1
|
Yu X, Zhu H, Bo Y, Li Y, Zhang J, Jiang L, Chen G, Zhang X, Wen Y. Molecular evolutionary analysis reveals Arctic-like rabies viruses evolved and dispersed independently in North and South Asia. J Vet Sci 2021; 22:e5. [PMID: 33522157 PMCID: PMC7850786 DOI: 10.4142/jvs.2021.22.e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background Arctic-like (AL) lineages of rabies viruses (RABVs) remains endemic in some Arctic and Asia countries. However, their evolutionary dynamics are largely unappreciated. Objectives We attempted to estimate the evolutionary history, geographic origin and spread of the Arctic-related RABVs. Methods Full length or partial sequences of the N and G genes were used to infer the evolutionary aspects of AL RABVs by Bayesian evolutionary analysis. Results The most recent common ancestor (tMRCA) of the current Arctic and AL RABVs emerged in the 1830s and evolved independently after diversification. Population demographic analysis indicated that the viruses experienced gradual growth followed by a sudden decrease in its population size from the mid-1980s to approximately 2000. Genetic flow patterns among the regions reveal a high geographic correlation in AL RABVs transmission. Discrete phylogeography suggests that the geographic origin of the AL RABVs was in east Russia in approximately the 1830s. The ancestral AL RABV then diversified and immigrated to the countries in Northeast Asia, while the viruses in South Asia were dispersed to the neighboring regions from India. The N and G genes of RABVs in both clades sustained high levels of purifying selection, and the positive selection sites were mainly found on the C-terminus of the G gene. Conclusions The current AL RABVs circulating in South and North Asia evolved and dispersed independently.
Collapse
Affiliation(s)
- Xin Yu
- School of Life Sciences, Ludong University, Yantai 264025, China.,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji?nan 250022, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai 264025, China.,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji?nan 250022, China
| | - Yongheng Bo
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji?nan 250022, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji?nan 250022, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, China
| | - Guozhong Chen
- School of Life Sciences, Ludong University, Yantai 264025, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, China.
| | - Yongjun Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Páez DJ, LaDeau SL, Breyta R, Kurath G, Naish KA, Ferguson PFB. Infectious hematopoietic necrosis virus specialization in a multihost salmonid system. Evol Appl 2020; 13:1841-1853. [PMID: 32908589 PMCID: PMC7463311 DOI: 10.1111/eva.12931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 01/08/2023] Open
Abstract
Many pathogens interact and evolve in communities where more than one host species is present, yet our understanding of host-pathogen specialization is mostly informed by laboratory studies with single species. Managing diseases in the wild, however, requires understanding how host-pathogen specialization affects hosts in diverse communities. Juvenile salmonid mortality in hatcheries caused by infectious hematopoietic necrosis virus (IHNV) has important implications for salmonid conservation programs. Here, we evaluate evidence for IHNV specialization on three salmonid hosts and assess how this influences intra- and interspecific transmission in hatchery-reared salmonids. We expect that while more generalist viral lineages should pose an equal risk of infection across host types, viral specialization will increase intraspecific transmission. We used Bayesian models and data from 24 hatcheries in the Columbia River Basin to reconstruct the exposure history of hatcheries with two IHNV lineages, MD and UC, allowing us to estimate the probability of juvenile infection with these lineages in three salmonid host types. Our results show that lineage MD is specialized on steelhead trout and perhaps rainbow trout (both Oncorhynchus mykiss), whereas lineage UC displayed a generalist phenotype across steelhead trout, rainbow trout, and Chinook salmon. Furthermore, our results suggest the presence of specialist-generalist trade-offs because, while lineage UC had moderate probabilities of infection across host types, lineage MD had a small probability of infection in its nonadapted host type, Chinook salmon. Thus, in addition to quantifying probabilities of infection of socially and economically important salmonid hosts with different IHNV lineages, our results provide insights into the trade-offs that viral lineages incur in multihost communities. Our results suggest that knowledge of the specialist/generalist strategies of circulating viral lineages could be useful in salmonid conservation programs to control disease.
