1
|
Adams VE, van Oirschot ML, Toxopeus J. HSP70 is upregulated after heat but not freezing stress in the freeze-tolerant cricket Gryllus veletis. Comp Biochem Physiol A Mol Integr Physiol 2024; 300:111791. [PMID: 39657844 DOI: 10.1016/j.cbpa.2024.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Heat shock proteins (HSPs) are well known to prevent and repair protein damage caused by various abiotic stressors, but their role in low temperature and freezing stress is not well-characterized in insects compared to other thermal challenges such as heat stress. Ice formation in and around cells is hypothesized to cause protein damage, yet many species of insects can survive freezing, suggesting HSPs may be an important mechanism in freeze tolerance. Here, we studied HSP70 in a freeze-tolerant cricket Gryllus veletis to better understand the role of HSPs in this phenomenon. We measured expression of one heat-inducible HSP70 isoform at the mRNA level (using RT-qPCR), as well as the relative abundance of total HSP70 protein (using semi-quantitative Western blotting), in five tissues from crickets exposed to a survivable heat treatment (2 h at 40 °C), a 6-week fall-like acclimation that induces freeze tolerance, and a survivable freezing treatment (1.5 h at -8 °C). While HSP70 expression was upregulated by heat at the mRNA or protein level in all tissues studied (fat body, Malphigian tubules, midgut, femur muscle, nervous system ganglia), no tissue exhibited HSP70 upregulation within 2-24 h following a survivable freezing stress. During fall-like acclimation to mild low temperatures, we only saw moderate upregulation of HSP70 at the protein level in muscle, and at the RNA level in fat body and nervous tissue. Although HSP70 is important for responding to a wide range of stressors, our work suggests that this chaperone may be less critical in the preparation for, and response to, moderate freezing stress.
Collapse
Affiliation(s)
- Victoria E Adams
- Department of Biology, St. Francis Xavier University, 2320 Notre Dame Ave, Antigonish B2G 2W5, NS, Canada
| | - Maranda L van Oirschot
- Department of Biology, St. Francis Xavier University, 2320 Notre Dame Ave, Antigonish B2G 2W5, NS, Canada
| | - Jantina Toxopeus
- Department of Biology, St. Francis Xavier University, 2320 Notre Dame Ave, Antigonish B2G 2W5, NS, Canada.
| |
Collapse
|
2
|
Li YJ, Ma CS, Yan Y, Renault D, Colinet H. The interspecific variations in molecular responses to various doses of heat and cold stress: the case of cereal aphids. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104520. [PMID: 37148996 DOI: 10.1016/j.jinsphys.2023.104520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Insects are currently subjected to unprecedented thermal stress due to recent increases in the frequency and amplitude of temperature extremes. Understanding molecular responses to thermal stress is critically important to appreciate how species react to thermal stress. Three co-occurring cosmopolitan species are found within the guild of cereal aphids: Sitobion avenae, Ropalosiphum padi and Metopolophium dirhodum. Earlier reports have shown that increasing frequency of temperature extremes causes a shift in dominant species within guilds of cereal aphids by differently altering the population's growth. We hypothesize that a differential molecular response to stress among species may partially explain these changes. Heat shock proteins (HSPs) are molecular chaperones well known to play an important role in protecting against the adverse effects of thermal stress. However, few studies on molecular chaperones have been conducted in cereal aphids. In this study, we compared the heat and cold tolerance between three aphid species by measuring the median lethal time (Lt50) and examined the expression profiles of seven hsp genes after exposures to comparable thermal injury levels and also after same exposure durations. Results showed that R. padi survived comparatively better at high temperatures than the two other species but was more cold-sensitive. Hsp genes were induced more strongly by heat than cold stress. Hsp70A was the most strongly up-regulated gene in response to both heat and cold stress. R. padi had more heat inducible genes and significantly higher mRNA levels of hsp70A, hsp10, hsp60 and hsp90 than the other two species. Hsps ceased to be expressed at 37°C in M. dirhodum and S. avenae while expression was maintained in R. padi. In contrast, M. dirhodum was more cold tolerant and had more cold inducible genes than the others. These results confirm species-specific differences in molecular stress responses and suggest that differences in induced expression of hsps may be related to species' thermal tolerance, thus causing the changes in the relative abundance.
