1
|
Xu T, Xu Z, Bai D, Wu F, Shang Y, Li M, Rong G, Gu L. Development and application of a cGPS 20K liquid-phase SNP microarray in Jiaji ducks. Poult Sci 2024; 104:104737. [PMID: 39729728 DOI: 10.1016/j.psj.2024.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024] Open
Abstract
In order to provide a low-cost, high efficient, and highly accurate tool for molecular breeding of Jiaji ducks, we constructed a cGPS(Genotyping by Pinpoint Sequencing of captured targets) 20 K liquid-phase microarray using resequencing data from this valuable poultry breed for the first time. The microarray contains 20,327 high-quality snp loci, mainly from the 30 Jiaji duck resequencing samples collected in this study, and some loci were supplemented from the 135 duck resequencing data from KUNMING INSTITUTE OF ZOOLOGY.CAS. This microarray showed excellent performance in two production tests. The microarray was used to genotype a population of 236 Jiaji ducks, and the genotyping data were then used for population structure analysis and genome-wide association studies (GWAS) of plumage color phenotypes. According to the population structure analysis, the population of Jiaji ducks could be divided into four subpopulations using genetic distance matrices. Using GWAS analysis, 38 significant SNP loci were identified within a region on chromosome 14 that contained 30 genes. Among them, EDNRB2 and VAMP7 were identified as strong candidate genes for the regulation of plumage color in Jiaji ducks. Two mutations upstream of EDNRB2 were identified as tightly linked to the colorless phenotype. In addition, two KASP markers were designed for the SNP loci associated with EDNRB2 (HIC_SCAFFOLD_14_14984620, HIC_SCAFFOLD_14_15016766). The KASP genotyping results showed strong correlations between different genotypes on the SNP locus HIC_SCAFFOLD_14_15016766 and the plumage phenotype. In conclusion, this independently designed microarray will be useful for large-scale genotyping and can lay the foundation for future screening of mutation loci and functional genes.
Collapse
Affiliation(s)
- Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China
| | - Zixin Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China; Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, PR China
| | - Dingping Bai
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, PR China
| | - Fanghu Wu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China; College of Animal Science, Henan University of Science and Technology, Henan, Luoyang 471900, PR China
| | - Yuanyuan Shang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China; College of Animal Science, Henan University of Science and Technology, Henan, Luoyang 471900, PR China
| | - Mao Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China
| | - Guang Rong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, Haikou 571100, PR China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan, Haikou 571101, PR China.
| |
Collapse
|
2
|
Hooper DM, McDiarmid CS, Powers MJ, Justyn NM, Kučka M, Hart NS, Hill GE, Andolfatto P, Chan YF, Griffith SC. Spread of yellow-bill-color alleles favored by selection in the long-tailed finch hybrid system. Curr Biol 2024; 34:5444-5456.e8. [PMID: 39500321 DOI: 10.1016/j.cub.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Carotenoid pigments produce the yellow and red colors of birds and other vertebrates. Despite their importance in social signaling and sexual selection, our understanding of how carotenoid ornamentation evolves in nature remains limited. Here, we examine the long-tailed finch Poephila acuticauda, an Australian songbird with a yellow-billed western subspecies acuticauda and a red-billed eastern subspecies hecki, which hybridize where their ranges overlap. We found that yellow bills can be explained by the loss of C(4)-oxidation, thus preventing yellow dietary carotenoids from being converted to red. Combining linked-read genomic sequencing and reflectance spectrophotometry measurements of bill color collected from wild-sampled finches and laboratory crosses, we identify four loci that together explain 53% of variance in this trait. The two loci of largest effect contain the genes CYP2J19, an essential enzyme for producing red carotenoids, and TTC39B, an enhancer of carotenoid metabolism. A paucity of protein-coding changes and an enrichment of associated upstream variants suggest that the loss of C(4)-oxidation results from cis-regulatory evolution. Evolutionary genealogy reconstruction indicates that the red-billed phenotype is ancestral and that yellow alleles at CYP2J19 and TTC39B first arose and fixed in acuticauda approximately 100 kya. Yellow alleles subsequently introgressed into hecki less than 5 kya. Across all color loci, acuticauda-derived variants show evidence of selective sweeps, implying that yellow bill coloration has been favored by natural selection. Our study illustrates how evolutionary transitions between yellow and red coloration can be achieved by successive selective events acting on regulatory changes at a few interacting genes.
