1
|
Peto BR, Costa CP, Moore ME, Woodard SH. Social control of egg-laying in independently nest-founding bumble bee queens. BMC Ecol Evol 2025; 25:30. [PMID: 40205330 PMCID: PMC11980249 DOI: 10.1186/s12862-025-02364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Evolution has shaped diverse reproductive investment strategies, with some organisms integrating environmental cues into their reproductive decisions. In animal societies, social cues can further influence reproductive decisions in ways that might support the survival and success of the social group. Bumble bees are a lineage of eusocial insects wherein queens initiate nests independently. Bumble bee queens enter their eusocial phase only after successfully rearing their first offspring and thereafter exhibit an increased rate of egg-laying. We tested the idea that during bumble bee nest initiation, queen reproduction is socially context-dependent and under the control of social conditions in the nest. RESULTS Our findings reveal that in the bumble bee Bombus impatiens, queen egg-laying follows a dynamic, stereotypical pattern and is also heavily influenced by social group members. During the initial stages of nest initiation, accelerated egg-laying in queens is associated with the presence of workers or older larvae and pupae. Moreover, workers are required for queens to maintain increased levels of egg laying across the nest initiation stage. We also confirmed a previously-described pattern where queens temporarily decelerate egg-laying early in nest-founding, only to increase it again when the first adult workers are soon to emerge. This "pause" in egg-laying was observed in all B. impatiens queens as well as in additional species examined. CONCLUSIONS Our results support the idea that eusocial systems can employ socially context-dependent control of queen egg-laying as a reproductive strategy. In some solitary-founding lineages, including bumble bees, queens may reach their full reproductive potential only after the emergence of the first adult workers, who then take over brood care. This stands in contrast to the hyper-reproductivity observed in some eusocial species. The presence of workers and older brood (who will soon eclose) not only alleviates queen brood care responsibilities but may also provide signals that cause queens to increase their reproductive output. These phenomena may allow queens to adapt their reproductive output to the conditions of the colony. Broadly, these findings highlight the dynamic interplay between social conditions and reproduction in bumble bees.
Collapse
Affiliation(s)
- Blanca R Peto
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| | - Claudinéia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Meghan E Moore
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Koch JBU, Sim SB, Scheffler B, Lozier JD, Geib SM. Chromosome-scale genome assembly of the hunt bumble bee, Bombus huntii Greene, 1860, a species of agricultural interest. G3 (BETHESDA, MD.) 2024; 14:jkae160. [PMID: 39028118 PMCID: PMC11457055 DOI: 10.1093/g3journal/jkae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
The Hunt bumble bee, Bombus huntii, is a widely distributed pollinator in western North America. The species produces large colony sizes in captive rearing conditions, experiences low parasite and pathogen loads, and has been demonstrated to be an effective pollinator of tomatoes grown in controlled environment agriculture systems. These desirable traits have galvanized producer efforts to develop commercial Bombus huntii colonies for growers to deliver pollination services to crops. To better understand Bombus huntii biology and support population genetic studies and breeding decisions, we sequenced and assembled the Bombus huntii genome from a single haploid male. High-fidelity sequencing of the entire genome using PacBio, along with HiC sequencing, led to a comprehensive contig assembly of high continuity. This assembly was further organized into a chromosomal arrangement, successfully identifying 18 chromosomes spread across the 317.4 Mb assembly with a BUSCO score indicating 97.6% completeness. Synteny analysis demonstrates shared chromosome number (n = 18) with Bombus terrestris, a species belonging to a different subgenus, matching the expectation that presence of 18 haploid chromosomes is an ancestral trait at least between the subgenera Pyrobombus and Bombus sensu stricto. In conclusion, the assembly outcome, alongside the minimal tissue sampled destructively, showcases efficient techniques for producing a comprehensive, highly contiguous genome.
