PMID: 28745022 DOI: 10.1111/1744-7917.12512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Cantharidin (CTD), a terpenoid defensive toxin mainly produced by blister beetles, is widely known by its toxicity to both cancer cells and pests. However, little information is known about its biosynthesis in blister beetles. In this study, first we determined the CTD content in various tissues of adult blister beetles on different days after mating, and then detected the temporal and spatial expression patterns of genes related to CTD biosynthesis in Epicauta chinensis. Results revealed that the accessory gland is the source of the highest CTD production. The second highest level was in the fat body in male blister beetles after mating. In females, the highest CTD content was in the reproductive system except the ovary after mating. As revealed by messenger RNA expression level analysis, the highest levels of 3-hydroxy-3-methylglutary-CoA reductase (HMGR) and juvenile hormone epoxide hydrolase (JHEH) transcripts of E. chinensis were observed in the fat body in males after mating. However, the highest transcript level of EcHMGR was in the ovary and EcJHEH was maintained at a nearly similar level in females. The transcript level of methyl-farnesoate epoxide was significantly higher in the head and that of CYP4BM1 in the midgut in both male and female E. chinensis. We speculate that the fat body may play a more important role than other tissues on the CTD biosynthesis in male E. chinensis after mating. There may be multiple tissues involved in the process of CTD biosynthesis. These four genes probably play regulatory roles in different tissues in males.
Collapse
Affiliation(s)
- Ming Jiang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Shu-Min Lü
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| | - Zi-Yi Qi
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| | - Ya-Lin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Li XR, Li Y, Wang W, He N, Tan XL, Yang XQ. LC 50 of lambda-cyhalothrin stimulates reproduction on the moth Mythimna separata (Walker). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:47-54. [PMID: 30744896 DOI: 10.1016/j.pestbp.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Lambda-cyhalothrin has long been recommended as an effective insecticide to control the oriental armyworm, Mythimna separata (Walker), a notorious migratory pest of agricultural plants. Previous researches have suggested that survival, development, and reproduction of insects are influenced by sublethal concentrations of insecticides. However, the effects of sublethal concentrations of lambda-cyhalothrin on M. separata are less known. In this study, we determined the toxicity and effects of LC20 and LC50 concentration of lambda-cyhalothrin on development and reproduction of M. separata. Results indicate that LC20 of lambda-cyhalothrin tends to decrease the life traits of M. separate, with a shortening larvae period of offspring and oviposition period, whereas LC50 of lambda-cyhalothrin stimulates daily maximal fecundity and forwards the oviposition peak, suggesting a stimulation of reproduction by LC50 of lambda-cyhalothrin. The M. separata population was increased by an LC50 concentration of lambda-cyhalothrin, resulting in a net reproductive rate (R0) and intrinsic rate of increase (rm) significantly higher than that of the control. Transcripts of vitellogenin (MsVg) and vitellogenin receptor (MsVgR) genes were suppressed at day 1 after emergence of moth which developed from the larvae exposed to LC20 and LC50 of lambda-cyhalothrin, but were significant induced when the moth begin to lay eggs (day 4), with a more remarkable induction by LC50 of lambda-cyhalothrin than those of LC20 of lambda-cyhalothrin. Our results indicate that the observed stimulation of reproduction is therefore the results of up-regulation of MsVg and MsVgR by LC50 of lambda-cyhalothrin.
Collapse
Affiliation(s)
- Xin-Ru Li
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Li
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Wang
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Ning He
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiao-Ling Tan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xue-Qing Yang
- Key Laboratory of Economic and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
11
|
Yasoob H, Khan RA, Naveed M, Rashid M, Zhang Y. Biological Evaluation of Endothall, a Dicarboxylic Acid Analog of Norcantharidin, and Cantharidin on Oriental Leafworm, Spodoptera litura (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2706-2716. [PMID: 30169799 DOI: 10.1093/jee/toy245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Cantharidin is a highly potent toxin produced by insects belonging to the order Coleoptera and family Meloidae. The insecticidal activity of cantharidin against different orders of insects has been well documented. Although it is highly effective, its extraction and synthesis is very tedious. Consequently, much work is underway to synthesize the bioactive analogs of norcantharidin and study their relative structures. In this study, we investigate the acute and chronic toxicological effects of cantharidin and endothall, an analog of norcantharidin, using an age-stage-based two-sex life table methodology. Results reveal the acute toxicity of these compounds to Spodoptera litura Fabricius (Lepidoptera: Noctuidae), with the LC50 of cantharidin being 2.10 and endothall being 3.72 ppm, after 72 h posttreatment. Although both the compounds negatively affected the intrinsic rate of population increase (r), finite rate of increase (λ), net reproduction rate (R0), mean generation time (T), doubling time (DT), relative fitness (Rf), biotic potential, and longevity, cantharidin was slightly more effective. Among the reproductive parameters, fecundity was severely affected by cantharidin, which reduced offspring to 42 compared to 528 per female in the control cohort. Both cantharidin and endothall caused similar physiological changes such as weight reduction, wing malformation, and pupal deformities. These findings demonstrate that both cantharidin and endothall are highly toxic to S. litura, particularly in their chronic effects on population parameters. This will help us to understand the biological and ecological interactions in agricultural cropping systems and how their application will modify insect herbivory.