Collapse
Affiliation(s)
- David J. Páez
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabama
| | | | - Rachel Breyta
- U.S. Geological Survey, Western Fisheries Research CenterSeattleWashington
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research CenterSeattleWashington
| | - Kerry A. Naish
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | | |
Collapse
|
3
|
Thorne ED, Waggy C, Jachowski DS, Kelly MJ, Ford WM. Winter habitat associations of eastern spotted skunks in Virginia. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21282] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emily D. Thorne
- Department of Fisheries and Wildlife Conservation; Virginia Polytechnic Institute and State University; Blacksburg VA 24061 USA
| | - Charles Waggy
- West Virginia Division of Natural Resources (retired); Franklin WV 26807 USA
| | - David S. Jachowski
- Department of Forestry and Environmental Conservation; Clemson University; Clemson SC 29634 USA
| | - Marcella J. Kelly
- Department of Fish and Wildlife Conservation; Virginia Polytechnic Institute and State University; Blacksburg VA 24061 USA
| | - W. Mark Ford
- Department of Fisheries and Wildlife Conservation; Virginia Polytechnic Institute and State University; Blacksburg VA 24061 USA
- U.S. Geological Survey; Virginia Cooperative Fish and Wildlife Research Unit; Blacksburg VA 24061 USA
| |
Collapse
|
4
|
Elmore SA, Chipman RB, Slate D, Huyvaert KP, VerCauteren KC, Gilbert AT. Management and modeling approaches for controlling raccoon rabies: The road to elimination. PLoS Negl Trop Dis 2017; 11:e0005249. [PMID: 28301480 PMCID: PMC5354248 DOI: 10.1371/journal.pntd.0005249] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rabies is an ancient viral disease that significantly impacts human and animal health throughout the world. In the developing parts of the world, dog bites represent the highest risk of rabies infection to people, livestock, and other animals. However, in North America, where several rabies virus variants currently circulate in wildlife, human contact with the raccoon rabies variant leads to the highest per capita population administration of post-exposure prophylaxis (PEP) annually. Previous rabies variant elimination in raccoons (Canada), foxes (Europe), and dogs and coyotes (United States) demonstrates that elimination of the raccoon variant from the eastern US is feasible, given an understanding of rabies control costs and benefits and the availability of proper tools. Also critical is a cooperatively produced strategic plan that emphasizes collaborative rabies management among agencies and organizations at the landscape scale. Common management strategies, alone or as part of an integrated approach, include the following: oral rabies vaccination (ORV), trap-vaccinate-release (TVR), and local population reduction. As a complement, mathematical and statistical modeling approaches can guide intervention planning, such as through contact networks, circuit theory, individual-based modeling, and others, which can be used to better understand and predict rabies dynamics through simulated interactions among the host, virus, environment, and control strategy. Strategies derived from this ecological lens can then be optimized to produce a management plan that balances the ecological needs and program financial resources. This paper discusses the management and modeling strategies that are currently used, or have been used in the past, and provides a platform of options for consideration while developing raccoon rabies virus elimination strategies in the US.
Collapse
Affiliation(s)
- Stacey A. Elmore
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Richard B. Chipman
- United States Department of Agriculture, Wildlife Services, National Rabies Management Program, Concord, New Hampshire, United States of America
| | - Dennis Slate
- United States Department of Agriculture, Wildlife Services, National Rabies Management Program, Concord, New Hampshire, United States of America
| | - Kathryn P. Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kurt C. VerCauteren
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Amy T. Gilbert
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| |
Collapse
|
5
|
Hayman DTS, Fooks AR, Marston DA, Garcia-R JC. The Global Phylogeography of Lyssaviruses - Challenging the 'Out of Africa' Hypothesis. PLoS Negl Trop Dis 2016; 10:e0005266. [PMID: 28036390 PMCID: PMC5231386 DOI: 10.1371/journal.pntd.0005266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/12/2017] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Rabies virus kills tens of thousands of people globally each year, especially in resource-limited countries. Yet, there are genetically- and antigenically-related lyssaviruses, all capable of causing the disease rabies, circulating globally among bats without causing conspicuous disease outbreaks. The species richness and greater genetic diversity of African lyssaviruses, along with the lack of antibody cross-reactivity among them, has led to the hypothesis that Africa is the origin of lyssaviruses. This hypothesis was tested using a probabilistic phylogeographical approach. The nucleoprotein gene sequences from 153 representatives of 16 lyssavirus species, collected between 1956 and 2015, were used to develop a phylogenetic tree which incorporated relevant geographic and temporal data relating to the viruses. In addition, complete genome sequences from all 16 (putative) species were analysed. The most probable ancestral distribution for the internal nodes was inferred using three different approaches and was confirmed by analysis of complete genomes. These results support a Palearctic origin for lyssaviruses (posterior probability = 0.85), challenging the ‘out of Africa’ hypothesis, and suggest three independent transmission events to the Afrotropical region, representing the three phylogroups that form the three major lyssavirus clades. Rabies virus kills tens of thousands of people globally each year and causes indescribable misery and family disturbance, especially in developing countries. Yet in much of the world there are related viruses, called lyssaviruses, which circulate among bats without causing conspicuous outbreaks. The greater diversity of African lyssaviruses has led to the hypothesis that Africa is the origin of these viruses. To test this hypothesis, the genetic data from 153 representative viruses from 16 available lyssavirus species from across the world dated between 1956 and 2015 were analysed. Statistical models were used to reconstruct the historical processes that lead to the contemporary distribution of these viruses. Our results support a Palearctic origin for lyssaviruses, not Afrotropic, and suggest three independent transmission events to Africa from the Palearctic region.
