1
|
Carlson EA, Melathopoulos A, Sagili R. The Value of Hazard Quotients in Honey Bee (Apis mellifera) Ecotoxicology: A Review. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.824992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estimates of pesticide application hazards have grown to be one of the most common methodologies for evaluating the impact of pest management practices on honey bees. Typically, hazards are estimated by calculating a Hazard Quotient (HQ), which is based on acute toxicity data for different pesticides and the quantity of those pesticides applied to a field or detected on bees and matrices associated with their hive (honey, wax, pollen, and/or bee bread). Although use of HQ is widespread, there have been few reviews of this methodology, particularly with focus on how effective this method is at predicting effects of pesticides on hives. We evaluated 36 relevant papers, containing calculations of HQ to estimate hazards to honey bees. We observed that HQ was primarily calculated using two different approaches: (1) from the concentration of pesticides in the food, hive, or tissues of honey bees or (2) using the field application rate of the active ingredient as the estimation of pesticide hazard. Within and between HQ calculation methods, thresholds vary widely with some HQ thresholds set below 1 and others set at 10,000. Based on our review we identify key weakness with current HQ methodology and how studies relate HQ to honey bee health endpoints. First, HQ thresholds from studies of pesticides in hives are not based on the same pesticide consumption models from the EPA, potentially overestimating the risk of impacts to colonies. Conversely, HQ estimates calculated from field application rates are not based on eco-toxicological estimates of field exposure, resulting in an overestimation of pesticide reaching colonies. We suggest it is for these reasons that there is poor correspondence between HQ and field-level honey bee health endpoints. Considering these challenges, HQ calculations should be used cautiously in future studies and more research should be dedicated to field level exposure models.
Collapse
|
2
|
Schuhmann A, Schmid AP, Manzer S, Schulte J, Scheiner R. Interaction of Insecticides and Fungicides in Bees. FRONTIERS IN INSECT SCIENCE 2022; 1:808335. [PMID: 38468891 PMCID: PMC10926390 DOI: 10.3389/finsc.2021.808335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 03/13/2024]
Abstract
Honeybees and wild bees are among the most important pollinators of both wild and cultivated landscapes. In recent years, however, a significant decline in these pollinators has been recorded. This decrease can have many causes including the heavy use of biocidal plant protection products in agriculture. The most frequent residues in bee products originate from fungicides, while neonicotinoids and, to a lesser extent, pyrethroids are among the most popular insecticides detected in bee products. There is abundant evidence of toxic side effects on honeybees and wild bees produced by neonicotinoids, but only few studies have investigated side effects of fungicides, because they are generally regarded as not being harmful for bees. In the field, a variety of substances are taken up by bees including mixtures of insecticides and fungicides, and their combinations can be lethal for these pollinators, depending on the specific group of insecticide or fungicide. This review discusses the different combinations of major insecticide and fungicide classes and their effects on honeybees and wild bees. Fungicides inhibiting the sterol biosynthesis pathway can strongly increase the toxicity of neonicotinoids and pyrethroids. Other fungicides, in contrast, do not appear to enhance toxicity when combined with neonicotinoid or pyrethroid insecticides. But the knowledge on possible interactions of fungicides not inhibiting the sterol biosynthesis pathway and insecticides is poor, particularly in wild bees, emphasizing the need for further studies on possible effects of insecticide-fungicide interactions in bees.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Anna Paulina Schmid
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Sarah Manzer
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Janna Schulte
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Lv X, Li JX, Wang JY, Tian XG, Feng L, Sun CP, Ning J, Wang C, Zhao WY, Li YC, Ma XC. Regioselective hydroxylation of carbendazim by mammalian cytochrome P450: A combined experimental and computational study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118523. [PMID: 34793912 DOI: 10.1016/j.envpol.2021.118523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Carbendazim (CBZ), a broad-spectrum pesticide frequently detected in fruits and vegetables, could trigger potential toxic risks to mammals. To facilitate the assessment of health risks, this study aimed to characterize the cytochrome P450 (CYPs)-mediated metabolism profiles of CBZ by a combined experimental and computational study. Our results demonstrated that CYPs-mediated region-selective hydroxylation was a major metabolism pathway for CBZ in liver microsomes from various species including rat, mouse, minipig, dog, rabbit, guinea pig, monkey, cow and human, and the metabolite was biosynthesized and well-characterized as 6-OH-CBZ. CYP1A displayed a predominant role in the region-selective hydroxylation of CBZ that could attenuate its toxicity through converting it into a less toxic metabolite. Meanwhile, five other common pesticides including chlorpyrifos-methyl, prochloraz, chlorfenapyr, chlorpyrifos, and chlorothalonil could significantly inhibit the region-selective hydroxylation of CBZ, and consequently remarkably increased CBZ exposure in vivo. Furthermore, computational study clarified the important contribution of the key amino acid residues Ser122, and Asp313 in CYP1A1, as well as Asp320 in CYP1A2 to the hydroxylation of CBZ through hydrogen bonds. These results would provide some useful information for the metabolic profiles of CBZ by mammalian CYPs, and shed new insights into CYP1A-mediated metabolic detoxification of CBZ and its health risk assessment.