Collapse
Affiliation(s)
- Daniel M Hooper
- Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA; School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia.
| | - Callum S McDiarmid
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| | - Matthew J Powers
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | | | - Marek Kučka
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, the Netherlands
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW 2213, Australia
| |
Collapse
|
3
|
Hogan BG, Stoddard MC. Hyperspectral imaging in animal coloration research: A user-friendly pipeline for image generation, analysis, and integration with 3D modeling. PLoS Biol 2024; 22:e3002867. [PMID: 39625994 PMCID: PMC11614258 DOI: 10.1371/journal.pbio.3002867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Hyperspectral imaging-a technique that combines the high spectral resolution of spectrophotometry with the high spatial resolution of photography-holds great promise for the study of animal coloration. However, applications of hyperspectral imaging to questions about the ecology and evolution of animal color remain relatively rare. The approach can be expensive and unwieldy, and we lack user-friendly pipelines for capturing and analyzing hyperspectral data in the context of animal color. Fortunately, costs are decreasing and hyperspectral imagers are improving, particularly in their sensitivity to wavelengths (including ultraviolet) visible to diverse animal species. To highlight the potential of hyperspectral imaging for animal coloration studies, we developed a pipeline for capturing, sampling, and analyzing hyperspectral data (here, in the 325 nm to 700 nm range) using avian museum specimens. Specifically, we used the pipeline to characterize the plumage colors of the King bird-of-paradise (Cicinnurus regius), Magnificent bird-of-paradise (C. magnificus), and their putative hybrid, the King of Holland's bird-of-paradise (C. magnificus x C. regius). We also combined hyperspectral data with 3D digital models to supplement hyperspectral images of each specimen with 3D shape information. Using visual system-independent methods, we found that many plumage patches on the hybrid King of Holland's bird-of-paradise are-to varying degrees-intermediate relative to those of the parent species. This was true of both pigmentary and structurally colored plumage patches. Using visual system-dependent methods, we showed that only some of the differences in plumage patches among the hybrid and its parent species would be perceivable by birds. Hyperspectral imaging is poised to become the gold standard for many animal coloration applications: comprehensive reflectance data-across the entire surface of an animal specimen-can be obtained in a matter of minutes. Our pipeline provides a practical and flexible roadmap for incorporating hyperspectral imaging into future studies of animal color.
Collapse
Affiliation(s)
- Benedict G. Hogan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
4
|
Dunn PO, Sly ND, Freeman-Gallant CR, Henschen AE, Bossu CM, Ruegg KC, Minias P, Whittingham LA. Sexually selected differences in warbler plumage are related to a putative inversion on the Z chromosome. Mol Ecol 2024; 33:e17525. [PMID: 39268700 DOI: 10.1111/mec.17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.
Collapse
Affiliation(s)
- Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Amberleigh E Henschen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Linda A Whittingham
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Warner BH, Weiss KCB, Allen ML. Color aberration in malachite kingfishers: Insights from community science observations in Queen Elizabeth National Park, Uganda. Ecol Evol 2024; 14:e11717. [PMID: 38979001 PMCID: PMC11228083 DOI: 10.1002/ece3.11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Color aberrations in birds corresponds with important ecological functions, including thermoregulation and physiological impacts, camouflage and increased predation, and social interactions with conspecifics. Color aberrations in birds have been reported frequently in the scientific literature, but aberrations in many species remain undocumented or understudied. We investigated records of leucism in malachite kingfishers (Corythornis cristatus) from observations of community scientists on iNaturalist and eBird in Uganda. Leucistic kingfishers were only observed within the Queen Elizabeth National Park (QENP), Uganda. When considering all observations of malachite kingfishers that included photographs within the QENP, leucistic individuals accounted for 13.0% and 10.4% of total malachite kingfisher observations within the study area from iNaturalist and eBird, respectively. Leucistic observations were recorded from September 2015 through February 2017, making up 60.0% and 68.2% of observations of malachite kingfishers within the study area from iNaturalist and eBird during that time, respectively. The localized and short documentation period suggests observations represent a single individual, while the high observation rate likely corresponds with collection bias due to the novelty of the individual. Our findings help to better understand the ecological importance and potential consequences for color-aberrant individuals, although color aberration did not appear to inhibit our subject's ability to find a mate. Our work also highlights how participatory science can promote the documentation of color-aberrant individuals in wild populations, although it poses challenges when trying to estimate abundance.
Collapse
Affiliation(s)
- Bethany H. Warner
- Animal Sciences, College of Agricultural, Consumer, and Environmental ScienceUniversity of IllinoisChampaignIllinoisUSA
| | | | - Maximilian L. Allen
- Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignIllinoisUSA
| |
Collapse
|
6
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
7
|
Ke F, van der Zwan H, Poon ESK, Cloutier A, Van den Abeele D, van der Sluis R, Sin SYW. Convergent evolution of parrot plumage coloration. PNAS NEXUS 2024; 3:pgae107. [PMID: 38528953 PMCID: PMC10962230 DOI: 10.1093/pnasnexus/pgae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
Parrots have remarkable plumage coloration that result in part from a unique ability to produce pigments called psittacofulvins that yield yellow to red feather colors. Little is known about the evolution of psittacofulvin-based pigmentation. Widespread color mutations of captive-bred parrots provide perfect opportunities to study the genetic basis of this trait. An earlier study on blue budgerigars, which do not possess psittacofulvins, reveals the involvement of an uncharacterized polyketide synthase (MuPKS) in yellow psittacofulvin synthesis. The blue phenotype had repeatedly appeared in different parrot species, similar to independent experimental replications allowing the study of convergent evolution and molecular mechanism of psittacofulvin-based pigmentation. Here, we investigated the genetic basis of the blue phenotypes in two species of Agapornis parrots, Fischer's lovebird (A. fischeri) and Yellow-collared lovebird (A. personatus). Using whole-genome data, we identified a single genomic region with size <2 Mb to be strongly associated with the color difference between blue and wild-type (WT) birds in both species. Surprisingly, we discovered that the mutation associated with the blue Agapornis phenotype was identical to the previously described substitution causing the functional change of MuPKS in budgerigars. Together with the evidence of shared blue-associated haplotypes and signatures of a selective sweep in this genomic region in both species, we demonstrated both de novo mutation and interspecific introgression play a role in the evolution of this trait in different Agapornis species. The convergent substitution in the same gene in both lovebirds and budgerigars also indicates a strong evolutionary constraint on psittacofulvin-based coloration.
