1
|
Amorim CEG, Di C, Lin M, Marsden C, Del Carpio CA, Mah JC, Robinson J, Kim BY, Mooney JA, Cornejo OE, Lohmueller KE. Evolutionary consequences of domestication on the selective effects of new amino acid changing mutations in canids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623529. [PMID: 39605619 PMCID: PMC11601280 DOI: 10.1101/2024.11.13.623529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The domestication of wild canids led to dogs no longer living in the wild but instead residing alongside humans. Extreme changes in behavior and diet associated with domestication may have led to the relaxation of the selective pressure on traits that may be less important in the domesticated context. Thus, here we hypothesize that strongly deleterious mutations may have become less deleterious in domesticated populations. We test this hypothesis by estimating the distribution of fitness effects (DFE) for new amino acid changing mutations using whole-genome sequence data from 24 gray wolves and 61 breed dogs. We find that the DFE is strikingly similar across canids, with 26-28% of new amino acid changing mutations being neutral/nearly neutral (|s| < 1e-5), and 41-48% under strong purifying selection (|s| > 1e-2). Our results are robust to different model assumptions suggesting that the DFE is stable across short evolutionary timescales, even in the face of putative drastic changes in the selective pressure caused by artificial selection during domestication and breed formation. On par with previous works describing DFE evolution, our data indicate that the DFE of amino acid changing mutations depends more strongly on genome structure and organismal characteristics, and less so on shifting selective pressures or environmental factors. Given the constant DFE and previous data showing that genetic variants that differentiate wolf and dog populations are enriched in regulatory elements, we speculate that domestication may have had a larger impact on regulatory variation than on amino acid changing mutations.
Collapse
Affiliation(s)
| | - Chenlu Di
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Meixi Lin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Clare Marsden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
- Serology/DNA unit, Forensic Science Division, Los Angeles Police Department, Los Angeles CA 90032
| | - Christina A. Del Carpio
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Jonathan C. Mah
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Jacqueline Robinson
- Institute for Human Genetics, University of California San Francisco, San Francisco CA 94143
| | - Bernard Y. Kim
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jazlyn A. Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA
| | - Omar E. Cornejo
- Ecology & Evolutionary Biology Department, University of California, Santa Cruz, California, 95060, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
2
|
Wang K, Luigi-Sierra MG, Castelló A, Figueiredo-Cardoso T, Mercadé A, Martínez A, Delgado JV, Álvarez JF, Noce A, Wang M, Jordana J, Amills M. Identification of nonsense variants in the genomes of 15 Murciano-Granadina bucks and analysis of their segregation in parent-offspring trios. J Dairy Sci 2024:S0022-0302(24)01097-X. [PMID: 39218071 DOI: 10.3168/jds.2024-24952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Nonsense variants can inactivate gene function by causing the synthesis of truncated proteins or by inducing nonsense mediated decay of messenger RNAs. The occurrence of such variants in the genomes of livestock species is modulated by multiple demographic and selective factors. Even though nonsense variants can have causal effects on embryo lethality, abortions, and disease, their genomic distribution and segregation in domestic goats have not been characterized in depth yet. In this work, we have sequenced the genomes of 15 Murciano-Granadina bucks with an average coverage of 32.92 × ± 1.45 × . Bioinformatic analysis revealed 947 nonsense variants consistently detected with SnpEff and Ensembl-VEP. These variants were especially abundant in the 3'end of the protein-coding regions. Genes related to olfactory perception, ATPase activity coupled to transmembrane movement of substances, defense to virus, hormonal response, and sensory perception of taste were particularly enriched in nonsense variants. Seventeen nonsense variants expected to have harmful effects on fitness were genotyped in parent-offspring trios. We observed that several nonsense variants predicted to be lethal based on mouse knockout data did not have such effect, a finding that could be explained by the existence of multiple mechanisms counteracting lethality. These findings demonstrate that predicting the effects of putative nonsense variants on fitness is extremely challenging. As a matter of fact, such a goal could only be achieved by generating a high quality telomere-to-telomere goat reference genome combined with carefully curated annotation and functional testing of promising candidate variants.
Collapse
Affiliation(s)
- Ke Wang
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental Station, Zhanjiang, Guangdong, 524000, China.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - María Gracia Luigi-Sierra
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Castelló
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Taina Figueiredo-Cardoso
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Mercadé
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain
| | | | | | - Antonia Noce
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mingjing Wang
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Amills
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain..
| |
Collapse
|
3
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
4
|
Wu W, Wang L, Huang W, Zhang X, Li Y, Guo W. A high-quality genome assembly reveals adaptations underlying glossy, wax-coated leaves in the heat-tolerant wild raspberry Rubus leucanthus. DNA Res 2024; 31:dsae024. [PMID: 39101533 PMCID: PMC11347754 DOI: 10.1093/dnares/dsae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024] Open
Abstract
With glossy, wax-coated leaves, Rubus leucanthus is one of the few heat-tolerant wild raspberry trees. To ascertain the underlying mechanism of heat tolerance, we generated a high-quality genome assembly with a genome size of 230.9 Mb and 24,918 protein-coding genes. Significantly expanded gene families were enriched in the flavonoid biosynthesis pathway and the circadian rhythm-plant pathway, enabling survival in subtropical areas by accumulating protective flavonoids and modifying photoperiodic responses. In contrast, plant-pathogen interaction and MAPK signaling involved in response to pathogens were significantly contracted. The well-known heat response elements (HSP70, HSP90, and HSFs) were reduced in R. leucanthus compared to two other heat-intolerant species, R. chingii and R. occidentalis, with transcriptome profiles further demonstrating their dispensable roles in heat stress response. At the same time, three significantly positively selected genes in the pathway of cuticular wax biosynthesis were identified, and may contribute to the glossy, wax-coated leaves of R. leucanthus. The thick, leathery, waxy leaves protect R. leucanthus against pathogens and herbivores, supported by the reduced R gene repertoire in R. leucanthus (355) compared to R. chingii (376) and R. occidentalis (449). Our study provides some insights into adaptive divergence between R. leucanthus and other raspberry species on heat tolerance.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Longyuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Weicheng Huang
- Plant Science Center, South China Botanical Garden, Chinese Academy of Science, , Guangzhou, 510650, Guangzhou, China
| | - Xianzhi Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| |
Collapse
|
5
|
McConaughy S, Amundsen K, Hyten D. Effects of demographic history on recombination hotspots in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1030-1038. [PMID: 38781098 DOI: 10.1111/tpj.16814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Recombination is the primary mechanism underlying genetic improvement in populations and allows plant breeders to create new allelic combinations for agronomic improvement. Soybean [Glycine max (L.) Merr.] has gone through multiple genetic bottlenecks that have significantly affected its genetic diversity, linkage disequilibrium, and altered allele frequencies. To investigate the impact of genetic bottlenecks on recombination hotspots in soybeans, historical recombination was studied in three soybean populations. The populations were wild soybean [Glycine soja (Sieb. and Zucc.)], landraces, and North American elite soybean cultivars that have been genotyped with the SoySNP50K BeadChip. While each population after a genetic bottleneck had an increased average haplotype block size, they did not have a significant difference in the number of hotspots between each population. Instead, the increase in observed haplotype block size is likely due to an elimination of individuals that contained historical recombination at hotspots which decreased the observed rate of recombination for the hotspot after each genetic bottleneck. Conversely, heterochromatic DNA which has an increased haplotype block size compared to euchromatic DNA had a significantly different number of hotspots but not a significant difference in the average hotspot recombination rate. Previously identified genomic motifs associated with hotspots were also associated with hotspots found in the historical populations suggesting a common mechanism. This characterization of historical recombination hotspots in soybeans provides further insights into the effect genetic bottlenecks and selection have on recombination hotspots.