Collapse
Affiliation(s)
- Xia Lv
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jing-Xin Li
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jia-Yue Wang
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xiang-Ge Tian
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lei Feng
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Cheng-Peng Sun
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jing Ning
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Chao Wang
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Wen-Yu Zhao
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Ya-Chen Li
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xiao-Chi Ma
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China.
| |
Collapse
|
4
|
Luo YS, Wu TH. Utilizing High-Throughput Screening Data, Integrative Toxicological Prioritization Index Score, and Exposure-Activity Ratios for Chemical Prioritization: A Case Study of Endocrine-Active Pesticides in Food Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11427-11439. [PMID: 34524809 DOI: 10.1021/acs.jafc.1c03191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Endocrine-active chemicals can directly act on nuclear receptors and trigger the disturbances of metabolism and a homeostatic system, which are important risk factors for complicating chronic diseases in humans. The endocrine-active potentials of pesticides acting on estrogen, androgen, and thyroid hormone receptors have been extensively evaluated for pesticides; however, the effects on other receptors are less understood. This study aims to comprehensively characterize and prioritize the endocrine-active pesticides using an exposure-activity ratio (EAR) method and toxicological prioritization index (ToxPi). The aggregate exposure assessment of pesticides was performed using a computational exposure model [stochastic human exposure and dose simulation high-throughput model (SHEDS-HT)]. Minimum in vitro point of departure values were converted to human oral equivalent doses via in vitro-to-in vivo extrapolation. The overall endocrine-disrupting potentials of pesticides were evaluated via 76 assays, representing 11 nuclear receptors. EARs and ToxPi scores were then derived to prioritize 79 pesticides in food. This case study demonstrates that EAR profiling can inform the regulatory agencies for a relevant chemical prioritization, which would direct in-depth health risk assessments in the future.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Road, Zhongzheng District, Taipei 100, Taiwan
- Master of Public Health Program, National Taiwan University, 17 Xuzhou Road, Zhongzheng District, Taipei 100055, Taiwan
| | - Tsung Hsien Wu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Road, Zhongzheng District, Taipei 100, Taiwan
| |
Collapse
|
5
|
|
6
|
Wahyuni EA, Lin HD, Lu CW, Kao CM, Chen SC. The cytotoxicity and genotoxicity of single and combined fenthion and terbufos treatments in human liver cells and zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143597. [PMID: 33221015 DOI: 10.1016/j.scitotenv.2020.143597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The mechanism of genotoxicity of the individual and combined pesticides of terbufos and fenthion were evaluated using HepG2 cells and zebrafish embryos. We determined genotoxicity by neutral comet assay and phosphorylation of H2AX (γH2AX), which indicated that cells treated with terbufos and/or fenthion caused DNA double-strand breaks (DSBs). The combination of these pesticides at the equimolar concentration (40 μM) exhibited less toxicity, genotoxicity, and did not impact DNA homologous recombination (HR) repair activity compare to terbufos or fenthion alone treatment. In HepG2 cells, terbufos, fenthion and their combination decreased only Xrcc2 expression (one of DNA HR repair genes). Moreover, the combined pesticides decreased Xrcc6 expression (one of DNA non-homologous end joining (NHEJ) repair genes). In addition, only terbufos or fenthion decreased XRCC2 protein expression, while Ku70 was impacted in all of the treated cells irrespective of up or down regulation. In zebrafish embryos, only fenthion impaired HR genes (Rad51 and Rad18) expression at 24 h. After 48 h exposure to pesticides, the combined pesticides elevated HR genes (Rad51 and Xrcc2) expression while terbufos or fenthion inhibited the expression of these four genes (Rad51, Rad18, Xrcc2, Xrcc6). In addition, the hatching rate of zebrafish embryos with fenthion or the combined pesticide at 72 hpf was significantly impaired. Collectively, terbufos and/or fenthion in combining caused DSBs in HepG2 cells and zebrafish embryos. Moreover, the specific mechanism of combined pesticide both HepG2 and zebrafish embryos revealed antagonism interaction.