Collapse
Affiliation(s)
- Fushi Ke
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Henriëtte van der Zwan
- Focus Area for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alison Cloutier
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Sin SYW, Ke F, Chen G, Huang PY, Enbody ED, Karubian J, Webster MS, Edwards SV. Genetic Basis and Evolution of Structural Color Polymorphism in an Australian Songbird. Mol Biol Evol 2024; 41:msae046. [PMID: 38415852 PMCID: PMC10962638 DOI: 10.1093/molbev/msae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Island organisms often evolve phenotypes divergent from their mainland counterparts, providing a useful system for studying adaptation under differential selection. In the white-winged fairywren (Malurus leucopterus), subspecies on two islands have a black nuptial plumage whereas the subspecies on the Australian mainland has a blue nuptial plumage. The black subspecies have a feather nanostructure that could in principle produce a blue structural color, suggesting a blue ancestor. An earlier study proposed independent evolution of melanism on the islands based on the history of subspecies divergence. However, the genetic basis of melanism and the origin of color differentiation in this group are still unknown. Here, we used whole-genome resequencing to investigate the genetic basis of melanism by comparing the blue and black M. leucopterus subspecies to identify highly divergent genomic regions. We identified a well-known pigmentation gene ASIP and four candidate genes that may contribute to feather nanostructure development. Contrary to the prediction of convergent evolution of island melanism, we detected signatures of a selective sweep in genomic regions containing ASIP and SCUBE2 not in the black subspecies but in the blue subspecies, which possesses many derived SNPs in these regions, suggesting that the mainland subspecies has re-evolved a blue plumage from a black ancestor. This proposed re-evolution was likely driven by a preexisting female preference. Our findings provide new insight into the evolution of plumage coloration in island versus continental populations, and, importantly, we identify candidate genes that likely play roles in the development and evolution of feather structural coloration.
Collapse
Affiliation(s)
- Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fushi Ke
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Guoling Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Pei-Yu Huang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Erik D Enbody
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Michael S Webster
- Cornell Lab of Ornithology and Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Ghosh Roy S, Bakhrat A, Abdu M, Afonso S, Pereira P, Carneiro M, Abdu U. Mutations in SLC45A2 lead to loss of melanin in parrot feathers. G3 (BETHESDA, MD.) 2024; 14:jkad254. [PMID: 37943814 PMCID: PMC10849330 DOI: 10.1093/g3journal/jkad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.
Collapse
Affiliation(s)
- Shatadru Ghosh Roy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Moty Abdu
- ST Lab Hashita 240, Sede Tzvi 85340, Israel
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
10
|
Liu D, Tong Y, Dong R, Ye X, Yu X. A Breeding Plumage in the Making: The Unique Process of Plumage Coloration in the Crested Ibis in Terms of Chemical Composition and Sex Hormones. Animals (Basel) 2023; 13:3820. [PMID: 38136856 PMCID: PMC10740519 DOI: 10.3390/ani13243820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Crested Ibis (Nipponia nippon) has long fascinated ornithologists with its enigmatic plumage color change. After more than a century of curiosity, the mystery was finally unraveled in the 1970s, unveiling the mechanism behind this remarkable transformation. Unlike other bird species, the Crested Ibis achieves its nuptial plumage coloration through a unique daubing behavior. After a water-bathing, it applies a sticky black substance secreted by a patch of skin in the neck and throat region. However, the chemical components of this black substance have not been studied in detail until now. To address this issue, we conducted a study to detect the components of the black substance and explore the relationship between sex hormone levels and the secretion of the black substance. We used enzyme-linked immunosorbent assay (ELISA) to measure the monthly changes in steroid hormone levels (estradiol E2, testosterone T, and progesterone PROG) levels in feces. We also analyzed the correlation between sex hormone levels and daubing behavior. The results showed that the sex hormone levels are closely related to the secretion and application of the black substance. In addition, we qualitatively analyzed the chemical components of the black substance using gas chromatography-mass spectrometry (GC-MS), uncovering the presence of 117 distinct chemical components. We assume that the black coloration results from the polymerization of selected chemical constituents among these components. These findings provide a groundwork for further exploration into the biological significance of the black substance. Overall, our study detected components in the black substance and studied how sex hormone levels relate to its secretion. Understanding the hormone effects on coloration helps in precise habitat management, like wetland preservation, crucial for Crested Ibis survival. Implementing hormone-boosting measures during breeding seasons enhances reproduction and health, vital for their conservation.