Collapse
Affiliation(s)
- Yuan-Jie Li
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yi Yan
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France
| | - Hervé Colinet
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France.
| |
Collapse
|
3
|
Differential transcriptomic responses to heat stress in surface and subterranean diving beetles. Sci Rep 2022; 12:16194. [PMID: 36171221 PMCID: PMC9519976 DOI: 10.1038/s41598-022-20229-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38 °C cf. 42–46 °C), but the genetic basis of this physiological difference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35 °C), as determined by comparative transcriptomics. However, genes involved in these responses differ between species and a far greater number were differentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only differentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular findings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level.
Collapse
|
4
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Kheirallah DAM, Ali AM, Osman SE, Shouman AM. Nickel oxide nanoparticles induce genotoxicity and cellular alterations in the ground beetle Blaps polycresta (Coleoptera: Tenebrionidae). Toxicol Ind Health 2021; 37:408-430. [PMID: 34085874 DOI: 10.1177/07482337211000988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel nanoparticles (Ni-NPs) have advantageous applications in the industry; however, little is known of their adverse effects on biological tissues. In the present study, the ground beetle Blaps polycresta was employed as a sensitive indicator for nickel oxide nanoparticles (NiO-NPs) toxicity. Adult male beetles were injected with six dose levels of NiO-NPs (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g body weight). Mortality was reported daily over 30 days under laboratory conditions to establish an LD50. Nickel was detected in the testicular tissues of the beetles using X-ray analysis and transmission electronic microscopy. Beetles treated with the sublethal dose of 0.02 mg/g were selected to observe molecular, cellular, and subcellular changes. Gene transcripts of HSP70, HSP90, and MT1 were found to be increased >2.5-, 1.5-, and 2-fold, respectively, in the treated group compared with the controls. Decreased gene expression of AcPC01, AcPC02, and AcPC04 (≤1.5-, ≤2-, and < 2.5-fold, respectively, vs. controls) also were reported in the treated group. Under light microscopy, various structural changes were observed in the testicular tissues of the treated beetles. Ultrastructure observations using scanning and transmission electron microscopy showed severe damage to the subcellular organelles as well as deformities of the heads and flagella of the spermatozoa. Therefore, the present study postulated the impact of NiO-NPs in an ecological model.
Collapse
Affiliation(s)
| | - Awatef Mohamed Ali
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Salah Eldein Osman
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amal Mohamed Shouman
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Li H, Qiao H, Liu Y, Li S, Tan J, Hao D. Characterization, expression profiling, and thermal tolerance analysis of heat shock protein 70 in pine sawyer beetle, Monochamus alternatus hope (Coleoptera: Cerambycidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:217-228. [PMID: 32935660 DOI: 10.1017/s0007485320000541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monochamus alternatus Hope (Coleoptera: Cerambycidae) warrants attention as a dominant transmission vector of the pinewood nematode, and it exhibits tolerance to high temperature. Heat shock protein 70 (HSP70) family members, including inducible HSP70 and heat shock cognate protein 70 (HSC70), are major contributors to the molecular chaperone networks of insects under heat stress. In this regard, we specifically cloned and characterized three MaltHSP70s and three MaltHSC70s. Bioinformatics analysis on the deduced amino acid sequences showed these genes, having close genetic relationships with HSP70s of Coleopteran species, collectively shared conserved signature structures and ATPase domains. Subcellular localization prediction revealed the HSP70s of M. alternatus were located not only in the cytoplasm and endoplasmic reticulum but also in the nucleus and mitochondria. The transcript levels of MaltHSP70s and MaltHSC70s in each state were significantly upregulated by exposure to 35-50°C for early 3 h, while MaltHSP70s reached a peak after exposure to 45°C for 2-3 h in contrast to less-upregulated MaltHSC70s. In terms of MaltHSP70s, the expression threshold in females was lower than that in males. Also, both fat bodies and Malpighian tubules were the tissues most sensitive to heat stress in M. alternatus larvae. Lastly, the ATPase activity of recombinant MaltHSP70-2 in vitro remained stable at 25-40°C, and this recombinant availably enhanced the thermotolerance of Escherichia coli. Overall, our findings unraveled HSP70s might be the intrinsic mediators of the strong heat tolerance of M. alternatus due to their stabilized structure and bioactivity.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Heng Qiao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shouyin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jiajin Tan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