Collapse
Affiliation(s)
- Eva Ari Wahyuni
- Department of Life Sciences, National Central University, Jhongli, Taiwan; Department of Natural Science Education, University of Trunojoyo Madura, East Java, Indonesia
| | - Heng-Dao Lin
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Che-Wei Lu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Chih Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan.
| |
Collapse
|
7
|
Devillers J, Devillers H. Lethal and Sublethal Effects of Pyriproxyfen on Apis and Non- Apis Bees. TOXICS 2020; 8:toxics8040104. [PMID: 33212791 PMCID: PMC7712127 DOI: 10.3390/toxics8040104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
Pyriproxyfen is a juvenile hormone mimic used extensively worldwide to fight pests in agriculture and horticulture. It also has numerous applications as larvicide in vector control. The molecule disrupts metamorphosis and adult emergence in the target insects. The same types of adverse effects are expected on non-target insects. In this context, the objective of this study was to evaluate the existing information on the toxicity of pyriproxyfen on the honey bee (Apis mellifera) and non-Apis bees (bumble bees, solitary bees, and stingless bees). The goal was also to identify the gaps necessary to fill. Thus, whereas the acute and sublethal toxicity of pyriproxyfen against A. mellifera is well-documented, the information is almost lacking for the non-Apis bees. The direct and indirect routes of exposure of the non-Apis bees to pyriproxyfen also need to be identified and quantified. More generally, the impacts of pyriproxyfen on the reproductive success of the different bee species have to be evaluated as well as the potential adverse effects of its metabolites.
Collapse
Affiliation(s)
| | - Hugo Devillers
- SPO, INRAE, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France;
| |
Collapse
|
8
|
Toselli G, Sgolastra F. Seek and you shall find: An assessment of the influence of the analytical methodologies on pesticide occurrences in honey bee-collected pollen with a systematic review. CHEMOSPHERE 2020; 258:127358. [PMID: 32563069 DOI: 10.1016/j.chemosphere.2020.127358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Honey bee mortality and colony losses have been reported worldwide. Although this phenomenon is caused by a combination of factors, agrochemicals have received special attention due to their potential effects on bees. In agricultural and urban environments bees are exposed to several compounds that may interact in unexpected ways, but information on the extent of pesticide exposure remains unclear. Several monitoring studies have been conducted to evaluate the field-realistic exposure of bees to pesticides after their release on the market. However, their outputs are difficult to compare and harmonize due to differences in the analytical methodologies and the sampling protocols (e.g. number of screened compounds and analysed samples, and detection limits (LODs)). Here, we hypothesize that the analytical methodologies used in the monitoring studies may strongly affect the pesticide occurrences in pollen underestimating the real pesticide exposure. By mean of a systematic literature review, we have collected relevant information on pesticide contaminations in the honey bee-collected pollen. Our findings showed that the pesticide occurrences were associated with the analytical methodologies and the real pesticide exposure has likely been underestimated in some monitoring studies. For four highly toxic compounds, the LOD used in these monitoring studies exceeded the doses that cause toxic effects on honey bees. We recommend that, especially for the highly toxic compounds, the LODs used in the monitoring studies should be low enough to exclude lethal or sublethal effects on bees and avoid "false negative" samples.
Collapse
Affiliation(s)
- Gioele Toselli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, Italy
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, Italy.