Collapse
Affiliation(s)
- Danni Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (D.L.); (Y.T.); (X.Y.)
| | - Yiwei Tong
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (D.L.); (Y.T.); (X.Y.)
| | - Rong Dong
- Research Center for Qinling Giant Panda, Shaanxi Academy of Foresty, Xi’an 710082, China;
| | - Xinping Ye
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (D.L.); (Y.T.); (X.Y.)
- Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi’an 710119, China
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (D.L.); (Y.T.); (X.Y.)
- Shaanxi Provincial Field Observation and Research Station for Golden Monkey, Giant Panda and Biodiversity, Xi’an 723400, China
| |
Collapse
|
11
|
Hill GE, Weaver RJ, Powers MJ. Carotenoid ornaments and the spandrels of physiology: a critique of theory to explain condition dependency. Biol Rev Camb Philos Soc 2023; 98:2320-2332. [PMID: 37563787 DOI: 10.1111/brv.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Even as numerous studies have documented that the red and yellow coloration resulting from the deposition of carotenoids serves as an honest signal of condition, the evolution of condition dependency is contentious. The resource trade-off hypothesis proposes that condition-dependent honest signalling relies on a trade-off of resources between ornamental display and body maintenance. By this model, condition dependency can evolve through selection for a re-allocation of resources to promote ornament expression. By contrast, the index hypothesis proposes that selection focuses mate choice on carotenoid coloration that is inherently condition dependent because production of such coloration is inexorably tied to vital cellular processes. These hypotheses for the origins of condition dependency make strongly contrasting and testable predictions about ornamental traits. To assess these two models, we review the mechanisms of production of carotenoids, patterns of condition dependency involving different classes of carotenoids, and patterns of behavioural responses to carotenoid coloration. We review evidence that traits can be condition dependent without the influence of sexual selection and that novel traits can show condition-dependent expression as soon as they appear in a population, without the possibility of sexual selection. We conclude by highlighting new opportunities for studying condition-dependent signalling made possible by genetic manipulation and expression of ornamental traits in synthetic biological systems.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Sciences, 120 W. Samford Avenue, Auburn University, Auburn, AL, 36849, USA
| | - Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, 2200 Osborne Drive, Iowa State University, Ames, IA, USA
| | - Matthew J Powers
- Department of Integrative Biology, 4575 SW Research Way, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
12
|
Dickinson E, Young MW, Tanis D, Granatosky MC. Patterns and Factors Influencing Parrot (Order: Psittaciformes) Success in Establishing Thriving Naturalized Populations within the Contiguous United States. Animals (Basel) 2023; 13:2101. [PMID: 37443899 DOI: 10.3390/ani13132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Parrots (Order: Psittaciformes) represent one of the most striking and ecomorphologically diverse avian clades, spanning more than two orders of magnitude in body size with populations occupying six continents. The worldwide diaspora of parrots is largely due to the pet trade, driven by human desire for bright, colorful, and intelligent animals as companions. Some introduced species have aptly inserted themselves into the local ecosystem and established successful breeding colonies all around the globe. Notably, the United States is home to several thriving populations of introduced species including red-masked parakeets (Psittacara erythrogenys), monk parakeets (Myiopsitta monachus), nanday conures (Aratinga nenday), and red-crowned amazons (Amazona viridigenalis). Their incredible success globally begs the question as to how these birds adapt so readily to novel environments. In this commentary, we trace parrots through evolutionary history, contextualize existent naturalized parrot populations within the contiguous United States, and provide a phylogenetic regression analysis of body mass and brain size based on success in establishing breeding populations. The propensity for a parrot species to become established appears to be phylogenetically driven. Notably, parrots in the family Cacatuidae and Neotropical Pyrrhua appear to be poor at establishing themselves in the United States once released. Although brain size among Psittaciformes did not show a significant impact on successful breeding in the continental United States, we propose that the success of parrots can be attributed to their charismatic nature, significant intelligence relative to other avian lineages, and behavioral flexibility.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Melody W Young
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Daniel Tanis
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael C Granatosky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
13
|
Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev Camb Philos Soc 2023; 98:540-566. [PMID: 36424880 DOI: 10.1111/brv.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.