Collapse
Affiliation(s)
- David T. S. Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- * E-mail: ,
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge-London, United Kingdom
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Denise A. Marston
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge-London, United Kingdom
| | - Juan C. Garcia-R
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Bozick BA, Real LA. INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS. QUARTERLY REVIEW OF BIOLOGY 2016; 90:361-80. [PMID: 26714350 DOI: 10.1086/683698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.
Collapse
|
7
|
Clark R, Taylor A, Garcia F, Krone T, Brown HE. Recognizing the Role of Skunks in Human and Animal Rabies Exposures in the Southwest. Vector Borne Zoonotic Dis 2015; 15:494-501. [PMID: 26273811 DOI: 10.1089/vbz.2014.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Rabies is arguably the most important viral zoonotic disease worldwide with an estimated 55,000 human deaths each year. Globally, dogs are the primary animals affected. In the United States, especially on the East Coast, raccoons and bats are the primary reservoir. However, in the southwestern United States, skunk and bat rabies play a large role. We describe the epidemiology and environmental risk factors associated with rabies in the US Southwest using exposure data for 2004-2012 from one Arizona county as a case study. Unlike other parts of the country, here bats and skunks are the most commonly collected positive animals (62% and 32%, respectively). Even though most of the positive animals were bats, human and domestic animal exposures were primarily a result of skunk interactions (58% and 50%, respectively). Consequently, the majority of exposures occur early in the year, January and February, when the majority of skunk pickups also occur. Using public health surveillance data, our study highlights the importance of recognizing the role of skunks in human and animal exposures in the southwestern United States. Consistent with a "One Health" approach, our data show how wildlife and domestic animal and human exposures are associated and informative to one another.
Collapse
Affiliation(s)
- Robert Clark
- 1 Mel and Enid Zuckerman College of Public Health, University of Arizona , Tucson, Arizona
| | | | | | - Tim Krone
- 3 Veterinary Technology Program, Pima Community College , Tucson, Arizona
| | - Heidi E Brown
- 1 Mel and Enid Zuckerman College of Public Health, University of Arizona , Tucson, Arizona
| |
Collapse
|
8
|
Starting from the bench--prevention and control of foodborne and zoonotic diseases. Prev Vet Med 2014; 118:189-95. [PMID: 25481625 DOI: 10.1016/j.prevetmed.2014.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 01/18/2023]
Abstract
Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens.