Collapse
Affiliation(s)
- Jonathan Berenguer Uhuad Koch
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Biology, Management, Systematics Research Unit, Logan, UT 84341, USA
| | - Sheina B Sim
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Brian Scheffler
- U.S. Department of Agriculture, Agricultural Research Service, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Scott M Geib
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| |
Collapse
|
3
|
Evans EC, Strange JP, Sadd BM, Tripodi AD, Figueroa LL, Adams LD, Colla SR, Duennes MA, Lehmann DM, Moylett H, Richardson L, Smith JW, Smith TA, Spevak EM, Inouye DW. Parasites, parasitoids, and hive products that are potentially deleterious to wild and commercially raised bumble bees ( Bombus spp.) in North America. JOURNAL OF POLLINATION ECOLOGY 2023; 33:37-53. [PMID: 39749144 PMCID: PMC11694831 DOI: 10.26786/1920-7603(2023)710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Bumble bees are important pollinators for a great diversity of wild and cultivated plants, and in many parts of the world certain species have been found to be in decline, gone locally extinct, or even globally extinct. A large number of symbionts live on, in, or with these social bees. We give an overview of what is known about bumble bee ecto-symbionts and parasitoids. We provide information on assessment of risks posed by select bumble bee symbionts and methods for their detection, quantification, and control. In addition, we assess honey bee hive products such as pollen and wax that are used in commercial bumble bee production, and highlight key risks and knowledge gaps. Knowledge of these potential threats to native pollinators is important and they need to be managed in the context of national and international commercial trade in bumble bees to prevent pest introduction and pathogen spillover that can threaten native bees.
Collapse
Affiliation(s)
- Elaine C. Evans
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108 USA
| | - James P. Strange
- Department of Entomology, The Ohio State University, Columbus, OH 43214
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | | | - Laura L. Figueroa
- Department of Environmental Conservation, University of Massachusetts, Amherst, Amherst, MA, 01003, US
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | | | - Sheila R. Colla
- SRC: Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | | | - David M. Lehmann
- Center for Public Health and Environmental Assessment (CPHEA), Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, US - Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | | | - Leif Richardson
- The Xerces Society for Invertebrate Conservation, 628 NE Broadway, Suite 20, Portland, OR 97232-1324, USA
| | - James W. Smith
- Retired, USDA-Animal and Plant Health Inspection Service, Raleigh, NC 27526, USA
| | - Tamara A. Smith
- U.S. Fish & Wildlife Service, Minnesota- Wisconsin Ecological Services Field Office, 3815 American Boulevard East, Bloomington, MN 55425
| | - Edward M. Spevak
- Center for Native Pollinator Conservation, Saint Louis Zoo, One Government Drive, St. Louis, MO 63110, USA
| | - David W. Inouye
- Department of Biology, University of Maryland, College Park, MD 20742, and Rocky Mountain Biological Laboratory, PO Box 510, Crested Butte, CO 81224, USA
| |
Collapse
|
4
|
Tommasi N, Colombo B, Pioltelli E, Biella P, Casiraghi M, Galimberti A. Urban habitat fragmentation and floral resources shape the occurrence of gut parasites in two bumblebee species. Ecol Evol 2023; 13:e10299. [PMID: 37456076 PMCID: PMC10338672 DOI: 10.1002/ece3.10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Urbanization and the expansion of human activities foster radical ecosystem changes with cascading effects also involving host-pathogen interactions. Urban pollinator insects face several stressors related to landscape and local scale features such as green habitat loss, fragmentation and availability reduction of floral resources with unpredictable effects on parasite transmission. Furthermore, beekeeping may contribute to the spread of parasites to wild pollinators by increasing the number of parasite hosts. Here we used DNA-based diagnostics tools to evaluate how the occurrence of parasites, namely microsporidians (Nosema spp.), trypanosomatids (Crithidia spp.) and neogregarines (Apicystis bombi), is shaped by the above-mentioned stressors in two bumblebee species (i.e. Bombus terrestris and Bombus pascuorum). Infection rates of the two species were different and generally higher in B. terrestris. Moreover, they showed different responses towards the same ecological variables, possibly due to differences in body size and foraging habits supposed to affect their susceptibility to parasite infection. The probability of infection was found to be reduced in B. pascuorum by green habitat fragmentation, while increased along with floral resource availability. Unexpectedly, B. terrestris had a lower parasite richness nearby apiaries maybe due to the fact that parasites are prone to be transmitted among the most abundant species. Our finding supports the need to design proper conservation measures based on species-specific knowledge, as suggested by the variation in the parasite occurrence of the two species. Moreover, conservation policies aiming at safeguarding pollinators through flower planting should consider the indirect effects of these measures for parasite transmission together with pollinator biodiversity issues.