Collapse
Affiliation(s)
- Samantha McConaughy
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68503, USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68503, USA
| | - David Hyten
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68503, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68503, USA
| |
Collapse
|
6
|
Fuentes RR, Nieuwenhuis R, Chouaref J, Hesselink T, van Dooijeweert W, van den Broeck HC, Schijlen E, Schouten HJ, Bai Y, Fransz P, Stam M, de Jong H, Trivino SD, de Ridder D, van Dijk ADJ, Peters SA. A catalogue of recombination coldspots in interspecific tomato hybrids. PLoS Genet 2024; 20:e1011336. [PMID: 38950081 PMCID: PMC11244794 DOI: 10.1371/journal.pgen.1011336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/12/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024] Open
Abstract
Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Jihed Chouaref
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, The Netherlands
| | - Hetty C van den Broeck
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike Stam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Fu YB. Patterns of the Predicted Mutation Burden in 19,778 Domesticated Barley Accessions Conserved Ex Situ. Int J Mol Sci 2024; 25:5930. [PMID: 38892116 PMCID: PMC11172543 DOI: 10.3390/ijms25115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Long-term conservation of more than 7 million plant germplasm accessions in 1750 genebanks worldwide is a challenging mission. The extent of deleterious mutations present in conserved germplasm and the genetic risk associated with accumulative mutations are largely unknown. This study took advantage of published barley genomic data to predict sample-wise mutation burdens for 19,778 domesticated barley (Hordeum vulgare L.) accessions conserved ex situ. It was found that the conserved germplasm harbored 407 deleterious mutations and 337 (or 82%) identified deleterious alleles were present in 20 (or 0.1%) or fewer barley accessions. Analysis of the predicted mutation burdens revealed significant differences in mutation burden for several groups of barley germplasm (landrace > cultivar (or higher burden estimate in landrace than in cultivar); winter barley > spring barley; six-rowed barley > two-rowed barley; and 1000-accession core collection > non-core germplasm). Significant differences in burden estimate were also found among seven major geographical regions. The sample-wise predicted mutation burdens were positively correlated with the estimates of sample average pairwise genetic difference. These findings are significant for barley germplasm management and utilization and for a better understanding of the genetic risk in conserved plant germplasm.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
8
|
Raas MWD, Dutheil JY. The rate of adaptive molecular evolution in wild and domesticated Saccharomyces cerevisiae populations. Mol Ecol 2024; 33:e16980. [PMID: 37157166 DOI: 10.1111/mec.16980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Through its fermentative capacities, Saccharomyces cerevisiae was central in the development of civilisation during the Neolithic period, and the yeast remains of importance in industry and biotechnology, giving rise to bona fide domesticated populations. Here, we conduct a population genomic study of domesticated and wild populations of S. cerevisiae. Using coalescent analyses, we report that the effective population size of yeast populations decreased since the divergence with S. paradoxus. We fitted models of distributions of fitness effects to infer the rate of adaptive (ω a ) and non-adaptive (ω na ) non-synonymous substitutions in protein-coding genes. We report an overall limited contribution of positive selection to S. cerevisiae protein evolution, albeit with higher rates of adaptive evolution in wild compared to domesticated populations. Our analyses revealed the signature of background selection and possibly Hill-Robertson interference, as recombination was found to be negatively correlated withω na and positively correlated withω a . However, the effect of recombination onω a was found to be labile, as it is only apparent after removing the impact of codon usage bias on the synonymous site frequency spectrum and disappears if we control for the correlation withω na , suggesting that it could be an artefact of the decreasing population size. Furthermore, the rate of adaptive non-synonymous substitutions is significantly correlated with the residue solvent exposure, a relation that cannot be explained by the population's demography. Together, our results provide a detailed characterisation of adaptive mutations in protein-coding genes across S. cerevisiae populations.
Collapse
Affiliation(s)
- Maximilian W D Raas
- Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Julien Y Dutheil
- Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Unité Mixte de Recherche 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Li LF, Pusadee T, Wedger MJ, Li YL, Li MR, Lau YL, Yap SJ, Jamjod S, Rerkasem B, Hao Y, Song BK, Olsen KM. Porous borders at the wild-crop interface promote weed adaptation in Southeast Asia. Nat Commun 2024; 15:1182. [PMID: 38383554 PMCID: PMC10881511 DOI: 10.1038/s41467-024-45447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
High reproductive compatibility between crops and their wild relatives can provide benefits for crop breeding but also poses risks for agricultural weed evolution. Weedy rice is a feral relative of rice that infests paddies and causes severe crop losses worldwide. In regions of tropical Asia where the wild progenitor of rice occurs, weedy rice could be influenced by hybridization with the wild species. Genomic analysis of this phenomenon has been very limited. Here we use whole genome sequence analyses of 217 wild, weedy and cultivated rice samples to show that wild rice hybridization has contributed substantially to the evolution of Southeast Asian weedy rice, with some strains acquiring weed-adaptive traits through introgression from the wild progenitor. Our study highlights how adaptive introgression from wild species can contribute to agricultural weed evolution, and it provides a case study of parallel evolution of weediness in independently-evolved strains of a weedy crop relative.
Collapse
Affiliation(s)
- Lin-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Tonapha Pusadee
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Marshall J Wedger
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Ya-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ming-Rui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | | | - Sansanee Jamjod
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjavan Rerkasem
- Plant Genetic Resources and Nutrition Laboratory, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yan Hao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Beng-Kah Song
- School of Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63105, USA.
| |
Collapse
|
10
|
Janák V, Novák K, Kyselý R. Late History of Cattle Breeds in Central Europe in Light of Genetic and Archaeogenetic Sources-Overview, Thoughts, and Perspectives. Animals (Basel) 2024; 14:645. [PMID: 38396613 PMCID: PMC10886113 DOI: 10.3390/ani14040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Although Europe was not a primary centre of cattle domestication, its expansion from the Middle East and subsequent development created a complex pattern of cattle breed diversity. Many isolated populations of local historical breeds still carry the message about the physical and genetic traits of ancient populations. Since the way of life of human communities starting from the eleventh millennium BP was strongly determined by livestock husbandry, the knowledge of cattle diversity through the ages is helpful in the interpretation of many archaeological findings. Historical cattle diversity is currently at the intersection of two leading directions of genetic research. Firstly, it is archaeogenetics attempting to recover and interpret the preserved genetic information directly from archaeological finds. The advanced archaeogenetic approaches meet with the population genomics of extant cattle populations. The immense amount of genetic information collected from living cattle, due to its key economic role, allows for reconstructing the genetic profiles of the ancient populations backwards. The present paper aims to place selected archaeogenetic, genetic, and genomic findings in the picture of cattle history in Central Europe, as suggested by archaeozoological and historical records. Perspectives of the methodical connection between the genetic approaches and the approaches of traditional archaeozoology, such as osteomorphology and osteometry, are discussed. The importance, actuality, and effectiveness of combining different approaches to each archaeological find, such as morphological characterization, interpretation of the historical context, and molecular data, are stressed.
Collapse
Affiliation(s)
- Vojtěch Janák
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, 118 00 Praha, Czech Republic
- Department of Genetics and Breeding, Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic;
- Department of Archaeology, Faculty of Arts, Charles University, Nám. Jana Palacha 2, 116 38 Praha, Czech Republic
| | - Karel Novák
- Department of Genetics and Breeding, Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic;
| | - René Kyselý
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, 118 00 Praha, Czech Republic
| |
Collapse
|
11
|
Fu YB, Peterson GW, Horbach C. Deleterious and Adaptive Mutations in Plant Germplasm Conserved Ex Situ. Mol Biol Evol 2023; 40:msad238. [PMID: 37931158 PMCID: PMC10724023 DOI: 10.1093/molbev/msad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Conserving more than 7 million plant germplasm accessions in 1,750 genebanks worldwide raises the hope of securing the food supply for humanity for future generations. However, there is a genetic cost for such long-term germplasm conservation, which has been largely unaccounted for before. We investigated the extent and variation of deleterious and adaptive mutations in 490 individual plants representing barley, wheat, oat, soybean, maize, rapa, and sunflower collections in a seed genebank using RNA-Seq technology. These collections were found to have a range of deleterious mutations detected from 125 (maize) to 83,695 (oat) with a mean of 13,537 and of the averaged sample-wise mutation burden per deleterious locus from 0.069 to 0.357 with a mean of 0.200. Soybean and sunflower collections showed that accessions acquired earlier had increased mutation burdens. The germplasm with more years of storage in several collections carried more deleterious and fewer adaptive mutations. The samples with more cycles of germplasm regeneration revealed fewer deleterious and more adaptive mutations. These findings are significant for understanding mutational dynamics and genetic cost in conserved germplasm and have implications for long-term germplasm management and conservation.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Gregory W Peterson
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Carolee Horbach
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
12
|
Wang D, Salehian-Dehkordi H, Suo L, Lv F. Impacts of Population Size and Domestication Process on Genetic Diversity and Genetic Load in Genus Ovis. Genes (Basel) 2023; 14:1977. [PMID: 37895326 PMCID: PMC10606048 DOI: 10.3390/genes14101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In theoretical biology, a prevailing hypothesis posits a profound interconnection between effective population size (Ne), genetic diversity, inbreeding, and genetic load. The domestication and improvement processes are believed to be pivotal in diminishing genetic diversity while elevating levels of inbreeding and increasing genetic load. In this study, we performed a whole genome analysis to quantity genetic diversity, inbreeding, and genetic load across seven wild Ovis species and five domesticated sheep breeds. Our research demonstrates that the genetic load and diversity of species in the genus Ovis have no discernible impact on recent Ne, and three species within the subgenus Pachyceros tend to carry a higher genetic load and lower genetic diversity patterns. The results coincide with these species' dramatic decline in population sizes within the subgenus Pachyceros ~80-250 thousand years ago. European mouflon presented with the lowest Ne, lower genetic diversity, and higher individual inbreeding coefficient but a lower genetic load (missense and LoF). This suggests that the small Ne of European mouflon could reduce harmful mutations compared to other species within the genus Ovis. We showed lower genetic diversity in domesticated sheep than in Asiatic mouflon, but counterintuitive patterns of genetic load, i.e., lower weak genetic load (missense mutation) and no significant difference in strong genetic load (LoF mutation) between domestic sheep and Asiatic mouflon. These findings reveal that the "cost of domestication" during domestication and improvement processes reduced genetic diversity and purified weak genetic load more efficiently than wild species.