Collapse
|
9
|
Kyle CJ, Rico Y, Castillo S, Srithayakumar V, Cullingham CI, White BN, Pond BA. Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies. Mol Ecol 2014; 23:2287-98. [PMID: 24655158 DOI: 10.1111/mec.12726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022]
Abstract
Local adaptation is necessary for population survival and depends on the interplay between responses to selective forces and demographic processes that introduce or retain adaptive and maladaptive attributes. Host-parasite systems are dynamic, varying in space and time, where both host and parasites must adapt to their ever-changing environment in order to survive. We investigated patterns of local adaptation in raccoon populations with varying temporal exposure to the raccoon rabies virus (RRV). RRV infects approximately 85% of the population when epizootic and has been presumed to be completely lethal once contracted; however, disease challenge experiments and varying spatial patterns of RRV spread suggest some level of immunity may exist. We first assessed patterns of local adaptation in raccoon populations along the eastern seaboard of North America by contrasting spatial patterns of neutral (microsatellite loci) and functional, major histocompatibility complex (MHC) genetic diversity and structure. We explored variation of MHC allele frequencies in the light of temporal population exposure to RRV (0-60 years) and specific RRV strains in infected raccoons. Our results revealed high levels of MHC variation (66 DRB exon 2 alleles) and pronounced genetic structure relative to neutral microsatellite loci, indicative of local adaptation. We found a positive association linking MHC genetic diversity and temporal RRV exposure, but no association with susceptibility and resistance to RRV strains. These results have implications for landscape epidemiology studies seeking to predict the spread of RRV and present an example of how population demographics influence the degree to which populations adapt to local selective pressures.
Collapse
Affiliation(s)
- Christopher J Kyle
- Forensic Science Department, Trent University, Peterborough, ON, Canada, K9J 7B8; Natural Resources DNA Profiling and Forensics Centre, Trent University, Peterborough, ON, Canada, K9J 7B8
| | | | | | | | | | | | | |
Collapse
|
10
|
Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A. Vampire bat rabies: ecology, epidemiology and control. Viruses 2014; 6:1911-28. [PMID: 24784570 PMCID: PMC4036541 DOI: 10.3390/v6051911] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Extensive surveillance in bat populations in response to recent emerging diseases has revealed that this group of mammals acts as a reservoir for a large range of viruses. However, the oldest known association between a zoonotic virus and a bat is that between rabies virus and the vampire bat. Vampire bats are only found in Latin America and their unique method of obtaining nutrition, blood-feeding or haematophagy, has only evolved in the New World. The adaptations that enable blood-feeding also make the vampire bat highly effective at transmitting rabies virus. Whether the virus was present in pre-Columbian America or was introduced is much disputed, however, the introduction of Old World livestock and associated landscape modification, which continues to the present day, has enabled vampire bat populations to increase. This in turn has provided the conditions for rabies re-emergence to threaten both livestock and human populations as vampire bats target large mammals. This review considers the ecology of the vampire bat that make it such an efficient vector for rabies, the current status of vampire-transmitted rabies and the future prospects for spread by this virus and its control.
Collapse
Affiliation(s)
- Nicholas Johnson
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, Surrey, KT15 3NB, UK.
| | - Nidia Aréchiga-Ceballos
- Rabies Laboratory, Virology Department, Institute of Epidemiology Diagnostic and Reference (InDRE), Francisco de P. Miranda #177Bis. Colonia Unidad Lomas de Plateros. 01480 D.F., Mexico.
| | - Alvaro Aguilar-Setien
- Medical Immunology Research Unit, Paediatric Hospital, Naional Medical Center "Siglo XXL", Mexican Social Security Institute (IMSS), Av. Cuauhtémoc 330, Col. Doctores, 06720, D.F., Mexico.
| |
Collapse
|
11
|
Duke JE, Blanton JD, Ivey M, Rupprecht C. Modeling enzootic raccoon rabies from land use patterns - Georgia (USA) 2006-2010. F1000Res 2013; 2:285. [PMID: 24715971 PMCID: PMC3962005 DOI: 10.12688/f1000research.2-285.v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2014] [Indexed: 11/25/2022] Open
Abstract
We analyzed how land-use patterns and changes in urbanization influence reported rabid raccoons in Georgia from 2006 - 2010. Using Geographical Information Systems and rabies surveillance data, multivariate analysis was conducted on 15 land-use variables that included natural topography, agricultural development, and urbanization to model positive raccoon rabies cases while controlling for potential raccoon submission bias associated with higher human population densities. Low intensity residential development was positively associated with reported rabid raccoons while a negative association was found with evergreen forest. Evergreen forests may offer a barrier effect where resources are low and raccoon populations are not supported. Areas with pure stands of upland evergreen forest might be utilized in baiting strategies for oral rabies vaccination programs where fewer or no baits may be needed. Their use as a barrier should be considered carefully in a cost-effective strategy for oral rabies vaccination (ORV) programs to contain the western spread of this important zoonotic disease.