Collapse
Affiliation(s)
- Ryan S Terrill
- Moore Laboratory of Zoology, Occidental College, 1600 Campus rd., Los Angeles, CA, 90042, USA
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA
| |
Collapse
|
14
|
Suh YH, Ligon RA, Rohwer VG. Revisiting the Baltimore-Bullock's Oriole hybrid zone reveals changing plumage colour in Bullock's Orioles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221211. [PMID: 36533198 PMCID: PMC9748506 DOI: 10.1098/rsos.221211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Hybrid zones are dynamic areas where populations of two or more interbreeding species may change through an influx of novel genetic material resulting from hybridization or selection on standing genetic variation. Documenting changes in populations through time, however, is challenging because repeated samples are often missing or because long-term storage can affect trait morphologies, especially colour traits that may fade through time. We document a change in carotenoid-based orange breast feathers of Bullock's Orioles (Icterus bullockii) from the Great Plains hybrid zone, USA. Contemporary Bullock's Orioles are more orange than historic individuals from the same location sampled approximately 60 years ago. Spectrophotometry revealed that contemporary Bullock's Orioles resemble orange colour profiles of Baltimore Orioles (I. galbula), the species with which they hybridize. Fading or changes in diet hypotheses do not appear to explain the shift in colour we report for Bullock's Orioles. We propose that these changes in colour are facilitated through introgression with Baltimore Orioles, and favoured by females that choose brighter, more orange males. Our study highlights the long memory of natural history collections and how they offer new insights to the dynamic roll of hybrid zones in trait evolution between interacting species.
Collapse
Affiliation(s)
- Young Ha Suh
- Department of Ecology and Evolutionary Biology, Cornell University Museum of Vertebrates, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | | | - Vanya G. Rohwer
- Department of Ecology and Evolutionary Biology, Cornell University Museum of Vertebrates, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Gudowska A, Janas K, Wieczorek J, Woznicka O, Płonka PM, Drobniak SM. Canalised and plastic components of melanin-based colouration: a diet-manipulation experiment in house sparrows. Sci Rep 2022; 12:18484. [PMID: 36323747 PMCID: PMC9630266 DOI: 10.1038/s41598-022-21811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Whether melanin-based plumage colouration accurately reflects a bird's quality is still controversial. To better understand potential mechanisms behind the observed variation in plumage colouration, we shifted our attention from a high-level expression of colour to low-level physiological phenomena by targeting the microstructure and pigment content of the feather. In a well-studied model system, the house sparrow (Passer domesticus), we combined an experimental manipulation of birds' physiological condition and availability of resources that are key to the production of the studied colouration (phenylalanine and tyrosine (PT). We found that feathers from sparrows fed with the control diet had noticeably lower values of brightness, suggesting a higher quality of the ornamental "blackness" in comparison to those sampled from birds fed with a PT-reduced diet. Electron paramagnetic resonance (EPR) spectroscopy detected higher melanin concentrations in samples from the control than the PT-reduced group. Our multi-level analysis excluded mechanisms such as barbule density and melanosomes' distribution, clearly pointing to the finest-level proxy of colour: the concentration of melanin in melanosomes themselves. Despite melanins being manufactured by birds endogenously, the efficiency of melanogenesis can be noticeably limited by diet. As a result, the birds' plumage colouration is affected, which may entail consequences in social signalling.
Collapse
Affiliation(s)
- Agnieszka Gudowska
- grid.5522.00000 0001 2162 9631Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland ,grid.413454.30000 0001 1958 0162Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Janas
- grid.413454.30000 0001 1958 0162Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Wieczorek
- grid.5522.00000 0001 2162 9631Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Woznicka
- grid.5522.00000 0001 2162 9631Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Przemysław M. Płonka
- grid.5522.00000 0001 2162 9631Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Szymon M. Drobniak
- grid.5522.00000 0001 2162 9631Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland ,grid.1005.40000 0004 4902 0432Ecology & Evolution Research Centre; School of Biological, Environmental & Earth Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
Toomey MB, Marques CI, Araújo PM, Huang D, Zhong S, Liu Y, Schreiner GD, Myers CA, Pereira P, Afonso S, Andrade P, Gazda MA, Lopes RJ, Viegas I, Koch RE, Haynes ME, Smith DJ, Ogawa Y, Murphy D, Kopec RE, Parichy DM, Carneiro M, Corbo JC. A mechanism for red coloration in vertebrates. Curr Biol 2022; 32:4201-4214.e12. [PMID: 36049480 PMCID: PMC9588406 DOI: 10.1016/j.cub.2022.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Red coloration is a salient feature of the natural world. Many vertebrates produce red color by converting dietary yellow carotenoids into red ketocarotenoids via an unknown mechanism. Here, we show that two enzymes, cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), are sufficient to catalyze this conversion. In birds, both enzymes are expressed at the sites of ketocarotenoid biosynthesis (feather follicles and red cone photoreceptors), and genetic evidence implicates these enzymes in yellow/red color variation in feathers. In fish, the homologs of CYP2J19 and BDH1L are required for ketocarotenoid production, and we show that these enzymes are sufficient to produce ketocarotenoids in cell culture and when ectopically expressed in fish skin. Finally, we demonstrate that the red-cone-enriched tetratricopeptide repeat protein 39B (TTC39B) enhances ketocarotenoid production when co-expressed with CYP2J19 and BDH1L. The discovery of this mechanism of ketocarotenoid biosynthesis has major implications for understanding the evolution of color diversity in vertebrates.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA.