Collapse
Affiliation(s)
- Hassan Yasoob
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rashid Ahmed Khan
- Plant Protection Division, Nuclear Institute for Agriculture & Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Muhammed Naveed
- Plant Protection Division, Nuclear Institute for Agriculture & Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Maryam Rashid
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Liu D, Jia ZQ, Peng YC, Sheng CW, Tang T, Xu L, Han ZJ, Zhao CQ. Toxicity and sublethal effects of fluralaner on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:8-16. [PMID: 30497715 DOI: 10.1016/j.pestbp.2018.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 06/09/2023]
Abstract
The increasing occurrence of resistance to chemical insecticides in insect pest populations is a serious threat to the integrity of current pest management strategies, and exploring new alternative chemistries is one important way to overcome this obstacle. Fluralaner, as a novel isoxazoline insecticide, has broad spectrum activity against a variety of insect pests, but little data is available about its effect on Lepidopterans. The effects of fluralaner on Spodoptera litura Fabricius, a widespread and polyphagous pest, were evaluated in the present study. Our results showed younger larvae were more susceptible to fluralaner treatment, but feeding and topical applications were similarly effective in 3rd instar larvae. Synergism assays indicated that piperonyl butoxide (PBO) could increase the toxicity of fluralaner to S. litura to a certain degree and P450 may be involved in the detoxification of fluralaner in vivo. Sublethal developmental effects included reduced larval body weight, decreased pupation and emergence, and notched wings in adults, accompanied by changes in the transcript levels of chitinase 5 (CHT5) and juvenile hormone acid methyltransferase (Jhamt), genes vital for insect development. Above results manifested that fluralaner is highly toxic to S. litura larvae via either topical or oral application and provide an indication of how this insecticide is metabolized in vivo. Further, our results provided a foundation for further development of fluralaner as a new tool in insect pest management.
Collapse
Affiliation(s)
- Di Liu
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong-Qiang Jia
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Chuan Peng
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng-Wang Sheng
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lu Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhao-Jun Han
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Qing Zhao
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Yasoob H, Ali Khan HA, Zhang Y. Toxicity and Sublethal Effects of Cantharidin on Musca domestica (Diptera: Muscidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2539-2544. [PMID: 29029163 DOI: 10.1093/jee/tox205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 06/07/2023]
Abstract
The house fly, Musca domestica L. (Diptera: Muscidae), is a major pest of medical and veterinary importance all over the world. Management efforts for house flies are usually compromised owing to their resistance to many groups of conventional insecticides. Cantharidin, a natural toxin produced by meloid beetles, is a biopesticide with a reported toxicity to some insect pests including house flies. However, the effects of cantharidin on biological and fitness parameters of house flies have not yet been investigated. In the present study, we investigated the toxicity and sublethal effects of cantharidin on biological parameters of house flies for two consecutive generations. The results revealed that the values of LC50, LC25, LC10, and LC2 against house flies were to be 2.45, 1.23, 0.66, and 0.30 mg/liter, respectively. Sublethal effects of these concentrations on the development and reproduction parameters of house flies revealed that cantharidin reduced population growth by affecting pupation rate, adult emergence, and by lengthening developmental time. The female ratio, fecundity, egg hatching, and survival of adult flies were significantly reduced at LC2, LC10, LC25, and LC50 of cantharidin when compared with the control group. Furthermore, the increase in concentration of cantharidin had a significant effect on reducing the mean values of mean relative growth rate, net reproductive rate (Ro), intrinsic rate of natural increase (rm), and biotic potential (bp). In conclusion, the results of this study revealed the toxicity of cantharidin against house flies and the adverse effects of sublethal concentrations on biological parameters which may have positive implications for effective management of house flies.