Collapse
Affiliation(s)
- John E Duke
- Institute of Public Health, Georgia State University, Atlanta, Georgia 30303, USA ; Poxvirus and Rabies Branch, United States Center for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - Jesse D Blanton
- Poxvirus and Rabies Branch, United States Center for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - Melissa Ivey
- Georgia Department of Public Health, Atlanta, Georgia 30303, USA
| | - Charles Rupprecht
- Poxvirus and Rabies Branch, United States Center for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| |
Collapse
|
12
|
Sobey K, Walpole A, Rosatte R, Fehlner-Gardiner C, Donovan D, Bachmann P, Coulson S, Beresford A, Bruce L, Kyle C. An assessment of ONRAB® oral rabies vaccine persistence in free-ranging mammal populations in Ontario, Canada. Vaccine 2013; 31:2207-13. [DOI: 10.1016/j.vaccine.2013.02.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 11/29/2022]
|
13
|
Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model. Parasitology 2012; 139:1899-913. [PMID: 22814380 PMCID: PMC3526958 DOI: 10.1017/s003118201200090x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Landscape epidemiology and landscape genetics combine advances in molecular techniques, spatial analyses and epidemiological models to generate a more real-world understanding of infectious disease dynamics and provide powerful new tools for the study of RNA viruses. Using dog rabies as a model we have identified how key questions regarding viral spread and persistence can be addressed using a combination of these techniques. In contrast to wildlife rabies, investigations into the landscape epidemiology of domestic dog rabies requires more detailed assessment of the role of humans in disease spread, including the incorporation of anthropogenic landscape features, human movements and socio-cultural factors into spatial models. In particular, identifying and quantifying the influence of anthropogenic features on pathogen spread and measuring the permeability of dispersal barriers are important considerations for planning control strategies, and may differ according to cultural, social and geographical variation across countries or continents. Challenges for dog rabies research include the development of metapopulation models and transmission networks using genetic information to uncover potential source/sink dynamics and identify the main routes of viral dissemination. Information generated from a landscape genetics approach will facilitate spatially strategic control programmes that accommodate for heterogeneities in the landscape and therefore utilise resources in the most cost-effective way. This can include the efficient placement of vaccine barriers, surveillance points and adaptive management for large-scale control programmes.
Collapse
|
14
|
Hayman DTS, Banyard AC, Wakeley PR, Harkess G, Marston D, Wood JLN, Cunningham AA, Fooks AR. A universal real-time assay for the detection of Lyssaviruses. J Virol Methods 2011; 177:87-93. [PMID: 21777619 PMCID: PMC3191275 DOI: 10.1016/j.jviromet.2011.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 12/25/2022]
Abstract
Rabies virus (RABV) is enzootic throughout most of the world. It is now widely accepted that RABV had its origins in bats. Ten of the 11 Lyssavirus species recognised, including RABV, have been isolated from bats. There is, however, a lack of understanding regarding both the ecology and host reservoirs of Lyssaviruses. A real-time PCR assay for the detection of all Lyssaviruses using universal primers would be beneficial for Lyssavirus surveillance. It was shown that using SYBR® Green, a universal real-time PCR primer pair previously demonstrated to detect European bat Lyssaviruses 1 and 2, and RABV, was able to detect reverse transcribed RNA for each of the seven virus species available to us. Target sequences of bat derived virus species unavailable for analysis were synthesized to produce oligonucleotides. Lagos Bat-, Duvenhage- and Mokola virus full nucleoprotein gene clones enabled a limit of 5–50 plasmid copies to be detected. Five copies of each of the synthetic DNA oligonucleotides of Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus were detected. The single universal primer pair was therefore able to detect each of the most divergent known Lyssaviruses with great sensitivity.