Collapse
Affiliation(s)
- Nicola Tommasi
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Beatrice Colombo
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Emiliano Pioltelli
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Paolo Biella
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Maurizio Casiraghi
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Andrea Galimberti
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
5
|
Zavodska R, Sehadova H. The rate of DNA synthesis in ovaries, fat body cells, and pericardial cells of the bumblebee ( Bombus terrestris) depends on the stage of ovarian maturation. Front Physiol 2023; 14:1034584. [PMID: 37113694 PMCID: PMC10126488 DOI: 10.3389/fphys.2023.1034584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Bumblebees are important pollinators of plants worldwide and they are kept for commercial pollination. By studying the process of oogenesis, we can understand their ontogenetic developmental strategy and reproduction. We describe the anatomy of the ovary of the bumblebee Bombus terrestris using 3D reconstruction by confocal microscopy. We found that an oocyte is accompanied by 63 endopolyploidy nurse cells. The number of nurse cells nuclei decreased during oogenesis and the cells are finally absorbed by the oocyte. We monitored the rate of DNA synthesis in vivo during 12 h in ovaries, fat body, and pericardial cells in B. terrestris queens and workers of different ages. The DNA replication activity was detected on the basis of visualization of incorporated 5-ethynyl-2'-deoxyuridine. DNA synthesis detected in differentiated nurse cells indicated endoreplication of nuclei. The dynamics of mitotic activity varied among different ages and statuses of queens. In 3- to 8-day-old virgin queens, intense mitotic activity was observed in all tissue types investigated. This might be related to the initial phase of oogenesis and the development of the hepato-nephrotic system. In 15- to 20-day-old mated pre-diapause queens, DNA synthesis was exclusively observed in the ovaries, particularly in the germarium and the anterior part of the vitellarium. In 1-year-old queens, replication occurred only in the peritoneal sheath of ovaries and in several cells of the fat body. The similar DNA synthesis patterns in the ovaries of mated pre-diapause queens, ovipositing workers, and non-egg-laying workers show that mitotic activity is related not only to age but also to the stage of ovarian maturation and is relatively independent of caste affiliation.
Collapse
Affiliation(s)
- Radka Zavodska
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czechia
- Faculty of Education, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | - Hana Sehadova
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| |
Collapse
|
6
|
Ivers NA, Jha S. Biogeography, climate, and land use create a mosaic of parasite risk in native bumble bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161545. [PMID: 36649773 DOI: 10.1016/j.scitotenv.2023.161545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Host-parasite interactions are crucial to the regulation of host population growth, as they often impact both long-term population stability and ecological functioning. Animal hosts navigate a number of environmental conditions, including local climate, anthropogenic land use, and varying degrees of spatial isolation, all of which can mediate parasitism exposure. Despite this, we know little about the potential for these environmental conditions to impact pathogen prevalence at biogeographic scales, especially for key ecosystem service-providing animals. Bees are essential pollination providers that may be particularly sensitive to biogeography, climate, and land-use as these factors are known to limit bee dispersal and contribute to underlying population genetic variation, which may also impact host-parasite interactions. Importantly, many native bumble bee species have recently shown geographic range contractions, reduced genetic diversity, and increased parasitism rates, highlighting the potential importance of interacting and synergistic stressors. In this study, we incorporate spatially explicit environmental, biogeographic, and land-use data in combination with genetically derived host population data to conduct a large-scale epidemiological assessment of the drivers of pathogen prevalence across >1000 km for a keystone western US pollinator, the bumble bee Bombus vosnesenskii. We found high rates of infection from Crithidia bombi and C. expoekii, which show strong spatial autocorrelation and which were more prevalent in northern latitudes. We also show that land use barriers best explained differences in parasite prevalence and parasite community composition, while precipitation, elevation, and B. vosnesenskii nesting density were important drivers of parasite prevalence. Overall, our results demonstrate that human land use can impact critical host-parasite interactions for native bees at massive spatial scales. Further, our work indicates that disease-related survey and conservation measures should take into account the independent and interacting influences of climate, biogeography, land use, and local population dynamics.