El-Gendy AH, Augustyniak M, Toto NA, Al Farraj S, El-Samad LM. Oxidative stress parameters, DNA damage and expression of HSP70 and MT in midgut of Trachyderma hispida (Forskål, 1775) (Coleoptera: Tenebrionidae) from a textile industry area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115661. [PMID: 33254610 DOI: 10.1016/j.envpol.2020.115661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/31/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
The textile mill industry is one of the major sources of pollution and contributors of metal contaminants to the environment. At the same time, the industry is important for global economy. Pollution caused by the textile industry is characteristic due to a unique set of potentially toxic substances. Darkling beetles (Coleoptera, Tenebrionidae), which live in all biogeographical regions, are especially common in soil quality and soil degradation studies. Our study was designed to assess long-term effects of textile industry (which generates specific pollution) on soil organisms, namely Trachyderma hispida. We especially wanted to find out what changes allow the species to survive and adapt to these specific conditions. Energy-dispersive X-ray spectroscopy of soil and midgut tissues of T. hispida sampled from a polluted site in the Edku textile industrial area in Egypt revealed a high accumulation of chemical elements, compared to a reference site. The concentration of elements in soil was well correlated with their concentration in the midgut of insects. Activity of superoxide dismutase, catalase, ascorbate peroxidase and glutathione S-transferase were negatively correlated with concentration of elements in soil and in the midgut. Meanwhile, malondialdehyde concentration in the midgut revealed an opposite tendency. DNA damage and expression of stress proteins, (HSP70 and metallothionein - MT) were elevated in insects from the polluted site. The activity of textile industry in the area of Edku undoubtedly causes an increase of soil pollution and, in consequence, causes a number of changes in the bodies of organisms living in these areas, including T. hispidus. Therefore, it is necessary to find a solution which limits the emission of waste from the textile industry, as well as to design modern strategies of processing, storing and utilizing it.
Collapse
Affiliation(s)
- Amel H El-Gendy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland.
| | - Noura A Toto
- Department of Zoology, Faculty of Science, Damanhour University, El Beheira, Egypt
| | - Saleh Al Farraj
- Department of Zoology, College of Science, King Saud University, KSA, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
8
|
Li H, Zhao X, Qiao H, He X, Tan J, Hao D. Comparative Transcriptome Analysis of the Heat Stress Response in Monochamus alternatus Hope (Coleoptera: Cerambycidae). Front Physiol 2020; 10:1568. [PMID: 32038275 PMCID: PMC6985590 DOI: 10.3389/fphys.2019.01568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Temperature is a critical factor of insect population abundance and distribution. Monochamus alternatus Hope (Coleoptera: Cerambycidae) is a significant concern since it is transmitted vector of the pinewood nematode posing enormous economic and environmental losses. This pest shows tolerance to heat stress, especially extremely high temperatures. Exposing for 6, 12, 24, 48, or 96 h, the 50% median lethal temperatures (Ltem50) for fourth-instar larvae were 47.5, 45.5, 43.9, 43.4, and 42.3°C, respectively. A total of 63,360 unigenes were obtained from complementary DNA libraries of M. alternatus fourth-instar larvae (kept at 25°C and exposed to 40°C for 3 h) and annotated with six databases. Five hundred sixty-one genes were significantly upregulated, and 245 genes were downregulated after heat stress. The Gene Ontology enrichment analysis showed that most different expression genes are categorized into “protein folding” and “unfold protein binding” terms. In addition, “Longevity regulating pathway-multiple species,” “Antigen processing and presentation” as well as “MAPK signaling pathway” were significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways. Further analysis of different expression genes showed that metabolism processes were suppressed, while ubiquitin proteolytic system, heat shock proteins, immune response, superoxide dismutase, cytochrome P450s, and aldehyde dehydrogenase were induced after heat shock. The stress signaling transduction pathways such as MAPK, Hippo, and JAK-STAT might be central convergence points in M. alternatus heat tolerance mechanism. The expression levels from quantitative real-time PCR of 13 randomly selected genes were consistent with the transcriptome results. These results showed that M. alternatus possessed strong heat tolerance and genes related to protein activity, immune response, and signal transduction composed of a complicated heat tolerance mechanism of M. alternatus. This research provided new insights into the mechanisms of thermal tolerance in other insects and aided in exploring the function of heat resistance-related genes.