Collapse
Affiliation(s)
- David T S Hayman
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency - Weybridge, Woodham Lane, Surrey KT15 3NB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Barton HD, Gregory AJ, Davis R, Hanlon CA, Wisely SM. Contrasting landscape epidemiology of two sympatric rabies virus strains. Mol Ecol 2010; 19:2725-38. [PMID: 20546130 DOI: 10.1111/j.1365-294x.2010.04668.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Viral strain evolution and disease emergence are influenced by anthropogenic change to the environment. We investigated viral characteristics, host ecology, and landscape features in the rabies-striped skunk disease system of the central Great Plains to determine how these factors interact to influence disease emergence. We amplified portions of the N and G genes of rabies viral RNA from 269 samples extracted from striped skunk brains throughout the distribution of two different rabies strains for which striped skunks were the reservoir. Because the distribution of these two strains overlapped on the landscape and were present in the same host population, we could evaluate how viral properties influenced epidemiological patterns in the area of sympatry. We found that South Central Skunk rabies (SCSK) exhibited intense purifying selection and high infectivity, which are both characteristics of an epizootic virus. Conversely, North Central Skunk rabies (NCSK) exhibited relaxed purifying selection and comparatively lower infectivity, suggesting the presence of an enzootic virus. The host population in the area of sympatry was highly admixed, and skunks among allopatric and sympatric areas had similar effective population sizes. Spatial analysis indicated that landscape features had minimal influence on NCSK movement across the landscape, but those same features were partial barriers to the spread of SCSK. We conclude that NCSK and SCSK have different epidemiological properties that interact differently with both host and landscape features to influence rabies spread in the central Great Plains. We suggest a holistic approach for future studies of emerging infectious diseases that includes studies of viral properties, host characteristics, and spatial features.
Collapse
Affiliation(s)
- Heather D Barton
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
16
|
Powell JC. Evaluating risk: rabies exposure and occupational implications. ACTA ACUST UNITED AC 2010; 57:465-71; quiz 472-3. [PMID: 19968210 DOI: 10.3928/08910162-20091027-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite advances in vaccination, rabies remains a significant worldwide public health problem. Although the death rate is low in the United States, treatment and prevention costs are high. Occupational health nurses and occupational health nurse practitioners should consider rabies epidemiology, pathophysiology, and disease prevention and management when evaluating an employee's risk of exposure and subsequent infection.
Collapse
|
17
|
Abstract
Despite advances in vaccination, rabies remains a significant worldwide public health problem. Although the death rate is low in the United States, treatment and prevention costs are high. Occupational health nurses and occupational health nurse practitioners should consider rabies epidemiology, pathophysiology, and disease prevention and management when evaluating an employee's risk of exposure and subsequent infection.
Collapse
|
18
|
Jinnai M, Kawabuchi-Kurata T, Tsuji M, Nakajima R, Fujisawa K, Nagata S, Koide H, Matoba Y, Asakawa M, Takahashi K, Ishihara C. Molecular evidence for the presence of new Babesia species in feral raccoons (Procyon lotor) in Hokkaido, Japan. Vet Parasitol 2009; 162:241-7. [PMID: 19349121 DOI: 10.1016/j.vetpar.2009.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 02/24/2009] [Accepted: 03/03/2009] [Indexed: 11/29/2022]
Abstract
We recently reported that feral raccoons (Procyon lotor) with splenomegaly native to Japan were carriers of a Babesia microti-like parasite identical to that found in the United States, which was likely introduced to Japan from North America via raccoons imported as pets. Thus, we attempted extensive molecular survey for piroplasma infections of feral raccoon with normal spleen in Hokkaido, Japan using nested PCR that target broadly to 18S ribosomal RNA gene (SSU-rDNA) of all the parasites in the genus Babesia, Theileria, Cytauxzoon and B. microti group. Of the 348 raccoon samples analyzed, 9 gave positive signals. Cloning and phylogenetic analysis on SSU-rDNA sequences revealed that six of nine positives were found to be infected with Babesia and the remaining three with previously unreported Sarcocystis. Babesia sequences were further separated into two distantly related groups, those that reside in a novel phylogenetic group were consisted solely of four parasites found in this study, while those which included one identical sequence found in the three of our specimens were assembled together with both Babesia parasites of tick's in Japan and of raccoon's in U.S. These results may indicate that not only a B. microti-like parasite but also at least two yet undescribed Babesia species are being established in their new life cycles in the feral raccoon populations in Japan.
Collapse
Affiliation(s)
- Michio Jinnai
- School of Veterinary Medicine, Rakuno-Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bolzoni L, Dobson A, Gatto M, De Leo G. Allometric Scaling and Seasonality in the Epidemics of Wildlife Diseases. Am Nat 2008; 172:818-28. [DOI: 10.1086/593000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Abstract
Rabies in small animals has been dramatically reduced in the United States since the introduction of rabies vaccination of domestic animals in the 1940s. As a consequence, the number of human rabies cases has declined to only a couple per year. During the past several years, the dog rabies variant has almost disappeared completely. Rabies in wildlife has skyrocketed, however. Each wildlife species carries its own rabies variant(s). These wildlife epizootics present a constant public health threat in addition to the danger of reintroducing rabies to domestic animals. Vaccination is the key to prevent rabies in small animals and rabies transmission to human beings.