| |
Collapse
|
9
|
Yang Y, Ma S, Liu F, Wang Q, Wang X, Hou C, Wu Y, Gao J, Zhang L, Liu Y, Diao Q, Dai P. Acute and chronic toxicity of acetamiprid, carbaryl, cypermethrin and deltamethrin to Apis mellifera larvae reared in vitro. PEST MANAGEMENT SCIENCE 2020; 76:978-985. [PMID: 31486576 DOI: 10.1002/ps.5606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The effects of exposing Apis mellifera larvae to common insecticides were tested in the laboratory. RESULTS The acute toxicity values of the four insecticides that we tested ranged from high toxicity to low toxicity: deltamethrin > cypermethrin > carbaryl > acetamiprid. The NOAEC (no observed adverse effect concentration) values of the chronic toxicity tests for each compound are 5 mg L-1 for acetamiprid, 2 mg L-1 for carbaryl, 1 mg L-1 for cypermethrin, and 0.2 mg L-1 for deltamethrin. CONCLUSION According to the risk quotient (RQ) values of acute and chronic toxicity that we obtained, the risk is acceptable at exposure rates that have been identified in the field. Overall, our results are valuable for evaluating the acute and chronic toxicities of these insecticides to developing honey bees. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shilong Ma
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Bee Academy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Liu
- Jiangxi Institute of Apicultural Research, Nanchang, China
| | - Qiang Wang
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Wang
- Beijing of Apicultural Station, Beijing, China
| | - Chunsheng Hou
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Wu
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Gao
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Liu
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyun Diao
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingli Dai
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Stoner KA, Cowles RS, Nurse A, Eitzer BD. Tracking Pesticide Residues to a Plant Genus Using Palynology in Pollen Trapped from Honey Bees (Hymenoptera: Apidae) at Ornamental Plant Nurseries. ENVIRONMENTAL ENTOMOLOGY 2019; 48:351-362. [PMID: 30753426 PMCID: PMC6446217 DOI: 10.1093/ee/nvz007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 06/03/2023]
Abstract
Worldwide studies have used the technique of pollen trapping, collecting pollen loads from returning honey bee (Apis mellifera L.) (Hymenoptera: Apidae) foragers, to evaluate the exposure of honey bees to pesticides through pollen and as a biomonitoring tool. Typically, these surveys have found frequent contamination of pollen with multiple pesticides, with most of the estimated risk of acute oral toxicity to honey bees coming from insecticides. In our survey of pesticides in trapped pollen from three commercial ornamental plant nurseries in Connecticut, we found most samples within the range of acute toxicity in a previous state pollen survey, but a few samples at one nursery with unusually high acute oral toxicity. Using visual sorting by color of the pollen pellets collected in two samples from this nursery, followed by pesticide analysis of the sorted pollen and palynology to identify the plant sources of the pollen with the greatest acute toxicity of pesticide residues, we were able to associate pollen from the plant genus Spiraea L. (Rosales: Rosaceae) with extraordinarily high concentrations of thiamethoxam and clothianidin, and also with high concentrations of acephate and its metabolite methamidophos. This study is the first to trace highly toxic pollen collected by honey bees to a single plant genus. This method of tracking high toxicity pollen samples back to potential source plants could identify additional high-risk combinations of pesticide application methods and timing, movement into pollen, and attractiveness to bees that would be difficult to identify through modeling each of the contributing factors.
Collapse
Affiliation(s)
| | - Richard S Cowles
- Valley Laboratory, The Connecticut Agricultural Experiment Station, Windsor, CT
| | - Andrea Nurse
- Climate Change Institute, University of Maine, Orono, ME
| | - Brian D Eitzer
- The Connecticut Agricultural Experiment Station, New Haven, CT
| |
Collapse
|
11
|
Chang J, Li W, Xu P, Guo B, Wang H. Dose-dependent effects of flufenoxuron on thyroid system of mature female lizards (Eremias argus) and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:714-719. [PMID: 30448662 DOI: 10.1016/j.scitotenv.2018.11.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
More and more studies are focusing on toxic effect of pesticides on lizards. However, the responses of different life-stage lizards to pesticides have not been reported. In this study, according to RNA-seq library data, thyroxine 5'-deiodinase activity showed significant difference between mature and immature lizard liver. In addition, triiodothyronine (T3) level in immature lizard serum was higher than that in mature lizard serum. Thus, we investigated the thyroid disruption of flufenoxuron with different concentrations (0, 5, 20 mg/kg) to both mature lizards and their offspring. No significant differences were observed in immature lizard body weight compared between control and exposure groups while the body weight of mature lizards was significantly decreased after flufenoxuron exposure. Moreover, the levels of thyroid hormones and the expression of thyroid related genes changed with exposure concentration of flufenoxuron and exhibited different regulation mechanism between mature and immature lizards. In immature lizard liver, trα, trβ, dio1 and ugt genes controlled the thyroid hormone levels interfered by flufenoxuron. In contrast, the thyroxine (T4) pathway in mature lizard liver was significantly disrupted especially by 20 mg/kg flufenoxuron exposure. This study elucidated the different thyroid disruption effects of flufenoxuron to lizards based on different exposure doses and lizard life stages.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| |
Collapse
|