Collapse
Affiliation(s)
- Dongfeng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | | | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China;
| | - Fenghua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
13
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Sun S, Wang B, Li C, Xu G, Yang J, Hufford MB, Ross-Ibarra J, Wang H, Wang L. Unraveling Prevalence and Effects of Deleterious Mutations in Maize Elite Lines across Decades of Modern Breeding. Mol Biol Evol 2023; 40:msad170. [PMID: 37494285 PMCID: PMC10414807 DOI: 10.1093/molbev/msad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Future breeding is likely to involve the detection and removal of deleterious alleles, which are mutations that negatively affect crop fitness. However, little is known about the prevalence of such mutations and their effects on phenotypic traits in the context of modern crop breeding. To address this, we examined the number and frequency of deleterious mutations in 350 elite maize inbred lines developed over the past few decades in China and the United States. Our findings reveal an accumulation of weakly deleterious mutations and a decrease in strongly deleterious mutations, indicating the dominant effects of genetic drift and purifying selection for the two types of mutations, respectively. We also discovered that slightly deleterious mutations, when at lower frequencies, were more likely to be heterozygous in the developed hybrids. This is consistent with complementation as a potential explanation for heterosis. Subsequently, we found that deleterious mutations accounted for more of the variation in phenotypic traits than nondeleterious mutations with matched minor allele frequencies, especially for traits related to leaf angle and flowering time. Moreover, we detected fewer deleterious mutations in the promoter and gene body regions of differentially expressed genes across breeding eras than in nondifferentially expressed genes. Overall, our results provide a comprehensive assessment of the prevalence and impact of deleterious mutations in modern maize breeding and establish a useful baseline for future maize improvement efforts.
Collapse
Affiliation(s)
- Shichao Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China
| |
Collapse
|
15
|
Wong ELY, Filatov DA. The role of recombination landscape in species hybridisation and speciation. FRONTIERS IN PLANT SCIENCE 2023; 14:1223148. [PMID: 37484464 PMCID: PMC10361763 DOI: 10.3389/fpls.2023.1223148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
It is now well recognised that closely related species can hybridize and exchange genetic material, which may promote or oppose adaptation and speciation. In some cases, interspecific hybridisation is very common, making it surprising that species identity is preserved despite active gene exchange. The genomes of most eukaryotic species are highly heterogeneous with regard to gene density, abundance of repetitive DNA, chromatin compactisation etc, which can make certain genomic regions more prone or more resistant to introgression of genetic material from other species. Heterogeneity in local recombination rate underpins many of the observed patterns across the genome (e.g. actively recombining regions are typically gene rich and depleted for repetitive DNA) and it can strongly affect the permeability of genomic regions to interspecific introgression. The larger the region lacking recombination, the higher the chance for the presence of species incompatibility gene(s) in that region, making the entire non- or rarely recombining block impermeable to interspecific introgression. Large plant genomes tend to have highly heterogeneous recombination landscape, with recombination frequently occurring at the ends of the chromosomes and central regions lacking recombination. In this paper we review the relationship between recombination and introgression in plants and argue that large rarely recombining regions likely play a major role in preserving species identity in actively hybridising plant species.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | | |
Collapse
|
16
|
Jareczek JJ, Grover CE, Hu G, Xiong X, Arick Ii MA, Peterson DG, Wendel JF. Domestication over Speciation in Allopolyploid Cotton Species: A Stronger Transcriptomic Pull. Genes (Basel) 2023; 14:1301. [PMID: 37372480 DOI: 10.3390/genes14061301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cotton has been domesticated independently four times for its fiber, but the genomic targets of selection during each domestication event are mostly unknown. Comparative analysis of the transcriptome during cotton fiber development in wild and cultivated materials holds promise for revealing how independent domestications led to the superficially similar modern cotton fiber phenotype in upland (G. hirsutum) and Pima (G. barbadense) cotton cultivars. Here we examined the fiber transcriptomes of both wild and domesticated G. hirsutum and G. barbadense to compare the effects of speciation versus domestication, performing differential gene expression analysis and coexpression network analysis at four developmental timepoints (5, 10, 15, or 20 days after flowering) spanning primary and secondary wall synthesis. These analyses revealed extensive differential expression between species, timepoints, domestication states, and particularly the intersection of domestication and species. Differential expression was higher when comparing domesticated accessions of the two species than between the wild, indicating that domestication had a greater impact on the transcriptome than speciation. Network analysis showed significant interspecific differences in coexpression network topology, module membership, and connectivity. Despite these differences, some modules or module functions were subject to parallel domestication in both species. Taken together, these results indicate that independent domestication led G. hirsutum and G. barbadense down unique pathways but that it also leveraged similar modules of coexpression to arrive at similar domesticated phenotypes.
Collapse
Affiliation(s)
- Josef J Jareczek
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
- Biology Department, Bellarmine University, Louisville, KY 40205, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mark A Arick Ii
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
17
|
Wang N, Cao S, Liu Z, Xiao H, Hu J, Xu X, Chen P, Ma Z, Ye J, Chai L, Guo W, Larkin RM, Xu Q, Morrell PL, Zhou Y, Deng X. Genomic conservation of crop wild relatives: A case study of citrus. PLoS Genet 2023; 19:e1010811. [PMID: 37339133 DOI: 10.1371/journal.pgen.1010811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Conservation of crop wild relatives is critical for plant breeding and food security. The lack of clarity on the genetic factors that lead to endangered status or extinction create difficulties when attempting to develop concrete recommendations for conserving a citrus wild relative: the wild relatives of crops. Here, we evaluate the conservation of wild kumquat (Fortunella hindsii) using genomic, geographical, environmental, and phenotypic data, and forward simulations. Genome resequencing data from 73 accessions from the Fortunella genus were combined to investigate population structure, demography, inbreeding, introgression, and genetic load. Population structure was correlated with reproductive type (i.e., sexual and apomictic) and with a significant differentiation within the sexually reproducing population. The effective population size for one of the sexually reproducing subpopulations has recently declined to ~1,000, resulting in high levels of inbreeding. In particular, we found that 58% of the ecological niche overlapped between wild and cultivated populations and that there was extensive introgression into wild samples from cultivated populations. Interestingly, the introgression pattern and accumulation of genetic load may be influenced by the type of reproduction. In wild apomictic samples, the introgressed regions were primarily heterozygous, and genome-wide deleterious variants were hidden in the heterozygous state. In contrast, wild sexually reproducing samples carried a higher recessive deleterious burden. Furthermore, we also found that sexually reproducing samples were self-incompatible, which prevented the reduction of genetic diversity by selfing. Our population genomic analyses provide specific recommendations for distinct reproductive types and monitoring during conservation. This study highlights the genomic landscape of a wild relative of citrus and provides recommendations for the conservation of crop wild relatives.
Collapse
Affiliation(s)
- Nan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuo Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhongjie Liu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hua Xiao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbing Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Xu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peng Chen
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhiyao Ma
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yongfeng Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
18
|
Rangan P, Pradheep K, Archak S, Smýkal P, Henry R. Editorial: Genomics and phenomics of crop wild relatives (CWRs) for crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1221601. [PMID: 37332694 PMCID: PMC10272818 DOI: 10.3389/fpls.2023.1221601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023]
Affiliation(s)
- Parimalan Rangan
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Kanakasabapathi Pradheep
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources (NBPGR)-Regional Station, Thrissur, India
| | - Sunil Archak
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
19
|
Dwivedi SL, Heslop-Harrison P, Spillane C, McKeown PC, Edwards D, Goldman I, Ortiz R. Evolutionary dynamics and adaptive benefits of deleterious mutations in crop gene pools. TRENDS IN PLANT SCIENCE 2023; 28:685-697. [PMID: 36764870 DOI: 10.1016/j.tplants.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 05/13/2023]
Abstract
Mutations with deleterious consequences in nature may be conditionally deleterious in crop plants. That is, while some genetic variants may reduce fitness under wild conditions and be subject to purifying selection, they can be under positive selection in domesticates. Such deleterious alleles can be plant breeding targets, particularly for complex traits. The difficulty of distinguishing favorable from unfavorable variants reduces the power of selection, while favorable trait variation and heterosis may be attributable to deleterious alleles. Here, we review the roles of deleterious mutations in crop breeding and discuss how they can be used as a new avenue for crop improvement with emerging genomic tools, including HapMaps and pangenome analysis, aiding the identification, removal, or exploitation of deleterious mutations.