Collapse
|
21
|
Cullingham CI, Kyle CJ, Pond BA, White BN. Genetic structure of raccoons in eastern North America based on mtDNA: implications for subspecies designation and rabies disease dynamics. CAN J ZOOL 2008. [DOI: 10.1139/z08-072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subspecific designations are useful for wildlife management when they represent real barriers to gene flow. In this study, we assess genetic partitioning of mitochondrial DNA control region variation to determine if the structuring is congruent with morphologically defined subspecies of the common raccoon (Procyon lotor (L., 1758)). Mitochondrial control region sequences were analyzed within and among four subspecies ( Procyon lotor elucus Bangs, 1898, Procyon lotor lotor (L., 1758), Procyon lotor hirtus Nelson and Goldman, 1930, and Procyon lotor varius Nelson and Goldman, 1930) that occur along the eastern seaboard of North America through to the central United States. This identified 76 haplotypes, 59 of which were specific to one of the four ranges, while only 1 haplotype was wide-spread. Phylogenetic analysis revealed three distinct lineages: one found primarily in Florida, one along the eastern seaboard, and the third predominantly to the west of the Mississippi River. These lineages likely diverged during the Pleistocene, as a result of rising sea levels creating barriers to gene flow. The range of P. l. elucus is still primarily one lineage supporting the subspecific designation; however, there is considerable lineage mixing across the ranges of P. l. hirtus, P. l. lotor, and P. l. varius, suggesting that they be synonymized to P. l. lotor. While some of these subspecies designations are not supported, we have found that landscape attributes affect gene flow, which can be of use in informing rabies management.
Collapse
Affiliation(s)
- C. I. Cullingham
- Watershed Ecosystem Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Forensic Science, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Applied Research Development Branch, Wildlife Research Development Section, Ontario Ministry of Natural Resources, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - C. J. Kyle
- Watershed Ecosystem Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Forensic Science, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Applied Research Development Branch, Wildlife Research Development Section, Ontario Ministry of Natural Resources, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - B. A. Pond
- Watershed Ecosystem Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Forensic Science, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Applied Research Development Branch, Wildlife Research Development Section, Ontario Ministry of Natural Resources, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - B. N. White
- Watershed Ecosystem Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Forensic Science, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Applied Research Development Branch, Wildlife Research Development Section, Ontario Ministry of Natural Resources, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
22
|
Emerging viral zoonoses: frameworks for spatial and spatiotemporal risk assessment and resource planning. Vet J 2008; 182:21-30. [PMID: 18718800 PMCID: PMC7110545 DOI: 10.1016/j.tvjl.2008.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/11/2008] [Accepted: 05/13/2008] [Indexed: 01/04/2023]
Abstract
Spatial epidemiological tools are increasingly being applied to emerging viral zoonoses (EVZ), partly because of improving analytical methods and technologies for data capture and management, and partly because the demand is growing for more objective ways of allocating limited resources in the face of the emerging threat posed by these diseases. This review documents applications of geographical information systems (GIS), remote sensing (RS) and spatially-explicit statistical and mathematical models to epidemiological studies of EVZ. Landscape epidemiology uses statistical associations between environmental variables and diseases to study and predict their spatial distributions. Phylogeography augments epidemiological knowledge by studying the evolution of viral genetics through space and time. Cluster detection and early warning systems assist surveillance and can permit timely interventions. Advanced statistical models can accommodate spatial dependence present in epidemiological datasets and can permit assessment of uncertainties in disease data and predictions. Mathematical models are particularly useful for testing and comparing alternative control strategies, whereas spatial decision-support systems integrate a variety of spatial epidemiological tools to facilitate widespread dissemination and interpretation of disease data. Improved spatial data collection systems and greater practical application of spatial epidemiological tools should be applied in real-world scenarios.
