1
|
Narum SR, Horn R, Willis S, Koch I, Hess J. Genetic variation associated with adult migration timing in lineages of Steelhead and Chinook Salmon in the Columbia River. Evol Appl 2024; 17:e13626. [PMID: 38343781 PMCID: PMC10853649 DOI: 10.1111/eva.13626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 10/28/2024] Open
Abstract
With the discovery of a major effect region (GREB1L, ROCK1) for adult migration timing in genomes of both Chinook Salmon and Steelhead, several subsequent studies have investigated the effect size and distribution of early and late migration alleles among populations in the Columbia River. Here, we synthesize the results of these studies for the major lineages of Chinook Salmon and Steelhead that include highly distinct groups in the interior Columbia River that exhibit atypical life histories from most coastal lineage populations of these two species. Whole-genome studies with high marker density have provided extensive insight into SNPs most associated with adult migration timing, and suites of markers for each species have been genotyped in large numbers of individuals to further validate phenotypic effects. For Steelhead, the largest phenotypic effect sizes have been observed in the coastal lineage (36% of variation for passage timing at Bonneville Dam; 43% of variation for tributary arrival timing) compared to the inland lineage (7.5% of variation for passage timing at Bonneville Dam; 8.4% of variation for tributary arrival timing) that overwinter in freshwater prior to spawning. For Chinook Salmon, large effect sizes have been observed in all three lineages for multiple adult migration phenotypes (Coastal lineage: percentage of variation of 27.9% for passage timing at Bonneville Dam, 28.7% for arrival timing for spawning; Interior ocean type: percentage of variation of 47.6% for passage timing at Bonneville Dam, 39.6% for tributary arrival timing, 77.9% for arrival timing for spawning; Interior stream type: percentage of variation of 35.3% for passage at Bonneville Dam, 9.8% for tributary arrival timing, 4.7% for arrival timing for spawning). Together, these results have extended our understanding of genetic variation associated with life history diversity in distinct populations of the Columbia River, however, much research remains necessary to determine the causal mechanism for this major effect region on migration timing in these species.
Collapse
Affiliation(s)
- Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagerman Genetics LaboratoryHagermanIdahoUSA
| | - Rebekah Horn
- Columbia River Inter‐Tribal Fish CommissionHagerman Genetics LaboratoryHagermanIdahoUSA
| | - Stuart Willis
- Columbia River Inter‐Tribal Fish CommissionHagerman Genetics LaboratoryHagermanIdahoUSA
| | - Ilana Koch
- Columbia River Inter‐Tribal Fish CommissionHagerman Genetics LaboratoryHagermanIdahoUSA
| | - Jon Hess
- Columbia River Inter‐Tribal Fish CommissionPortlandOregonUSA
| |
Collapse
|
2
|
Waples RS, Ford MJ, Nichols K, Kardos M, Myers J, Thompson TQ, Anderson EC, Koch IJ, McKinney G, Miller MR, Naish K, Narum SR, O'Malley KG, Pearse DE, Pess GR, Quinn TP, Seamons TR, Spidle A, Warheit KI, Willis SC. Implications of Large-Effect Loci for Conservation: A Review and Case Study with Pacific Salmon. J Hered 2022; 113:121-144. [PMID: 35575083 DOI: 10.1093/jhered/esab069] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/07/2021] [Indexed: 11/13/2022] Open
Abstract
The increasing feasibility of assembling large genomic datasets for non-model species presents both opportunities and challenges for applied conservation and management. A popular theme in recent studies is the search for large-effect loci that explain substantial portions of phenotypic variance for a key trait(s). If such loci can be linked to adaptations, 2 important questions arise: 1) Should information from these loci be used to reconfigure conservation units (CUs), even if this conflicts with overall patterns of genetic differentiation? 2) How should this information be used in viability assessments of populations and larger CUs? In this review, we address these questions in the context of recent studies of Chinook salmon and steelhead (anadromous form of rainbow trout) that show strong associations between adult migration timing and specific alleles in one small genomic region. Based on the polygenic paradigm (most traits are controlled by many genes of small effect) and genetic data available at the time showing that early-migrating populations are most closely related to nearby late-migrating populations, adult migration differences in Pacific salmon and steelhead were considered to reflect diversity within CUs rather than separate CUs. Recent data, however, suggest that specific alleles are required for early migration, and that these alleles are lost in populations where conditions do not support early-migrating phenotypes. Contrasting determinations under the US Endangered Species Act and the State of California's equivalent legislation illustrate the complexities of incorporating genomics data into CU configuration decisions. Regardless how CUs are defined, viability assessments should consider that 1) early-migrating phenotypes experience disproportionate risks across large geographic areas, so it becomes important to identify early-migrating populations that can serve as reliable sources for these valuable genetic resources; and 2) genetic architecture, especially the existence of large-effect loci, can affect evolutionary potential and adaptability.
Collapse
Affiliation(s)
- Robin S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Michael J Ford
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Krista Nichols
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | | | - Jim Myers
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | | | - Eric C Anderson
- Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | - Ilana J Koch
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | - Garrett McKinney
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | | | - Kerry Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WAUSA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | | | - Devon E Pearse
- Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | - George R Pess
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WAUSA
| | - Todd R Seamons
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Adrian Spidle
- Northwest Indian Fisheries Commission, Olympia, WA, USA
| | | | - Stuart C Willis
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|