Collapse
Affiliation(s)
| | - Pat Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Irwin Goldman
- Department of Horticulture, College of Agricultural and Life Sciences, University of Wisconsin Madison, WI 53706, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, SE 23053, Sweden.
| |
Collapse
|
20
|
Sertse D, You FM, Klymiuk V, Haile JK, N'Diaye A, Pozniak CJ, Cloutier S, Kagale S. Historical Selection, Adaptation Signatures, and Ambiguity of Introgressions in Wheat. Int J Mol Sci 2023; 24:ijms24098390. [PMID: 37176097 PMCID: PMC10179502 DOI: 10.3390/ijms24098390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Wheat was one of the crops domesticated in the Fertile Crescent region approximately 10,000 years ago. Despite undergoing recent polyploidization, hull-to-free-thresh transition events, and domestication bottlenecks, wheat is now grown in over 130 countries and accounts for a quarter of the world's cereal production. The main reason for its widespread success is its broad genetic diversity that allows it to thrive in different environments. To trace historical selection and hybridization signatures, genome scans were performed on two datasets: approximately 113K SNPs from 921 predominantly bread wheat accessions and approximately 110K SNPs from about 400 wheat accessions representing all ploidy levels. To identify environmental factors associated with the loci, a genome-environment association (GEA) was also performed. The genome scans on both datasets identified a highly differentiated region on chromosome 4A where accessions in the first dataset were dichotomized into a group (n = 691), comprising nearly all cultivars, wild emmer, and most landraces, and a second group (n = 230), dominated by landraces and spelt accessions. The grouping of cultivars is likely linked to their potential ancestor, bread wheat cv. Norin-10. The 4A region harbored important genes involved in adaptations to environmental conditions. The GEA detected loci associated with latitude and temperature. The genetic signatures detected in this study provide insight into the historical selection and hybridization events in the wheat genome that shaped its current genetic structure and facilitated its success in a wide spectrum of environmental conditions. The genome scans and GEA approaches applied in this study can help in screening the germplasm housed in gene banks for breeding, and for conservation purposes.
Collapse
Affiliation(s)
- Demissew Sertse
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Valentyna Klymiuk
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Jemanesh K Haile
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Amidou N'Diaye
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
21
|
Wu Y, Li D, Hu Y, Li H, Ramstein GP, Zhou S, Zhang X, Bao Z, Zhang Y, Song B, Zhou Y, Zhou Y, Gagnon E, Särkinen T, Knapp S, Zhang C, Städler T, Buckler ES, Huang S. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 2023; 186:2313-2328.e15. [PMID: 37146612 DOI: 10.1016/j.cell.2023.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Hybrid potato breeding will transform the crop from a clonally propagated tetraploid to a seed-reproducing diploid. Historical accumulation of deleterious mutations in potato genomes has hindered the development of elite inbred lines and hybrids. Utilizing a whole-genome phylogeny of 92 Solanaceae and its sister clade species, we employ an evolutionary strategy to identify deleterious mutations. The deep phylogeny reveals the genome-wide landscape of highly constrained sites, comprising ∼2.4% of the genome. Based on a diploid potato diversity panel, we infer 367,499 deleterious variants, of which 50% occur at non-coding and 15% at synonymous sites. Counterintuitively, diploid lines with relatively high homozygous deleterious burden can be better starting material for inbred-line development, despite showing less vigorous growth. Inclusion of inferred deleterious mutations increases genomic-prediction accuracy for yield by 24.7%. Our study generates insights into the genome-wide incidence and properties of deleterious mutations and their far-reaching consequences for breeding.
Collapse
Affiliation(s)
- Yaoyao Wu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Dawei Li
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Hu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Hongbo Li
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Guillaume P Ramstein
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus 8000, Denmark
| | - Shaoqun Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xinyan Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Zhigui Bao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Yu Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Baoxing Song
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Yao Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100094, China
| | - Yongfeng Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Edeline Gagnon
- Technische Universität München, TUM School of Life Sciences, Emil-Ramann-Strasse 2, 85354 Freising, Germany
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Chunzhi Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Thomas Städler
- Institute of Integrative Biology and Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA; USDA-ARS, Ithaca, NY 14853, USA
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
22
|
Huang K, Jahani M, Gouzy J, Legendre A, Carrere S, Lázaro-Guevara JM, González Segovia EG, Todesco M, Mayjonade B, Rodde N, Cauet S, Dufau I, Staton SE, Pouilly N, Boniface MC, Tapy C, Mangin B, Duhnen A, Gautier V, Poncet C, Donnadieu C, Mandel T, Hübner S, Burke JM, Vautrin S, Bellec A, Owens GL, Langlade N, Muños S, Rieseberg LH. The genomics of linkage drag in inbred lines of sunflower. Proc Natl Acad Sci U S A 2023; 120:e2205783119. [PMID: 36972449 PMCID: PMC10083583 DOI: 10.1073/pnas.2205783119] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/18/2022] [Indexed: 03/29/2023] Open
Abstract
Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here, we analyzed the genomic and phenotypic impacts of wild introgressions in inbred lines of cultivated sunflower to estimate the impacts of linkage drag. First, we generated reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge-regression best linear unbiased prediction (BLUP) model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including >3,000 new genes. While introgressions reduced genetic load at protein-coding sequences, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low-frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Mojtaba Jahani
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Jérôme Gouzy
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Alexandra Legendre
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Sébastien Carrere
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - José Miguel Lázaro-Guevara
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Eric Gerardo González Segovia
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Baptiste Mayjonade
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Nathalie Rodde
- Centre National de Ressources Génomiques Végétales (CNRGV), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Castanet-Tolosan, F-31326France
| | - Stéphane Cauet
- Centre National de Ressources Génomiques Végétales (CNRGV), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Castanet-Tolosan, F-31326France
| | - Isabelle Dufau
- Centre National de Ressources Génomiques Végétales (CNRGV), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Castanet-Tolosan, F-31326France
| | - S. Evan Staton
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Research and Development Department, NRGene Canada Inc., Saskatoon, SKS7N 3R3, Canada
| | - Nicolas Pouilly
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Marie-Claude Boniface
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Camille Tapy
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Brigitte Mangin
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Alexandra Duhnen
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Véronique Gautier
- Gentyane Genomic Platform, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Clermont Ferrand, 63000France
| | - Charles Poncet
- Gentyane Genomic Platform, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Clermont Ferrand, 63000France
| | - Cécile Donnadieu
- Plateforme Génome et Transcriptome (GeT-PlaGe), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Castanet-Tolosan, F-31326France
| | - Tali Mandel
- MIGAL Galilee Research Institute, Tel-Hai Academic College, Upper Galilee, 11016Israel
| | - Sariel Hübner
- MIGAL Galilee Research Institute, Tel-Hai Academic College, Upper Galilee, 11016Israel
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, GA30602
| | - Sonia Vautrin
- Centre National de Ressources Génomiques Végétales (CNRGV), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Castanet-Tolosan, F-31326France
| | - Arnaud Bellec
- Centre National de Ressources Génomiques Végétales (CNRGV), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Castanet-Tolosan, F-31326France
| | - Gregory L. Owens
- Department of Biology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Nicolas Langlade
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes-Microbes-Environnement, Centre national de la recherche scientifique (CNRS), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Toulouse, Castanet-Tolosan, F-31326France
| | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
23
|
Krug AS, B. M. Drummond E, Van Tassel DL, Warschefsky EJ. The next era of crop domestication starts now. Proc Natl Acad Sci U S A 2023; 120:e2205769120. [PMID: 36972445 PMCID: PMC10083606 DOI: 10.1073/pnas.2205769120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene-the process of domestication can help build them.
Collapse
Affiliation(s)
| | - Emily B. M. Drummond
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | | | | |
Collapse
|
24
|
Ramasamy U, Elizur A, Subramanian S. Deleterious mutation load in the admixed mice population. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1084502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Deleterious mutation loads are known to correlate negatively with effective population size (Ne). Due to this reason, previous studies observed a higher proportion of harmful mutations in small populations than that in large populations. However, the mutational load in an admixed population that derived from introgression between individuals from two populations with vastly different Ne is not known. We investigated this using the whole genome data from two subspecies of the mouse (Mus musculus castaneus and Mus musculus musculus) with significantly different Ne. We used the ratio of diversities at nonsynonymous and synonymous sites (dN/dS) to measure the harmful mutation load. Our results showed that this ratio observed for the admixed population was intermediate between those of the parental populations. The dN/dS ratio of the hybrid population was significantly higher than that of M. m. castaneus but lower than that of M. m. musculus. Our analysis revealed a significant positive correlation between the proportion of M. m. musculus ancestry in admixed individuals and their dN/dS ratio. This suggests that the admixed individuals with high proportions of M. m. musculus ancestry have large dN/dS ratios. We also used the proportion of deleterious nonsynonymous SNVs as a proxy for deleterious mutation load, which also produced similar results. The observed results were in concordance with those expected by theory. We also show a shift in the distribution of fitness effects of nonsynonymous SNVs in the admixed genomes compared to the parental populations. These findings suggest that the deleterious mutation load of the admixed population is determined by the proportion of the ancestries of the subspecies. Therefore, it is important to consider the status and the level of genetic admixture of the populations whilst estimating the mutation loads.