| | - Cristiana I Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro M Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Coimbra, Portugal
| | - Delai Huang
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Siqiong Zhong
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gretchen D Schreiner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Małgorzata A Gazda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal
| | - Ricardo J Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
| | - Ivan Viegas
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Rebecca E Koch
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Maureen E Haynes
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Dustin J Smith
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel E Kopec
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - David M Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
17
|
Miller AE, Hogan BG, Stoddard MC. Color in motion: Generating 3-dimensional multispectral models to study dynamic visual signals in animals. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analyzing color and pattern in the context of motion is a central and ongoing challenge in the quantification of animal coloration. Many animal signals are spatially and temporally variable, but traditional methods fail to capture this dynamism because they use stationary animals in fixed positions. To investigate dynamic visual displays and to understand the evolutionary forces that shape dynamic colorful signals, we require cross-disciplinary methods that combine measurements of color, pattern, 3-dimensional (3D) shape, and motion. Here, we outline a workflow for producing digital 3D models with objective color information from museum specimens with diffuse colors. The workflow combines multispectral imaging with photogrammetry to produce digital 3D models that contain calibrated ultraviolet (UV) and human-visible (VIS) color information and incorporate pattern and 3D shape. These “3D multispectral models” can subsequently be animated to incorporate both signaler and receiver movement and analyzed in silico using a variety of receiver-specific visual models. This approach—which can be flexibly integrated with other tools and methods—represents a key first step toward analyzing visual signals in motion. We describe several timely applications of this workflow and next steps for multispectral 3D photogrammetry and animation techniques.
Collapse
|
18
|
Ng CS, Lai CK, Ke HM, Lee HH, Chen CF, Tang PC, Cheng HC, Lu MJ, Li WH, Tsai IJ. Genome Assembly and Evolutionary Analysis of the Mandarin Duck Aix galericulata Reveal Strong Genome Conservation among Ducks. Genome Biol Evol 2022; 14:evac083. [PMID: 35640266 PMCID: PMC9189614 DOI: 10.1093/gbe/evac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The mandarin duck, Aix galericulata, is popular in East Asian cultures and displays exaggerated sexual dimorphism, especially in feather traits during breeding seasons. We generated and annotated the first mandarin duck de novo assembly, which was 1.08 Gb in size and encoded 16,615 proteins. Using a phylogenomic approach calibrated with fossils and molecular divergences, we inferred that the last common ancestor of ducks occurred 13.3-26.7 Ma. The majority of the mandarin duck genome repetitive sequences belonged to the chicken repeat 1 (CR1) retroposon CR1-J2_Pass, which underwent a duck lineage-specific burst. Synteny analyses among ducks revealed infrequent chromosomal rearrangements in which breaks were enriched in LINE retrotransposons and DNA transposons. The calculation of the dN/dS ratio revealed that the majority of duck genes were under strong purifying selection. The expanded gene families in the mandarin duck are primarily involved in olfactory perception as well as the development and morphogenesis of feather and branching structures. This new reference genome will improve our understanding of the morphological and physiological characteristics of ducks and provide a valuable resource for functional genomics studies to investigate the feather traits of the mandarin duck.
Collapse
Affiliation(s)
- Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Hsu-Chen Cheng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Meiyeh J. Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsiung Li
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Illinois, USA
| | | |
Collapse
|
19
|
Hanly JJ, Livraghi L, Heryanto C, McMillan WO, Jiggins CD, Gilbert LE, Martin A. A large deletion at the cortex locus eliminates butterfly wing patterning. G3 GENES|GENOMES|GENETICS 2022; 12:6517782. [PMID: 35099556 PMCID: PMC8982378 DOI: 10.1093/g3journal/jkac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
As the genetic basis of natural and domesticated variation has been described in recent years, a number of hotspot genes have been repeatedly identified as the targets of selection, Heliconius butterflies display a spectacular diversity of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here, we sought to identify the mechanism behind an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78-kb deletion at the cortex wing patterning locus, a gene which has been associated with wing pattern evolution in H. melpomene and 10 divergent lepidopteran species. This deletion is undetected among 458 wild Heliconius genomes samples, and its dosage explains both homozygous and heterozygous ivory phenotypes found in captivity. The deletion spans a large 5′ region of the cortex gene that includes a facultative 5′UTR exon detected in larval wing disk transcriptomes. CRISPR mutagenesis of this exon replicates the wing phenotypes from coding knock-outs of cortex, consistent with a functional role of ivory-deleted elements in establishing scale color fate. Population demographics reveal that the stock giving rise to the ivory mutant has a mixed origin from across the wild range of H. melpomene, and supports a scenario where the ivory mutation occurred after the introduction of cortex haplotypes from Ecuador. Homozygotes for the ivory deletion are inviable while heterozygotes are the targets of artificial selection, joining 40 other examples of allelic variants that provide heterozygous advantage in animal populations under artificial selection by fanciers and breeders. Finally, our results highlight the promise of autozygosity and association mapping for identifying the genetic basis of aberrant mutations in captive insect populations.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
| | - Luca Livraghi
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Christa Heryanto
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
20
|
Molecular parallelism in signaling function across different sexually selected ornaments in a warbler. Proc Natl Acad Sci U S A 2022; 119:2120482119. [PMID: 35165176 PMCID: PMC8872772 DOI: 10.1073/pnas.2120482119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Extravagant ornaments are thought to signal male quality to females choosing mates, but the evidence linking ornament size to male quality is controversial, particularly in cases in which females prefer different ornaments in different populations. Here, we use whole-genome sequencing and transcriptomics to determine the genetic basis of ornament size in two populations of a widespread warbler, the common yellowthroat (Geothlypis trichas). Within a single subspecies, females in a Wisconsin population prefer males with larger black masks as mates, while females in a New York population prefer males with larger yellow bibs. Despite being produced by different pigments in different patches on the body, the size of the ornament preferred by females in each population was linked to numerous genes that function in many of the same core aspects of male quality (e.g., immunity and oxidative balance). These relationships confirm recent hypotheses linking the signaling function of ornaments to male quality. Furthermore, the parallelism in signaling function provides the flexibility for different types of ornaments to be used as signals of similar aspects of male quality. This could facilitate switches in female preference for different ornaments, a potentially important step in the early stages of divergence among populations.