Collapse
Affiliation(s)
- Nicholas A Ivers
- University of Texas at Austin, Dept. Integrative Biology, United States of America.
| | - Shalene Jha
- University of Texas at Austin, Dept. Integrative Biology, United States of America
| |
Collapse
|
7
|
Figueroa LL, Sadd BM, Tripodi AD, Strange JP, Colla SR, Adams LD, Duennes MA, Evans EC, Lehmann DM, Moylett H, Richardson L, Smith JW, Smith TA, Spevak EM, Inouye DW. Endosymbionts that threaten commercially raised and wild bumble bees ( Bombus spp.). JOURNAL OF POLLINATION ECOLOGY 2023; 33:14-36. [PMID: 39749009 PMCID: PMC11694841 DOI: 10.26786/1920-7603(2023)713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Bumble bees (Bombus spp.) are important pollinators for both wild and agriculturally managed plants. We give an overview of what is known about the diverse community of internal potentially deleterious bumble bee symbionts, including viruses, bacteria, protozoans, fungi, and nematodes, as well as methods for their detection, quantification, and control. We also provide information on assessment of risk for select bumble bee symbionts and highlight key knowledge gaps. This information is crucial for ongoing efforts to establish parasite- conscious programs for future commerce in bumble bees for crop pollination, and to mitigate the problems with pathogen spillover to wild populations.
Collapse
Affiliation(s)
- Laura L. Figueroa
- Department of Environmental Conservation, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | | | - James P. Strange
- Department of Entomology, The Ohio State University, Columbus, OH 43214, USA
| | - Sheila R. Colla
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Laurie Davies Adams
- Pollinator Partnership, 600 Montgomery, Suite 440, San Francisco, CA 94111, USA
| | | | - Elaine C. Evans
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108 USA
| | - David M. Lehmann
- Center for Public Health and Environmental Assessment (CPHEA), Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, US - Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | | | - Leif Richardson
- The Xerces Society for Invertebrate Conservation, 628 NE Broadway, Suite 20, Portland, OR 97232-1324, USA
| | - James W. Smith
- Retired USDA-Animal and Plant Health Inspection Service, Raleigh, NC 27526, USA
| | - Tamara A. Smith
- US Fish & Wildlife Service, Minnesota/Wisconsin Ecological Services Field Office, 4101 American Boulevard East, Bloomington, MN 55425, USA
| | - Edward M. Spevak
- Center for Native Pollinator Conservation, Saint Louis Zoo, One Government Drive, St. Louis, MO 63110, USA
| | - David W. Inouye
- Department of Biology, University of Maryland, College Park, MD 20742, and Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| |
Collapse
|
8
|
Ivers NA, Jordan Z, Cohen H, Tripodi A, Brown MJF, Liere H, Lin BB, Philpott S, Jha S. Parasitism of urban bumble bees influenced by pollinator taxonomic richness, local garden management, and surrounding impervious cover. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Sarro E, Tripodi A, Woodard SH. Bumble Bee ( Bombus vosnesenskii) Queen Nest Searching Occurs Independent of Ovary Developmental Status. INTEGRATIVE ORGANISMAL BIOLOGY (OXFORD, ENGLAND) 2022; 4:obac007. [PMID: 35274079 PMCID: PMC8902787 DOI: 10.1093/iob/obac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies on the physiological states of wild-caught organisms are essential to uncovering the links between ecological and physiological processes. Bumble bee queens emerge from overwintering in the spring. At this time, queens develop their ovaries and search for a nest site in which to start a colony. Whether these two processes, ovary development and nest-searching, interact with or influence one another remains an unresolved question in behavioral physiology. We explored the hypothesis that ovary development and nest-searching might be mechanistically connected, by testing whether (1) ovary development precedes nest-searching behavior; (2) nest occupation precedes ovary development; or (3) ovary development and nest-searching occur independently, in bumble bee (Bombus vosnesenskii) queens. We