Collapse
|
25
|
Zhong L, Zhu Y, Olsen KM. Wild progenitors provide a sound baseline model for evolutionary analysis of domesticated crop species. Heredity (Edinb) 2023; 130:111-113. [PMID: 36829043 PMCID: PMC9981727 DOI: 10.1038/s41437-023-00605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Affiliation(s)
- Limei Zhong
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China.
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China.
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
26
|
Genomic diversity and signals of selection processes in wild and farm-reared red-legged partridges (Alectoris rufa). Genomics 2023; 115:110591. [PMID: 36849018 DOI: 10.1016/j.ygeno.2023.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
The genetic dynamics of wild populations with releases of farm-reared reinforcements are very complex. These releases can endanger wild populations through genetic swamping or by displacing them. We assessed the genomic differences between wild and farm-reared red-legged partridges (Alectoris rufa) and described differential selection signals between both populations. We sequenced the whole genome of 30 wild and 30 farm-reared partridges. Both partridges had similar nucleotide diversity (π). Farm-reared partridges had a more negative Tajima's D and more and longer regions of extended haplotype homozygosity than wild partridges. We observed higher inbreeding coefficients (FIS and FROH) in wild partridges. Selective sweeps (Rsb) were enriched with genes that contribute to the reproductive, skin and feather colouring, and behavioural differences between wild and farm-reared partridges. The analysis of genomic diversity should inform future decisions for the preservation of wild populations.
Collapse
|
27
|
Robinson J, Kyriazis CC, Yuan SC, Lohmueller KE. Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annu Rev Anim Biosci 2023; 11:93-114. [PMID: 36332644 PMCID: PMC9933137 DOI: 10.1146/annurev-animal-080522-093311] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deleterious mutations decrease reproductive fitness and are ubiquitous in genomes. Given that many organisms face ongoing threats of extinction, there is interest in elucidating the impact of deleterious variation on extinction risk and optimizing management strategies accounting for such mutations. Quantifying deleterious variation and understanding the effects of population history on deleterious variation are complex endeavors because we do not know the strength of selection acting on each mutation. Further, the effect of demographic history on deleterious mutations depends on the strength of selection against the mutation and the degree of dominance. Here we clarify how deleterious variation can be quantified and studied in natural populations. We then discuss how different demographic factors, such as small population size, nonequilibrium population size changes, inbreeding, and gene flow, affect deleterious variation. Lastly, we provide guidance on studying deleterious variation in nonmodel populations of conservation concern.
Collapse
Affiliation(s)
- Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, California, USA;
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Stella C Yuan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
28
|
Maňourová A, Chinheya IP, Kalousová M, Ruiz-Chután JA, Okafor UC, Tchoundjeu Z, Tsobeng A, Van Damme P, Lojka B. Domestication Potential of Garcinia kola Heckel (Clusiaceae): Searching for Diversity in South Cameroon. PLANTS (BASEL, SWITZERLAND) 2023; 12:742. [PMID: 36840090 PMCID: PMC9966834 DOI: 10.3390/plants12040742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Seeds and bark of Garcinia kola Heckel (Clusiaceae) are popular products in West and Central Africa. Despite the tree's economic and cultural importance, little is known about its phenotypic and genotypic variation. This study characterised the morphological and genetic diversity of G. kola in South Cameroon, searching for traits and populations that might be used for domestication. Morphological assessment and amplified fragment length polymorphism (AFLP) markers were applied to characterise diversity among geographic populations from Central and South regions, and between managed and wild trees. AFLP-SURV and analysis of molecular variance results indicated that a major part of genetic diversity is harboured within populations rather than between them. Bayesian analysis, principal component analysis and t-SNE identified three clusters where Ebolowa emerged as the transition population, combining features from both regions. Trees from the south had a higher prevalence of morphological domestication-related characteristics. Trees from the central region, on the other hand, demonstrated greater genetic diversity. No significant differences in phenotype and genotype were revealed between wild and managed populations, suggesting G. kola is still in the early stages of its domestication process.
Collapse
Affiliation(s)
- Anna Maňourová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Irikidzai Prosper Chinheya
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Marie Kalousová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - José Alejandro Ruiz-Chután
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Facultad de Agronomía, Universidad de San Carlos de Guatemala, Guatemala City 010012, Guatemala
| | - Uche Cyprian Okafor
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Zac Tchoundjeu
- Higher Institute of Environmental Sciences (HIES), Yaounde P.O. Box 16317, Cameroon
| | - Alain Tsobeng
- World Agroforestry Centre (CIFOR-ICRAF) Cameroon, Derrière Usine Bastos, Yaounde P.O. Box 16317, Cameroon
| | - Patrick Van Damme
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Department of Plant Production, Faculty of Bio-Science Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
29
|
Lingaas F, Tengvall K, Jansen JH, Pelander L, Hurst MH, Meuwissen T, Karlsson Å, Meadows JRS, Sundström E, Thoresen SI, Arnet EF, Guttersrud OA, Kierczak M, Hytönen MK, Lohi H, Hedhammar Å, Lindblad-Toh K, Wang C. Bayesian mixed model analysis uncovered 21 risk loci for chronic kidney disease in boxer dogs. PLoS Genet 2023; 19:e1010599. [PMID: 36693108 PMCID: PMC9897549 DOI: 10.1371/journal.pgen.1010599] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/03/2023] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.
Collapse
Affiliation(s)
- Frode Lingaas
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johan Høgset Jansen
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Lena Pelander
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Theo Meuwissen
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jennifer R. S. Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Stein Istre Thoresen
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Ellen Frøysadal Arnet
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Ole Albert Guttersrud
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (KL-T); (CW)
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (KL-T); (CW)
| |
Collapse
|
30
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
31
|
Cordero GA, Werneburg I. Domestication and the comparative embryology of birds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:447-459. [PMID: 35604321 DOI: 10.1002/jez.b.23144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Studies of domesticated animals have greatly contributed to our understanding of avian embryology. Foundational questions in developmental biology were motivated by Aristotle's observations of chicken embryos. By the 19th century, the chicken embryo was at the center stage of developmental biology, but how closely does this model species mirror the ample taxonomic diversity that characterizes the avian tree of life? Here, we provide a brief overview of the taxonomic breadth of comparative embryological studies in birds. We particularly focused on staging tables and papers that attempted to document the timing of developmental transformations. We show that most of the current knowledge of avian embryology is based on Galliformes (chicken and quail) and Anseriformes (duck and goose). Nonetheless, data are available for some ecologically diverse avian subclades, including Struthioniformes (e.g., ostrich, emu) and Sphenisciformes (penguins). Thus far, there has only been a handful of descriptive embryological studies in the most speciose subclade of Aves, that is, the songbirds (Passeriniformes). Furthermore, we found that temporal variances for developmental events are generally uniform across a consensus chronological sequence for birds. Based on the available data, developmental trajectories for chicken and other model species appear to be highly similar. We discuss future avenues of research in comparative avian embryology in light of the currently available wealth of data on domesticated species and beyond.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Peleg Z, Abbo S, Gopher A. When half is more than the whole: Wheat domestication syndrome reconsidered. Evol Appl 2022; 15:2002-2009. [PMID: 36540632 PMCID: PMC9753826 DOI: 10.1111/eva.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Two opposing models currently dominate Near Eastern plant domestication research. The core area-one event model depicts a knowledge-based, conscious, geographically centered, rapid single-event domestication, while the protracted-autonomous model emphasizes a noncentered, millennia-long process based on unconscious dynamics. The latter model relies, in part, on quantitative depictions of diachronic changes (in archaeological remains) in proportions of spikelet shattering to nonshattering, towards full dominance of the nonshattering (domesticated) phenotypes in cultivated cereal populations. Recent wild wheat genome assembly suggests that shattering and nonshattering spikelets may originate from the same (individual) genotype. Therefore, their proportions among archaeobotanical assemblages cannot reliably describe the presumed protracted-selection dynamics underlying wheat domestication. This calls for a reappraisal of the "domestication syndrome" concept associated with cereal domestication.