Collapse
|
23
|
Bharti N, Xia Y, Bjornstad ON, Grenfell BT. Measles on the edge: coastal heterogeneities and infection dynamics. PLoS One 2008; 3:e1941. [PMID: 18398467 PMCID: PMC2275791 DOI: 10.1371/journal.pone.0001941] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 03/02/2008] [Indexed: 11/19/2022] Open
Abstract
Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted 'edge effect' by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of 'edge effects' on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models.
Collapse
Affiliation(s)
- Nita Bharti
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
| | | | | | | |
Collapse
|
24
|
Abstract
Various technological developments have revitalized the approaches employed to study the disease of rabies. In particular, reverse genetics has facilitated the generation of novel viruses used to improve our understanding of the fundamental aspects of rabies virus (RABV) biology and pathogenicity and yielded novel constructs potentially useful as vaccines against rabies and other diseases. Other techniques such as high throughput methods to examine the impact of rabies virus infection on host cell gene expression and two hybrid systems to explore detailed protein-protein interactions also contribute substantially to our understanding of virus-host interactions. This review summarizes much of the increased knowledge about rabies that has resulted from such studies but acknowledges that this is still insufficient to allow rational attempts at curing those who present with clinical disease.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | |
Collapse
|
25
|
FOSTER JEFFREYT, WOODWORTH BETHANYL, EGGERT LORIE, HART PATRICKJ, PALMER DANIELLE, DUFFY DAVIDC, FLEISCHER ROBERTC. Genetic structure and evolved malaria resistance in Hawaiian honeycreepers. Mol Ecol 2007; 16:4738-46. [DOI: 10.1111/j.1365-294x.2007.03550.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Bolzoni L, Real L, De Leo G. Transmission heterogeneity and control strategies for infectious disease emergence. PLoS One 2007; 2:e747. [PMID: 17712403 PMCID: PMC1945090 DOI: 10.1371/journal.pone.0000747] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 05/09/2007] [Indexed: 11/18/2022] Open
Abstract
Background The control of emergence and spread of infectious diseases depends critically on the details of the genetic makeup of pathogens and hosts, their immunological, behavioral and ecological traits, and the pattern of temporal and spatial contacts among the age/stage-classes of susceptible and infectious host individuals. Methods and Findings We show that failing to acknowledge the existence of heterogeneities in the transmission rate among age/stage-classes can make traditional eradication and control strategies ineffective, and in some cases, policies aimed at controlling pathogen emergence can even increase disease incidence in the host. When control strategies target for reduction in numbers those subsets of the population that effectively limit the production of new susceptible individuals, then control can produce a flush of new susceptibles entering the population. The availability of a new cohort of susceptibles may actually increase disease incidence. We illustrate these general points using Classical Swine Fever as a reference disease. Conclusion Negative effects of culling are robust to alternative formulations of epidemiological processes and underline the importance of better assessing transmission structure in the design of wildlife disease control strategies.
Collapse
Affiliation(s)
- Luca Bolzoni
- Dipartimento di Scienze Ambientali, Università degli Studi di Parma, Parma, Italy.
| | | | | |
Collapse
|
27
|
Biek R, Henderson JC, Waller LA, Rupprecht CE, Real LA. A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus. Proc Natl Acad Sci U S A 2007; 104:7993-8. [PMID: 17470818 PMCID: PMC1876560 DOI: 10.1073/pnas.0700741104] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Indexed: 11/18/2022] Open
Abstract
Emerging pathogens potentially undergo rapid evolution while expanding in population size and geographic range during the course of invasion, yet it is generally difficult to demonstrate how these processes interact. Our analysis of a 30-yr data set covering a large-scale rabies virus outbreak among North American raccoons reveals the long lasting effect of the initial infection wave in determining how viral populations are genetically structured in space. We further find that coalescent-based estimates derived from the genetic data yielded an amazingly accurate reconstruction of the known spatial and demographic dynamics of the virus over time. Our study demonstrates the combined evolutionary and population dynamic processes characterizing the spread of pathogen after its introduction into a fully susceptible host population. Furthermore, the results provide important insights regarding the spatial scale of rabies persistence and validate the use of coalescent approaches for uncovering even relatively complex population histories. Such approaches will be of increasing relevance for understanding the epidemiology of emerging zoonotic diseases in a landscape context.
Collapse
Affiliation(s)
- Roman Biek
- Department of Biology and Center for Disease Ecology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|