collected queens either nest-searching (and thus prior to occupying a nest) or pollen-collecting (and thus provisioning an occupied nest) and measured their degree of ovary activation. We further screened these queens for parasites or other symbionts, to identify additional factors that may impact their reproductive success at this time. We found that queens searched for and occupied nests at all stages of ovary development, indicating that these processes occur independently in this system. Nest-searching queens were more likely to have substantial mite loads than pollen-collecting queens, who had already located and occupied a nest. However, mite loads did not significantly predict ovary developmental status. Collectively, our work shows that nesting status and symbionts alone are insufficient to explain the variation in spring bumble bee queen ovary development. We propose that ovary development and nest-searching occur opportunistically, which may enable queens to begin laying eggs earlier in the season than if these processes occurred in discrete succession.
Collapse
Affiliation(s)
- Erica Sarro
- Department of Entomology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Amber Tripodi
- Department of Entomology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | | |
Collapse
|
10
|
Sarro E, Sun P, Mauck K, Rodriguez-Arellano D, Yamanaka N, Woodard SH. An organizing feature of bumble bee life history: worker emergence promotes queen reproduction and survival in young nests. CONSERVATION PHYSIOLOGY 2021; 9:coab047. [PMID: 34221405 PMCID: PMC8242224 DOI: 10.1093/conphys/coab047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 05/14/2023]
Abstract
Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests.
Collapse
Affiliation(s)
- Erica Sarro
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Penglin Sun
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Kerry Mauck
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Damaris Rodriguez-Arellano
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Naoki Yamanaka
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| |
Collapse
|
11
|
Costa CP, Fisher K, Guillén BM, Yamanaka N, Bloch G, Woodard SH. Care-giver identity impacts offspring development and performance in an annually social bumble bee. BMC Ecol Evol 2021; 21:20. [PMID: 33563224 PMCID: PMC7871553 DOI: 10.1186/s12862-021-01756-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The developmental fates of offspring have the potential to be influenced by the identity of their care-givers and by the nature of the care that they receive. In animals that exhibit both parental and alloparental care, such as the annually eusocial insects, the influence of care-giver identity can be directly assessed to yield mechanistic and evolutionary insights into the origins and elaboration of brood care. Here, we performed a comparative investigation of maternal and worker brood care in bumble bees, a pollinator group where mothers (queens) rear the first offspring in the nest, and then daughters (workers) assume this role upon their emergence. Specifically, we compared the effects of queen and worker brood care on offspring development and also offspring performance, for a set of traits related to sensory biology, learning, and stress resistance. RESULTS We found that queen-reared workers were smaller-bodied than worker-reared offspring, suggesting that bumble bee queens influence body size determination in their offspring. We also found that queen-reared workers were more resistant to starvation, which might be beneficial for early nesting success. These maternal influences could not be explained by feeding rate, given that we detected a similar offspring feeding frequency in both queens and workers. CONCLUSION Bumble bee queens have a unique influence on the development of the first offspring in the nest, which they rear, relative to worker-reared workers. We propose that bumble bee brood care has been shaped by a suite of evolutionary and ecological factors, which might include a maternal influence on traits that promote survival of incipient colonies.