Collapse
Affiliation(s)
- Zvi Peleg
- Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Shahal Abbo
- Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Avi Gopher
- Sonia and Marco Nadler Institute of ArchaeologyTel‐Aviv UniversityRamat AvivIsrael
| |
Collapse
|
33
|
Gutierrez A, Grillo MA. Effects of Domestication on Plant-Microbiome Interactions. PLANT & CELL PHYSIOLOGY 2022; 63:1654-1666. [PMID: 35876043 DOI: 10.1093/pcp/pcac108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Through the process of domestication, selection is targeted on a limited number of plant traits that are typically associated with yield. As an unintended consequence, domesticated plants often perform poorly compared to their wild progenitors for a multitude of traits that were not under selection during domestication, including abiotic and biotic stress tolerance. Over the past decade, advances in sequencing technology have allowed for the rigorous characterization of host-associated microbial communities, termed the microbiome. It is now clear that nearly every conceivable plant interaction with the environment is mediated by interactions with the microbiome. For this reason, plant-microbiome interactions are an area of great promise for plant breeding and crop improvement. Here, we review the literature to assess the potential impact that domestication has had on plant-microbiome interactions and the current understanding of the genetic basis of microbiome variation to inform plant breeding efforts. Overall, we find limited evidence that domestication impacts the diversity of microbiomes, but domestication is often associated with shifts in the abundance and composition of microbial communities, including taxa of known functional significance. Moreover, genome-wide association studies and mutant analysis have not revealed a consistent set of core candidate genes or genetic pathways that confer variation in microbiomes across systems. However, such studies do implicate a consistent role for plant immunity, root traits, root and leaf exudates and cell wall integrity as key traits that control microbiome colonization and assembly. Therefore, selection on these key traits may pose the most immediate promise for enhancing plant-microbiome interactions through breeding.
Collapse
Affiliation(s)
- Andres Gutierrez
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
34
|
Jian L, Yan J, Liu J. De Novo Domestication in the Multi-Omics Era. PLANT & CELL PHYSIOLOGY 2022; 63:1592-1606. [PMID: 35762778 DOI: 10.1093/pcp/pcac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Most cereal crops were domesticated within the last 12,000 years and subsequently spread around the world. These crops have been nourishing the world by supplying a primary energy and nutrient source, thereby playing a critical role in determining the status of human health and sustaining the global population. Here, we review the major challenges of future agriculture and emphasize the utilization of wild germplasm. De novo domestication is one of the most straightforward strategies to manipulate domestication-related and/or other genes with known function, and thereby introduce desired traits into wild plants. We also summarize known causal variations and their corresponding pathways in order to better understand the genetic basis of crop evolution, and how this knowledge could facilitate de novo domestication. Indeed knowledge-driven de novo domestication has great potential for the development of new sustainable crops that have climate-resilient high yield with low resource input and meet individual nutrient needs. Finally, we discuss current opportunities for and barriers to knowledge-driven de novo domestication.
Collapse
Affiliation(s)
- Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
35
|
Singh J, van der Knaap E. Unintended Consequences of Plant Domestication. PLANT & CELL PHYSIOLOGY 2022; 63:1573-1583. [PMID: 35715986 DOI: 10.1093/pcp/pcac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Human selection on wild populations mostly favored a common set of plant traits during domestication. This process of direct selection also altered other independent traits that were not directly perceived or desired during crop domestication and improvement. A deeper knowledge of the inadvertent and undesirable phenotypic effects and their underlying genetic causes can help design strategies to mitigate their effects and improve genetic gain in crop plants. We review different factors explaining the negative consequences of plant domestication at the phenotypic and genomic levels. We further describe the genetic causes of undesirable effects that originate from the selection of favorable alleles during plant domestication. In addition, we propose strategies that could be useful in attenuating such effects for crop improvement. With novel -omics and genome-editing tools, it is relatively approachable to understand and manipulate the genetic and biochemical mechanisms responsible for the undesirable phenotypes in domesticated plants.
Collapse
Affiliation(s)
- Jugpreet Singh
- Center for Applied Genetic Technologies, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
- Institute for Plant Breeding, Genetics and Genomics, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
36
|
Pisias MT, Bakala HS, McAlvay AC, Mabry ME, Birchler JA, Yang B, Pires JC. Prospects of Feral Crop De Novo Redomestication. PLANT & CELL PHYSIOLOGY 2022; 63:1641-1653. [PMID: 35639623 DOI: 10.1093/pcp/pcac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Modern agriculture depends on a narrow variety of crop species, leaving global food and nutritional security highly vulnerable to the adverse effects of climate change and population expansion. Crop improvement using conventional and molecular breeding approaches leveraging plant genetic diversity using crop wild relatives (CWRs) has been one approach to address these issues. However, the rapid pace of the global change requires additional innovative solutions to adapt agriculture to meet global needs. Neodomestication-the rapid and targeted introduction of domestication traits using introgression or genome editing of CWRs-is being explored as a supplementary approach. These methods show promise; however, they have so far been limited in efficiency and applicability. We propose expanding the scope of neodomestication beyond truly wild CWRs to include feral crops as a source of genetic diversity for novel crop development, in this case 'redomestication'. Feral crops are plants that have escaped cultivation and evolved independently, typically adapting to their local environments. Thus, feral crops potentially contain valuable adaptive features while retaining some domestication traits. Due to their genetic proximity to crop species, feral crops may be easier targets for de novo domestication (i.e. neodomestication via genome editing techniques). In this review, we explore the potential of de novo redomestication as an application for novel crop development by genome editing of feral crops. This approach to efficiently exploit plant genetic diversity would access an underutilized reservoir of genetic diversity that could prove important in support of global food insecurity in the face of the climate change.
Collapse
Affiliation(s)
- Michael T Pisias
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Harmeet Singh Bakala
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO 63132, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
37
|
Chromosome-level genome and population genomics reveal evolutionary characteristics and conservation status of Chinese indigenous geese. Commun Biol 2022; 5:1191. [DOI: 10.1038/s42003-022-04125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractGeese are herbivorous birds that play an essential role in the agricultural economy. We construct the chromosome-level genome of a Chinese indigenous goose (the Xingguo gray goose, XGG; Anser cygnoides) and analyze the adaptation of fat storage capacity in the goose liver during the evolution of Anatidae. Genomic resequencing of 994 geese is used to investigate the genetic relationships of geese, which supports the dual origin of geese (Anser cygnoides and Anser anser). Chinese indigenous geese show higher genetic diversity than European geese, and a scientific conservation program can be established to preserve genetic variation for each breed. We also find that a 14-bp insertion in endothelin receptor B subtype 2 (EDNRB2) that determines the white plumage of Chinese domestic geese is a natural mutation, and the linkaged alleles rapidly increase in frequency as a result of genetic hitchhiking, leading to the formation of completely different haplotypes of white geese under strong artificial selection. These genomic resources and our findings will facilitate marker-assisted breeding of geese and provide a foundation for further research on geese genetics and evolution.
Collapse
|
38
|
Evolutionary divergence of duplicated genomes in newly described allotetraploid cottons. Proc Natl Acad Sci U S A 2022; 119:e2208496119. [PMID: 36122204 PMCID: PMC9522333 DOI: 10.1073/pnas.2208496119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wild relatives of domesticated plants provide a rich resource for crop improvement and a valuable comparative perspective for understanding genomic, physiological, and agricultural traits. Here, we provide high-quality reference genomes of one early domesticated form of the economically most important cotton species, Gossypium hirsutum, and two other wild species, to clarify evolutionary relationships and understand the genomic changes that characterize these species and their close relatives. We document abundant gene resources involved in adaptation to environmental challenges, highlighting the potential for introgression of favorable genes into domesticated cotton and for increasing resilience to climate variability. Our study complements other recent genomic analyses in the cotton genus and provides a valuable foundation for breeding improved cotton varieties. Allotetraploid cotton (Gossypium) species represents a model system for the study of plant polyploidy, molecular evolution, and domestication. Here, chromosome-scale genome sequences were obtained and assembled for two recently described wild species of tetraploid cotton, Gossypium ekmanianum [(AD)6, Ge] and Gossypium stephensii [(AD)7, Gs], and one early form of domesticated Gossypium hirsutum, race punctatum [(AD)1, Ghp]. Based on phylogenomic analysis, we provide a dated whole-genome level perspective for the evolution of the tetraploid Gossypium clade and resolved the evolutionary relationships of Gs, Ge, and domesticated G. hirsutum. We describe genomic structural variation that arose during Gossypium evolution and describe its correlates—including phenotypic differentiation, genetic isolation, and genetic convergence—that contributed to cotton biodiversity and cotton domestication. Presence/absence variation is prominent in causing cotton genomic structural variations. A presence/absence variation-derived gene encoding a phosphopeptide-binding protein is implicated in increasing fiber length during cotton domestication. The relatively unimproved Ghp offers the potential for gene discovery related to adaptation to environmental challenges. Expanded gene families enoyl-CoA δ isomerase 3 and RAP2-7 may have contributed to abiotic stress tolerance, possibly by targeting plant hormone-associated biochemical pathways. Our results generate a genomic context for a better understanding of cotton evolution and for agriculture.