Collapse
Affiliation(s)
- Hassan Yasoob
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, China
| | | | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, China
| |
Collapse
|
14
|
Ali E, Liao X, Yang P, Mao K, Zhang X, Shakeel M, Salim AMA, Wan H, Li J. Sublethal effects of buprofezin on development and reproduction in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Sci Rep 2017; 7:16913. [PMID: 29209084 PMCID: PMC5717270 DOI: 10.1038/s41598-017-17190-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/23/2017] [Indexed: 11/24/2022] Open
Abstract
In the present study, the effects of sublethal concentrations of buprofezin on life-table traits of S. furcifera were evaluated for two consecutive generations (F0 and F1). Our results exhibited that the fecundity, life span (longevity) and hatchability of the F0 and F1 generations were significantly decreased at LC30 compared to the control. However, copulation was not significantly affected for the F0 or F1 generations at sublethal concentrations. The female life span was affected negatively at both treatments in F0 and at LC30 in F1, compared to the control. Furthermore, significant effects of the sublethal concentrations were found on the developmental rate of all instars except the 3rd instar of F1. However, the pre-adult period, total pre-oviposition period (TPOP) and adult pre-oviposition period (APOP) significantly increased in F1 individuals at LC30 and LC10 compared to the control. Our findings revealed that demographic characters (survival rate, intrinsic rate of increase (ri), finite rate of increase (λ), net reproductive rate (R0), and gross reproductive rate (GRR)) of the F1 generation (from F0 parents) significantly decreased compared to the untreated group; however, the generation time (T) increased at LC10. Therefore, the results suggested that buprofezin could adversely affect individuals in the successive generation.
Collapse
Affiliation(s)
- Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xun Liao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Peng Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaolei Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Muhammad Shakeel
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Abdalla M A Salim
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
15
|
Xu C, Ding J, Zhao Y, Luo J, Mu W, Zhang Z. Cyantraniliprole at Sublethal Dosages Negatively Affects the Development, Reproduction, and Nutrient Utilization of Ostrinia furnacalis (Lepidoptera: Crambidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:230-238. [PMID: 28011688 DOI: 10.1093/jee/tow248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To better understand the application prospect of cyantraniliprole against the Asian corn borer, Ostrinia furnacalis, a diet-incorporation bioassay was adopted to determine the toxicity of cyantraniliprole against the fourth instar of O. furnacalis. Moreover, other experiments were conducted to examine effects of sublethal levels of cyantraniliprole on larval development, nutrient utilization, and reproduction. In this study, cyantraniliprole showed a high toxicity to fourth-instar larvae of O. furnacalis at dosages of 0.05 μg/g (LC5), 0.11 μg/g (LC20), 0.20 μg/g (LC40), and 0.26 μg/g (LC50) administered through artificial diet. At three sublethal dosages, cyantraniliprole inhibited larval feeding processes, decreased the relative growth rate, the relative consumption rate, the efficiency of food ingestion, and the efficiency of food digestion, as well as decreased the contents of nutrients such as proteins, lipids, and carbohydrates. All these effects go against to the normal growth of O. furnacalis, including reductions in larval and pupal weight, the extension of the larval and pupal period, the prolongation of the adult preoviposition period, total preoviposition period, and mean generation time, and the reduction of adult longevity, oviposition period, and eggs laid by female adults. Together, these changes resulted in the reduction of the intrinsic rate of increase. Hence, even at sublethal concentrations, cyantraniliprole can affect population dynamics by reducing the survival rate, fecundity, and population parameters. This result provides useful information for developing control strategies for O. furnacalis.
Collapse
Affiliation(s)
- Chunmei Xu
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Jinfeng Ding
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Yunhe Zhao
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Jian Luo
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taían, P. R.of China
| |
Collapse
|
16
|
Quan LF, Qiu GS, Zhang HJ, Sun LN, Li YY, Yan WT. Sublethal Concentration of Beta-Cypermethrin Influences Fecundity and Mating Behavior of Carposina sasakii (Lepidoptera: Carposinidae) Adults. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2196-2204. [PMID: 27498114 DOI: 10.1093/jee/tow170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to evaluate the sublethal effects of the beta-cypermethrin on calling behavior and fecundity of a major fruit-boring pest of apple, Carposina sasakii Matsumura. The mating rate, fertility (total number of eggs laid per female), and adult longevity of adults were remarkably decreased as compared with that in control when the adults were exposed to 10% lethal concentrations (LC10) of beta-cypermethrin (LC10♀ × LC10♂), and the age-specific survival rate (lx) was also negatively affected by sublethal beta-cypermethrin especially for the LC10♀× LC10♂ mating combination. However, the age-specific fecundity (mx) was stimulated particularly in the combination of CK♀× LC10♂. Furthermore, the oviposition period was prolonged and the number of eggs was significantly increased for combinations of CK♀× LC10♂ and LC10♀× CK♂. In the mating experiments, males in control or LC10-beta-cypermethrin treatments preferred to mate with females in control. It might be because of lower calling rate of female survivors treated with sublethal beta-cypermethrin. Our data indicate that treatment of beta-cypermethrin had a sublethal effect on the development and production of C. sasakii, and their mating behavior changes in surviving adults that may contribute to assortative mating.