Collapse
Affiliation(s)
| | - Kaleigh Fisher
- Department of Entomology, University of California, Riverside, CA, USA
| | - Blanca M Guillén
- Department of Entomology, University of California, Riverside, CA, USA
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, CA, USA.
| |
Collapse
|
12
|
Graystock P, Ng WH, Parks K, Tripodi AD, Muñiz PA, Fersch AA, Myers CR, McFrederick QS, McArt SH. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat Ecol Evol 2020; 4:1358-1367. [PMID: 32690902 PMCID: PMC7529964 DOI: 10.1038/s41559-020-1247-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Pollinator reductions can leave communities less diverse and potentially at increased risk of infectious diseases. Species-rich plant and bee communities have high species turnover, making the study of disease dynamics challenging. To address how temporal dynamics shape parasite prevalence in plant and bee communities, we screened >5,000 bees and flowers over an entire growing season for five common bee microparasites (Nosema ceranae, Nosema bombi, Crithidia bombi, Crithidia expoeki and neogregarines). Over 110 bee species and 89 flower species were screened, revealing that 42% of bee species (12.2% individual bees) and 70% of flower species (8.7% individual flowers) had at least one parasite in or on them, respectively. Some common flowers (for example, Lychnis flos-cuculi) harboured multiple parasite species whilst others (for example, Lythrum salicaria) had few. Significant temporal variation of parasite prevalence in bees was linked to bee diversity, bee and flower abundance and community composition. Specifically, we found that bee communities had the highest prevalence late in the season, when social bees (Bombus spp. and Apis mellifera) were dominant and bee diversity was lowest. Conversely, prevalence on flowers was lowest late in the season when floral abundance was highest. Thus turnover in the bee community impacted community-wide prevalence, and turnover in the plant community impacted when parasite transmission was likely to occur at flowers. These results imply that efforts to improve bee health will benefit from the promotion of high floral numbers to reduce transmission risk, maintaining bee diversity to dilute parasites and monitoring the abundance of dominant competent hosts.
Collapse
Affiliation(s)
- Peter Graystock
- Department of Entomology, Cornell University, Ithaca, NY, USA.
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK.
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| | - Wee Hao Ng
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Kyle Parks
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Paige A Muñiz
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Ashley A Fersch
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Christopher R Myers
- Center for Advanced Computing, and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Dharampal PS, Diaz-Garcia L, Haase MAB, Zalapa J, Currie CR, Hittinger CT, Steffan SA. Microbial Diversity Associated with the Pollen Stores of Captive-Bred Bumble Bee Colonies. INSECTS 2020; 11:insects11040250. [PMID: 32316296 PMCID: PMC7240610 DOI: 10.3390/insects11040250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
The pollen stores of bumble bees host diverse microbiota that influence overall colony fitness. Yet, the taxonomic identity of these symbiotic microbes is relatively unknown. In this descriptive study, we characterized the microbial community of pollen provisions within captive-bred bumble bee hives obtained from two commercial suppliers located in North America. Findings from 16S rRNA and ITS gene-based analyses revealed that pollen provisions from the captive-bred hives shared several microbial taxa that have been previously detected among wild populations. While diverse microbes across phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Ascomycota were detected in all commercial hives, significant differences were detected at finer-scale taxonomic resolution based on the supplier source. The causative agent of chalkbrood disease in honey bees, Ascosphaera apis, was detected in all hives obtained from one supplier source, although none of the hives showed symptoms of infection. The shared core microbiota across both commercial supplier sources consisted of two ubiquitous bee-associated groups, Lactobacillus and Wickerhamiella/Starmerella clade yeasts that potentially contribute to the beneficial function of the microbiome of bumble bee pollen provisions.
Collapse
Affiliation(s)
- Prarthana S. Dharampal
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Correspondence:
| | - Luis Diaz-Garcia
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA; (L.D.-G.); (J.Z.)
- Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Aguascalientes 20676, Mexico
| | - Max A. B. Haase
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.A.B.H.); (C.T.H.)
| | - Juan Zalapa
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA; (L.D.-G.); (J.Z.)
- USDA-ARS, Vegetable Crop Research Unit, Madison, WI 53706, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.A.B.H.); (C.T.H.)
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- USDA-ARS, Vegetable Crop Research Unit, Madison, WI 53706, USA
| |
Collapse
|