Collapse
|
39
|
Lye Z, Choi JY, Purugganan MD. Deleterious mutations and the rare allele burden on rice gene expression. Mol Biol Evol 2022; 39:6693943. [PMID: 36073358 PMCID: PMC9512150 DOI: 10.1093/molbev/msac193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deleterious genetic variation is maintained in populations at low frequencies. Under a model of stabilizing selection, rare (and presumably deleterious) genetic variants are associated with increase or decrease in gene expression from some intermediate optimum. We investigate this phenomenon in a population of largely Oryza sativa ssp. indica rice landraces under normal unstressed wet and stressful drought field conditions. We include single nucleotide polymorphisms, insertion/deletion mutations, and structural variants in our analysis and find a stronger association between rare variants and gene expression outliers under the stress condition. We also show an association of the strength of this rare variant effect with linkage, gene expression levels, network connectivity, local recombination rate, and fitness consequence scores, consistent with the stabilizing selection model of gene expression.
Collapse
Affiliation(s)
- Zoe Lye
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jae Young Choi
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
40
|
Ramstein GP, Buckler ES. Prediction of evolutionary constraint by genomic annotations improves functional prioritization of genomic variants in maize. Genome Biol 2022; 23:183. [PMID: 36050782 PMCID: PMC9438327 DOI: 10.1186/s13059-022-02747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Crop improvement through cross-population genomic prediction and genome editing requires identification of causal variants at high resolution, within fewer than hundreds of base pairs. Most genetic mapping studies have generally lacked such resolution. In contrast, evolutionary approaches can detect genetic effects at high resolution, but they are limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Here we use genomic annotations to accurately predict nucleotide conservation across angiosperms, as a proxy for fitness effect of mutations. Results Using only sequence analysis, we annotate nonsynonymous mutations in 25,824 maize gene models, with information from bioinformatics and deep learning. Our predictions are validated by experimental information: within-species conservation, chromatin accessibility, and gene expression. According to gene ontology and pathway enrichment analyses, predicted nucleotide conservation points to genes in central carbon metabolism. Importantly, it improves genomic prediction for fitness-related traits such as grain yield, in elite maize panels, by stringent prioritization of fewer than 1% of single-site variants. Conclusions Our results suggest that predicting nucleotide conservation across angiosperms may effectively prioritize sites most likely to impact fitness-related traits in crops, without being limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Our approach—Prediction of mutation Impact by Calibrated Nucleotide Conservation (PICNC)—could be useful to select polymorphisms for accurate genomic prediction, and candidate mutations for efficient base editing. The trained PICNC models and predicted nucleotide conservation at protein-coding SNPs in maize are publicly available in CyVerse (10.25739/hybz-2957). Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02747-2.
Collapse
Affiliation(s)
- Guillaume P Ramstein
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark. .,Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA.
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA.,USDA-ARS, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB. Future of Bacterial Disease Management in Crop Production. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:259-282. [PMID: 35790244 DOI: 10.1146/annurev-phyto-021621-121806] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Peter Abrahamian
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
- Plant Pathogen Confirmatory Diagnostic Laboratory, USDA-APHIS, Beltsville, Maryland, USA
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Manoj Choudhary
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
42
|
Guerra‐García A, Rojas‐Barrera IC, Ross‐Ibarra J, Papa R, Piñero D. The genomic signature of wild-to-crop introgression during the domestication of scarlet runner bean ( Phaseolus coccineus L.). Evol Lett 2022; 6:295-307. [PMID: 35937471 PMCID: PMC9346085 DOI: 10.1002/evl3.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 03/06/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022] Open
Abstract
The scarlet runner bean (Phaseolus coccineus) is one of the five domesticated Phaseolus species. It is cultivated in small-scale agriculture in the highlands of Mesoamerica for its dry seeds and immature pods, and unlike the other domesticated beans, P. coccineus is an open-pollinated legume. Contrasting with its close relative, the common bean, few studies focusing on its domestication history have been conducted. Demographic bottlenecks associated with domestication might reduce genetic diversity and facilitate the accumulation of deleterious mutations. Conversely, introgression from wild relatives could be a source of variation. Using Genotyping by Sequencing data (79,286 single-nucleotide variants) from 237 cultivated and wild samples, we evaluated the demographic history of traditional varieties from different regions of Mexico and looked for evidence of introgression between sympatric wild and cultivated populations. Traditional varieties have high levels of diversity, even though there is evidence of a severe initial genetic bottleneck followed by a population expansion. Introgression from wild to domesticated populations was detected, which might contribute to the recovery of the genetic variation. Introgression has occurred at different times: constantly in the center of Mexico; recently in the North West; and anciently in the South. Several factors are acting together to increase and maintain genetic diversity in P. coccineus cultivars, such as demographic expansion and introgression. Wild relatives represent a valuable genetic resource and have played a key role in scarlet runner bean evolution via introgression into traditional varieties.
Collapse
Affiliation(s)
- Azalea Guerra‐García
- Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A2Canada
| | - Idalia C. Rojas‐Barrera
- Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
- Environmental GenomicsMax Planck Institute for Evolutionary Biology24306PlönGermany
| | - Jeffrey Ross‐Ibarra
- Department of Evolution and Ecology, Center for Population Biology, and Genome CenterUniversity of California, DavisDavisCalifornia95616
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed AmbientaliUniversità Politecnica delle MarcheAncona60131Italy
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
| |
Collapse
|
43
|
Wen X, Luo S, Lv D, Jia C, Zhou X, Zhai Q, Xi L, Yang C. Variations in the fecal microbiota and their functions of Thoroughbred, Mongolian, and Hybrid horses. Front Vet Sci 2022; 9:920080. [PMID: 35968025 PMCID: PMC9366519 DOI: 10.3389/fvets.2022.920080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
The horse gut is colonized by a rich and complex microbial community that has important roles in horse physiology, metabolism, nutrition, and immune functions. Fewer across-breed variations in horse gut microbial diversity have been illustrated. In this article, the gut microbiota of Thoroughbred, Mongolian, and Hybrid horses [first filial generation (F1) of Mongolian (maternal) and Thoroughbred (paternal)] were studied by second-generation high-throughput sequencing technology. Differences in gut microbiota composition and function between breeds were determined using diversity and functional prediction analysis. The alpha diversity analysis showed that Thoroughbred horses had a more abundant and diverse gut microbiota, while the diversity of gut microbiota in Hybrid horses was intermediate between Thoroughbred and Mongolian horses. Subsequent cluster analysis showed that Hybrid horses have a microbiota composition more similar to Mongolian horses. LEfSe analysis revealed that the bacterial biomarkers for Thoroughbred horses at the family level were Prevotellaceae, Rikenellaceae, Fibrobacteraceae, p_251_o5, Lactobacillaceae, and uncultured_bacterium_o_WCHB1_41; the bacterial biomarker for Mongolian horses was Planococcaceae; and the bacterial biomarkers for Hybrid horses were Moraxellaceae, Enterobacteriaceae, and Ruminococcaceae. The functional prediction results indicated that the metabolic pathways differ significantly between the breeds. Regarding metabolism, the Hybrid horses had the lowest proportion of the carbohydrate metabolic pathways, while the energy metabolic pathway had the highest proportion. The abundance ratios of the remaining eight metabolic pathways in Hybrid horses were between Thoroughbred and Mongolian horses. In conclusion, the results of this study showed an association between horse breeds and gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Wen
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shengjun Luo
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dianhong Lv
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunling Jia
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiurong Zhou
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qi Zhai
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Xi
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- *Correspondence: Li Xi
| | - Caijuan Yang
- National S&T Innovation Center for Modern Agricultural Industry, Guangzhou, China
- Caijuan Yang
| |
Collapse
|
44
|
Beckman AK, Richey BMS, Rosenthal GG. Behavioral responses of wild animals to anthropogenic change: insights from domestication. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03205-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Sandrock C, Leupi S, Wohlfahrt J, Kaya C, Heuel M, Terranova M, Blanckenhorn WU, Windisch W, Kreuzer M, Leiber F. Genotype-by-Diet Interactions for Larval Performance and Body Composition Traits in the Black Soldier Fly, Hermetia illucens. INSECTS 2022; 13:424. [PMID: 35621760 PMCID: PMC9147266 DOI: 10.3390/insects13050424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022]
Abstract
Further advancing black soldier fly (BSF) farming for waste valorisation and more sustainable global protein supplies critically depends on targeted exploitation of genotype-phenotype associations in this insect, comparable to conventional livestock. This study used a fully crossed factorial design of rearing larvae of four genetically distinct BSF strains (FST: 0.11-0.35) on three nutritionally different diets (poultry feed, food waste, poultry manure) to investigate genotype-by-environment interactions. Phenotypic responses included larval growth dynamics over time, weight at harvest, mortality, biomass production with respective contents of ash, fat, and protein, including amino acid profiles, as well as bioconversion and nitrogen efficiency, reduction of dry matter and relevant fibre fractions, and dry matter loss (emissions). Virtually all larval performance and body composition traits were substantially influenced by diet but also characterised by ample BSF genetic variation and, most importantly, by pronounced interaction effects between the two. Across evaluated phenotypes, variable diet-dependent rankings and the lack of generally superior BSF strains indicate the involvement of trade-offs between traits, as their relationships may even change signs. Conflicting resource allocation in light of overall BSF fitness suggests anticipated breeding programs will require complex and differential selection strategies to account for pinpointed trait maximisation versus multi-purpose resilience.