Collapse
|
21
|
Robles-Bello SM, Vázquez-López M, Ramírez-Barrera SM, Terrones-Ramírez AK, Hernández-Baños BE. Drivers of phenotypic divergence in a Mesoamerican highland bird. PeerJ 2022; 10:e12901. [PMID: 35198262 PMCID: PMC8860067 DOI: 10.7717/peerj.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Animals derive their coloration from a variety of pigments as well as non-pigmentary structural features. One of the most widespread types of pigments are carotenoids, which are used by all invertebrate taxa and most vertebrate orders to generate red, pink, orange and yellow coloration. Despite their widespread use by diverse animal groups, animals obligately obtain carotenoid pigments from diet. Carotenoid-based coloration is therefore modulated by evolutionary and ecological processes that affect the acquisition and deposition of these pigments into tegumentary structures. The Flame-colored Tanager (Piranga bidentata) is a highland songbird in the cardinal family (Cardinalidae) that is distributed from Mexican sierras through Central America up to western Panama. While female plumage throughout its entire range is predominantly yellow, males exhibit a noticeable split in ventral plumage color, which is bright orange on the West slope and the Tres Marias Islands and blood red in Eastern Mexico and Central America. We used Multiple Regression on Matrices (MRM) to evaluate the relative contributions of geographic distance, climate and genetic distance on color divergence and body differences between geographically disjunct populations. We found that differentiation in carotenoid plumage coloration was mainly explained by rainfall differences between disjunct populations, whereas body size differences was best explained by variation in the annual mean temperature and temperature of coldest quarter. These results indicate that climate is a strong driver of phenotypic divergence in Piranga bidentata.
Collapse
Affiliation(s)
- Sahid M. Robles-Bello
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, Mexico
| | - Melisa Vázquez-López
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Sandra M. Ramírez-Barrera
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Alondra K. Terrones-Ramírez
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Blanca E. Hernández-Baños
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
22
|
Thompson CF, Hodges KE, Mortimer NT, Vrailas-Mortimer AD, Sakaluk SK, Hauber ME. Avian eggshell coloration predicts shell-matrix protoporphyrin content. CAN J ZOOL 2022; 100:77-81. [PMID: 35185156 PMCID: PMC8855982 DOI: 10.1139/cjz-2021-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Avian eggshell pigmentation may provide information about a female's physiological condition, in particular her state of oxidative balance. Previously we found that female house wrens (Troglodytes aedon Vieillot, 1809) with lighter, less-maculated, and redder ground-colored shells were older and produced heavier offspring than females laying darker, browner eggs. The strong pro-oxidant protoporphyrin is responsible for this species' eggshell pigmentation, so differences in pigmentary coloration may be related to eggshell protoporphyrin content and reflect female oxidative balance and condition during egg-formation. Therefore, we tested the assumption that egg-surface coloration is related to the amount of protoporphyrin in the shell matrix. We analyzed digital photographs of eggs to determine maculation coverage as a measure of the overall ground coloration of the egg and its red-, green-, and blue-channel pixel values. Pigments were then extracted from these same eggs and analyzed using high-performance liquid chromatography. There was a strong, positive relationship between eggshell redness and protoporphyrin content of eggshells, but no relationship between percent maculation and protoporphyrin content. Thus, when older, larger females deposit more protoporphyrin in their eggshells, this may reflect a tolerance for high levels of circulating protoporphyrin or an effective mechanism for off-loading protoporphyrin into the eggshell matrix.