Collapse
Affiliation(s)
- Lin-Fa Quan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, P.R. China (; ; ; ; ; )
| | - Gui-Sheng Qiu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, P.R. China (; ; ; ; ; )
| | - Huai-Jiang Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, P.R. China (; ; ; ; ; )
| | - Li-Na Sun
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, P.R. China (; ; ; ; ; )
| | - Yan-Yan Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, P.R. China (; ; ; ; ; )
| | - Wen-Tao Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, P.R. China (; ; ; ; ; )
| |
Collapse
|
17
|
Çalik G, Büyükgüzel K, Büyükgüzel E. Reduced Fitness in Adults From Larval, Galleria mellonella (Lepidoptera: Pyralidae) Reared on Media Amended With the Antihelmintic, Mebendazole. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:182-187. [PMID: 26491189 DOI: 10.1093/jee/tov305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Benzimidazole antihelmintics, including mebendazole, have a broad antiparasitic spectrum. These drugs play a major role in the treatments of parasites of intestines or other organs of vertebrates, humans, and other animals.The impact of mebendazole on the biology of the greater wax moth, Galleria mellonella (L.), was assessed by observation of several developmental parameters as follows: survivorship, developmental time, and adult longevity. Sublethal toxicity was measured through reproductive parameters such as fecundity and hatchability.The larvae were reared on artificial diet from first-instar larvae to the adult stage in the laboratory. The diets contained mebendazole at different concentrations of 0.005, 0.05, 0.5, or 1.0%. Control diet did not containme bendazole and produced seventh-instar larvae in 96.6±1.67% of cases, whereas the addition of mebendazole into diet at 1.0% significantly decreased survivorship of seventh-instar larvae to 79.9±4.08%. The diet with the highest concentration of mebendazole decreased survivorship in the adult stage from 79.9±2.35 to 56.6±4.73%, and shortened the developmental time for adult emergence from 36.7±0.48 to 34.1±0.63 d. All mebendazole concentrations shortened adult longevity and significantly decreased fecundity and hatch ability of G. mellonella. The highest dietary concentration of this antihelmintic significantly decreased the egg number to 28.6±2.89 and hatching rate to 51.7±1.85%. The present study demonstrates that mebendazole exhibits significant adverse effects on greater wax moth, leading to deteriorated life table parameters and decreased adult fitness.
Collapse
|
18
|
Huang Z, Zhang Y. Chronic Sublethal Effects of Cantharidin on the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae). Toxins (Basel) 2015; 7:1962-78. [PMID: 26035491 PMCID: PMC4488684 DOI: 10.3390/toxins7061962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 11/17/2022] Open
Abstract
The diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), is a major pest of cruciferous vegetables worldwide. Cantharidin, a natural toxin isolated from blister beetles, has been reported to be toxic to P. xylostella. However, little is known on the chronic sublethal effects of cantharidin on this species. In this study, we assessed the changes of susceptibility, development, reproduction and other demographic parameters in both the selected P. xylostella strain (Sub, selected by LC25 cantharidin for consecutive 12 generations) and the revertant strain (SubR, derived from the Sub strain without being exposed to cantharidin for 12 generations). Results revealed that the two strains maintained a relatively high-level susceptibility to cantharidin. Severe adverse effects on the population dynamics and fitness in Sub strain were observed. In addition, repeated exposure of P. xylostella to sublethal concentration of cantharidin resulted in negative effects on adult performance and deformities in adults. Although morphologically normal for individuals, the SubR strain exhibited a disadvantage in population growth rate. Our results showed that sublethal concentration of cantharidin exhibited severe negative effects on population growth for longtime. These findings would be useful for assessing the potential effects and risk of cantharidin on P. xylostella and for developing effective integrated pest management.
Collapse
Affiliation(s)
- Zhengyu Huang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|