Collapse
Affiliation(s)
- Christoph Sandrock
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| | - Simon Leupi
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Jens Wohlfahrt
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| | - Cengiz Kaya
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Maike Heuel
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Melissa Terranova
- AgroVet-Strickhof, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland;
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Wilhelm Windisch
- Animal Nutrition, TUM School of Life Sciences, Technical University Munich, Liesel-Beckmann-Strasse 2, 85354 Freising-Weihenstephan, Germany;
| | - Michael Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Florian Leiber
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| |
Collapse
|
46
|
Darwell CT, Wanchana S, Ruanjaichon V, Siangliw M, Thunnom B, Aesomnuk W, Toojinda T. riceExplorer: Uncovering the Hidden Potential of a National Genomic Resource Against a Global Database. FRONTIERS IN PLANT SCIENCE 2022; 13:781153. [PMID: 35574109 PMCID: PMC9100803 DOI: 10.3389/fpls.2022.781153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Agricultural crop breeding programs, particularly at the national level, typically consist of a core panel of elite breeding cultivars alongside a number of local landrace varieties (or other endemic cultivars) that provide additional sources of phenotypic and genomic variation or contribute as experimental materials (e.g., in GWAS studies). Three issues commonly arise. First, focusing primarily on core development accessions may mean that the potential contributions of landraces or other secondary accessions may be overlooked. Second, elite cultivars may accumulate deleterious alleles away from nontarget loci due to the strong effects of artificial selection. Finally, a tendency to focus solely on SNP-based methods may cause incomplete or erroneous identification of functional variants. In practice, integration of local breeding programs with findings from global database projects may be challenging. First, local GWAS experiments may only indicate useful functional variants according to the diversity of the experimental panel, while other potentially useful loci-identifiable at a global level-may remain undiscovered. Second, large-scale experiments such as GWAS may prove prohibitively costly or logistically challenging for some agencies. Here, we present a fully automated bioinformatics pipeline (riceExplorer) that can easily integrate local breeding program sequence data with international database resources, without relying on any phenotypic experimental procedure. It identifies associated functional haplotypes that may prove more robust in determining the genotypic determinants of desirable crop phenotypes. In brief, riceExplorer evaluates a global crop database (IRRI 3000 Rice Genomes) to identify haplotypes that are associated with extreme phenotypic variation at the global level and recorded in the database. It then examines which potentially useful variants are present in the local crop panel, before distinguishing between those that are already incorporated into the elite breeding accessions and those only found among secondary varieties (e.g., landraces). Results highlight the effectiveness of our pipeline, identifying potentially useful functional haplotypes across the genome that are absent from elite cultivars and found among landraces and other secondary varieties in our breeding program. riceExplorer can automatically conduct a full genome analysis and produces annotated graphical output of chromosomal maps, potential global diversity sources, and summary tables.
Collapse
|
47
|
Inbreeding is associated with shorter early-life telomere length in a wild passerine. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractInbreeding can have negative effects on survival and reproduction, which may be of conservation concern in small and isolated populations. However, the physiological mechanisms underlying inbreeding depression are not well-known. The length of telomeres, the DNA sequences protecting chromosome ends, has been associated with health or fitness in several species. We investigated effects of inbreeding on early-life telomere length in two small island populations of wild house sparrows (Passer domesticus) known to be affected by inbreeding depression. Using genomic measures of inbreeding we found that inbred nestling house sparrows (n = 371) have significantly shorter telomeres. Using pedigree-based estimates of inbreeding we found a tendency for inbred nestling house sparrows to have shorter telomeres (n = 1195). This negative effect of inbreeding on telomere length may have been complemented by a heterosis effect resulting in longer telomeres in individuals that were less inbred than the population average. Furthermore, we found some evidence of stronger effects of inbreeding on telomere length in males than females. Thus, telomere length may reveal subtle costs of inbreeding in the wild and demonstrate a route by which inbreeding negatively impacts the physiological state of an organism already at early life-history stages.
Collapse
|
48
|
Hanly JJ, Livraghi L, Heryanto C, McMillan WO, Jiggins CD, Gilbert LE, Martin A. A large deletion at the cortex locus eliminates butterfly wing patterning. G3 GENES|GENOMES|GENETICS 2022; 12:6517782. [PMID: 35099556 PMCID: PMC8982378 DOI: 10.1093/g3journal/jkac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
As the genetic basis of natural and domesticated variation has been described in recent years, a number of hotspot genes have been repeatedly identified as the targets of selection, Heliconius butterflies display a spectacular diversity of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here, we sought to identify the mechanism behind an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78-kb deletion at the cortex wing patterning locus, a gene which has been associated with wing pattern evolution in H. melpomene and 10 divergent lepidopteran species. This deletion is undetected among 458 wild Heliconius genomes samples, and its dosage explains both homozygous and heterozygous ivory phenotypes found in captivity. The deletion spans a large 5′ region of the cortex gene that includes a facultative 5′UTR exon detected in larval wing disk transcriptomes. CRISPR mutagenesis of this exon replicates the wing phenotypes from coding knock-outs of cortex, consistent with a functional role of ivory-deleted elements in establishing scale color fate. Population demographics reveal that the stock giving rise to the ivory mutant has a mixed origin from across the wild range of H. melpomene, and supports a scenario where the ivory mutation occurred after the introduction of cortex haplotypes from Ecuador. Homozygotes for the ivory deletion are inviable while heterozygotes are the targets of artificial selection, joining 40 other examples of allelic variants that provide heterozygous advantage in animal populations under artificial selection by fanciers and breeders. Finally, our results highlight the promise of autozygosity and association mapping for identifying the genetic basis of aberrant mutations in captive insect populations.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
| | - Luca Livraghi
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Christa Heryanto
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
49
|
Ma X, Yu L, Fatima M, Wadlington WH, Hulse-Kemp AM, Zhang X, Zhang S, Xu X, Wang J, Huang H, Lin J, Deng B, Liao Z, Yang Z, Ma Y, Tang H, Van Deynze A, Ming R. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species. Genome Biol 2022; 23:75. [PMID: 35255946 PMCID: PMC8902716 DOI: 10.1186/s13059-022-02633-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spinach (Spinacia oleracea L.) is a dioecious species with an XY sex chromosome system, but its Y chromosome has not been fully characterized. Our knowledge about the history of its domestication and improvement remains limited. Results A high-quality YY genome of spinach is assembled into 952 Mb in six pseudo-chromosomes. By a combination of genetic mapping, Genome-Wide Association Studies, and genomic analysis, we characterize a 17.42-Mb sex determination region (SDR) on chromosome 1. The sex chromosomes of spinach evolved when an insertion containing sex determination genes occurred, followed by a large genomic inversion about 1.98 Mya. A subsequent burst of SDR-specific repeats (0.1–0.15 Mya) explains the large size of this SDR. We identify a Y-specific gene, NRT1/PTR 6.4 which resides in this insertion, as a strong candidate for the sex determination or differentiation factor. Resequencing of 112 spinach genomes reveals a severe domestication bottleneck approximately 10.87 Kya, which dates the domestication of spinach 7000 years earlier than the archeological record. We demonstrate that a strong selection signal associated with internode elongation and leaf area expansion is associated with domestication of edibility traits in spinach. We find that several strong genomic introgressions from the wild species Spinacia turkestanica and Spinacia tetrandra harbor desirable alleles of genes related to downy mildew resistance, frost resistance, leaf morphology, and flowering-time shift, which likely contribute to spinach improvement. Conclusions Analysis of the YY genome uncovers evolutionary forces shaping nascent sex chromosome evolution in spinach. Our findings provide novel insights about the domestication and improvement of spinach. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02633-x.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li'ang Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - William H Wadlington
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amanda M Hulse-Kemp
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.,USDA-ARS, Genomics and Bioinformatics Research Unit, North Carolina, 27695, Raleigh, USA
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengcheng Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xindan Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaxing Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenyang Liao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenhui Yang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhong Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
50
|
Dreissig S, Mascher M. Cherish your weeds. MOLECULAR PLANT 2022; 15:396-397. [PMID: 35123030 DOI: 10.1016/j.molp.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|