Collapse
Affiliation(s)
- Charles F Thompson
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kara E Hodges
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | | | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
23
|
Toomey MB, Smith DJ, Gonzales DM, McGraw KJ. Methods for extracting and analyzing carotenoids from bird feathers. Methods Enzymol 2022; 670:459-497. [DOI: 10.1016/bs.mie.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Nordén KK, Eliason CM, Stoddard MC. Evolution of brilliant iridescent feather nanostructures. eLife 2021; 10:e71179. [PMID: 34930526 PMCID: PMC8691833 DOI: 10.7554/elife.71179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
The brilliant iridescent plumage of birds creates some of the most stunning color displays known in the natural world. Iridescent plumage colors are produced by nanostructures in feathers and have evolved in diverse birds. The building blocks of these structures-melanosomes (melanin-filled organelles)-come in a variety of forms, yet how these different forms contribute to color production across birds remains unclear. Here, we leverage evolutionary analyses, optical simulations, and reflectance spectrophotometry to uncover general principles that govern the production of brilliant iridescence. We find that a key feature that unites all melanosome forms in brilliant iridescent structures is thin melanin layers. Birds have achieved this in multiple ways: by decreasing the size of the melanosome directly, by hollowing out the interior, or by flattening the melanosome into a platelet. The evolution of thin melanin layers unlocks color-producing possibilities, more than doubling the range of colors that can be produced with a thick melanin layer and simultaneously increasing brightness. We discuss the implications of these findings for the evolution of iridescent structures in birds and propose two evolutionary paths to brilliant iridescence.
Collapse
Affiliation(s)
- Klara Katarina Nordén
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural HistoryChicagoUnited States
| | - Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
25
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
26
|
Davis SN, Clarke JA. Estimating the distribution of carotenoid coloration in skin and integumentary structures of birds and extinct dinosaurs. Evolution 2021; 76:42-57. [PMID: 34719783 DOI: 10.1111/evo.14393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Carotenoids are pigments responsible for most bright yellow, red, and orange hues in birds. Their distribution has been investigated in avian plumage, but the evolution of their expression in skin and other integumentary structures has not been approached in detail. Here, we investigate the expression of carotenoid-consistent coloration across tissue types in all extant, nonpasserine species (n = 4022) and archelosaur outgroups in a phylogenetic framework. We collect dietary data for a subset of birds and investigate how dietary carotenoid intake may relate to carotenoid expression in various tissues. We find that carotenoid-consistent expression in skin or nonplumage keratin has a 50% probability of being present in the most recent common ancestor of Archosauria. Skin expression has a similar probability at the base of the avian crown clade, but plumage expression is unambiguously absent in that ancestor and shows hundreds of independent gains within nonpasserine neognaths, consistent with previous studies. Although our data do not support a strict sequence of tissue expression in nonpasserine birds, we find support that expression of carotenoid-consistent color in nonplumage integument structures might evolve in a correlated manner and feathers are rarely the only region of expression. Taxa with diets high in carotenoid content also show expression in more body regions and tissue types. Our results may inform targeted assays for carotenoids in tissues other than feathers, and expectations of these pigments in nonavian dinosaurs. In extinct groups, bare-skin regions and the rhamphotheca, especially in species with diets rich in plants, may express these pigments, which are not expected in feathers or feather homologues.
Collapse
Affiliation(s)
- Sarah N Davis
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, 78712.,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
27
|
Enbody ED, Sprehn CG, Abzhanov A, Bi H, Dobreva MP, Osborne OG, Rubin CJ, Grant PR, Grant BR, Andersson L. A multispecies BCO2 beak color polymorphism in the Darwin's finch radiation. Curr Biol 2021; 31:5597-5604.e7. [PMID: 34687609 DOI: 10.1016/j.cub.2021.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Carotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles,1 but generally little is known about the factors affecting their maintenance in populations.2 We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin's finches. Beaks are pink or yellow, and yellow is recessive.3 Here we show that the polymorphism arose in the Galápagos half a million years ago through a mutation associated with regulatory change in the BCO2 gene and is shared by 14 descendant species. The polymorphism is probably a balanced polymorphism, maintained by ecological selection associated with survival and diet. In cactus finches, the frequency of the yellow genotype is correlated with cactus fruit abundance and greater hatching success and may be altered by introgressive hybridization. Polymorphisms that are hidden as adults, as here, may be far more common than is currently recognized, and contribute to diversification in ways that are yet to be discovered.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Huijuan Bi
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mariya P Dobreva
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Owen G Osborne
- School of Natural Sciences, Bangor University, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UK
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| |
Collapse
|
28
|
López Umaña LI, Mora JM. An Unusual Aberrant Colored Keel-billed Toucan (Ramphastos sulfuratus, Ramphastidae) in Northern Costa Rica. CARIBB J SCI 2021. [DOI: 10.18475/cjos.v51i2.a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lucía I. López Umaña
- Carrera de Tecnología de Alimentos, Sede Atenas, Universidad Técnica Nacional, Costa Rica, https://orcid.org/0000-0002-0120-7981
| | - José Manuel Mora
- Carrera de Gestión Ecoturística, Sede Central, Universidad Técnica Nacional, Costa Rica, https://orcid.org/0000-0002-1200-1495
| |
Collapse
|
29
|
vonHoldt BM, Bailey E, Eizirik E. Animal Pigmentation Genetics in Ecology, Evolution, and Domestication. J Hered 2021; 112:393-394. [PMID: 36883600 DOI: 10.1093/jhered/esab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Ernest Bailey
- MH Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Eduardo Eizirik
- School of Health and Life Sciences, PUCRS, Porto Alegre, RS, Brazil
| |
Collapse
|