Collapse
Affiliation(s)
- Hui Li
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhao
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Heng Qiao
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Xuanyu He
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Jiajin Tan
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. J Therm Biol 2019; 81:103-109. [PMID: 30975406 DOI: 10.1016/j.jtherbio.2019.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022]
Abstract
Physiological response and acclimation to thermal stress is a key strategy of insects to cope with changing climate. The underlying mechanism of heat acclimation in insects is still unclear. Here, the heat selection and transcript level response in the larvae of the rice leaf folder Cnaphalocrocis medinalis Güenée, a serious pest of rice in summer, were studied. The survival and fecundity of larvae during multigenerational heat selection at 39 °C were examined, and heat tolerance and mRNA expression of heat shock protein 70 (Hsp70) and 90 (Hsp90) were examined under heat stress. The results showed that survival and fecundity of larvae increased notably and then kept constant after two or three generations of heat selection. Heat selection improved thermal tolerance of larvae. The Hsp70 mRNA expression of the 3rd-instar larvae increased in all five generations of heat selection, but Hsp90 increased only in the first two generations. The response of Hsp70 to 39 °C heat treatment in the larvae kept at 27 °C was different from the larvae exposed to the conditioning heat treatments, but the response of Hsp 90 was similar. Moreover, the Hsp70 and Hsp90 mRNA expression levels were significantly higher in the heat-acclimated larvae than that in the unacclimated larvae at a comparable duration of exposure to 37 and 41 °C. Selection at a high temperature across multiple generations led larvae to heat acclimation, and Hsp70 and Hsp90 were involved in this acclimation process.
Collapse
|
10
|
Cui J, Zhu SY, Gao Y, Bi R, Xu Z, Shi SS. Comparative Transcriptome Analysis of Megacopta cribraria (Hemiptera: Plataspidae) in Response to High-Temperature Stress. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:407-415. [PMID: 30351361 DOI: 10.1093/jee/toy330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Kudzu bug, Megacopta cribraria (Fabricius), is mainly distributed in southern China and has been considered an invasive species in the southeastern United States. Megacopta cribraria is a soybean pest with high-temperature resistance, but the molecular mechanisms underlying its thermal adaptation are largely unknown. Here, we performed comparative transcriptome analysis to unravel the molecular response of M. cribraria toward high-temperature stress. Following RNA-seq, we identified 93,959 assembled unigenes, 14,073 of which were annotated in M. cribraria transcriptome libraries. In addition, 127 differentially expressed unigenes (DEGs) were detected, 88 of them were significantly upregulated, whereas the remaining 39 genes were significantly downregulated. Functional classification revealed that the pathways of metabolic process, cellular processes, and single-organism processes were considered to be significantly enriched. In the COG classification, DEGs were mainly localized into O: post-translational modification, protein turnover, chaperone. Moreover, protein processing in endoplasmic reticulum and linoleic acid metabolism were significantly enriched among the 38 KEGG pathways. Further gene annotation analysis indicated that nine heat shock protein-related genes were significantly upregulated. Finally, five HSP DEGs were selected for real-time quantitative polymerase chain reaction validation and demonstrated a similar upregulation trend with RNA-seq expression profiles. Taken altogether, these findings provide new insights into the molecular mechanisms of thermal adaptation in M. cribraria.
Collapse
Affiliation(s)
- Juan Cui
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Shi-Yu Zhu
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Yu Gao
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Rui Bi
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Zhe Xu
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| | - Shu-Sen Shi
- College of Agriculture, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|