1
|
Chen M, Zhou X, Chen G, Xu Z, Qian J, Zhu G, Yan R. Glycine to valine substitution in the short intracellular linkers of domain II enhances I1011M-mediated sodium channel resistance to Type I pyrethroids, but not Type II pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105994. [PMID: 39084795 DOI: 10.1016/j.pestbp.2024.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Pyrethroids are widely used against agricultural pests and human disease vectors due to their broad insecticidal spectrum, fast action, and low mammalian toxicity. Unfortunately, overuse of pyrethroids has led to knockdown resistance (kdr) caused by mutations in voltage-gated sodium channels. Mutation I1011M was repeatedly detected in numerous pyrethroid-resistant Aedes aegypti populations from Latin American and Brazil. In addition, mutation G923V was first reported to coexist with I1011M in permethrin/DDT-resistant Ae. aegypti, whether G923V enhances the I1011M-mediated pyrethroid resistance in sodium channels remains unclear. In this study, we introduced mutations G923V and I1011M alone or in combination into the pyrethroid-sensitive sodium channel AaNav1-1 and examined the effects of these mutations on gating properties and pyrethroid sensitivity. We found mutations I1011M and G923V + I1011M shifted the voltage dependence of activation in the depolarizing direction, and none of mutations affect the voltage-dependence of inactivation. G923V and G923V + I1011M mutations reduced the channel sensitivity to both Type I and Type II pyrethroids. However, I1011M alone conferred resistance to Type I pyrethroids, not to Type II pyrethroids. Interestingly, significant synergism effects on Type I pyrethroids were observed between mutations G923V and I1011M. The effects of all mutations on channel sensitivity to DDT were identical with those to Type I pyrethroids. Our results confirm the molecular basis of resistance mediated by mutations G923V and I1011M and may contribute to develop molecular markers for monitoring pest resistance to pyrethroids.
Collapse
Affiliation(s)
- Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Xiangyi Zhou
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Guoxing Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Jiali Qian
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Ru Yan
- College of life sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Müller JN, Galardo AKR, Corrêa APSDA, Macoris MDLDG, de Melo-Santos MAV, Nakazawa MM, Martins AJ, Lima JBP. Impact of SumiLarv ® 2MR on Aedes aegypti larvae: a multicenter study in Brazil. Parasit Vectors 2024; 17:88. [PMID: 38409019 PMCID: PMC10895835 DOI: 10.1186/s13071-023-06064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/20/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Aedes aegypti is associated with dengue, Zika, and chikungunya transmission. These arboviruses are responsible for national outbreaks with severe public health implications. Vector control is one of the tools used to prevent mosquito proliferation, and SumiLarv® 2MR is an alternative commercial product based on pyriproxyfen for larval/pupal control. In this study, the residual effectiveness of SumiLarv® 2MR in different regions of Brazil was evaluated in simulated field conditions. METHODS We conducted a multicenter study across four Brazilian states-Amapá, Pernambuco, Rio de Janeiro, and São Paulo-given the importance to the country's climatic variances in the north, northeast, and southeast regions and their influence on product efficiency. The populations of Ae. aegypti from each location were held in an insectary. Third-instar larvae (L3) were added every 2 weeks to water containers with SumiLarv® 2MR discs in 250-, 500- and 1000-l containers in Amapá and Rio de Janeiro, and 100-l containers in Pernambuco and São Paulo, using concentrations of 0.04, 0.08, and 0.16 mg/l. RESULTS Adult emergence inhibition over 420 days was observed in all tests conducted at a concentration of 0.16 mg/l; inhibition for 308-420 days was observed for 0.08 mg/l, and 224-420 days for 0.04 mg/l. CONCLUSIONS Sumilarv® 2MR residual activity demonstrated in this study suggests that this new pyriproxyfen formulation is a promising alternative for Aedes control, regardless of climatic variations and ideal concentration, since the SumiLarv® 2MR showed adult emergence inhibition of over 80% and residual activity greater than 6 months, a period longer than that recommended by the Ministry of Health of Brazil between product re-application in larval breeding sites.
Collapse
Affiliation(s)
- Josiane Nogueira Müller
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil.
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil.
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Allan Kardec Ribeiro Galardo
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil
| | - Ana Paula Sales de Andrade Corrêa
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | - Ademir Jesus Martins
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
| | - José Bento Pereira Lima
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
da Silva EB, de Mendonça CM, Guedes DRD, Paiva MHS, Mendonça JDA, Dias ESF, Florêncio SGL, Amaral A, Netto AM, Lopes CFJA, de Melo-Santos MAV. Effects of gamma radiation on the vector competence of Aedes aegypti (diptera: Culicidae) to transmit Zika virus. Acta Trop 2023; 239:106831. [PMID: 36640923 DOI: 10.1016/j.actatropica.2023.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
One of the limitations of the Sterile Insect Technique (SIT), conventionally performed by ionizing radiation, regards separating males from females, which is not 100% effective. Some irradiated females may be released together with males in the field at SIT. The present study aimed to evaluate the influence of ionizing radiation on the ability of Aedes aegypti mosquitoes to transmit the Zika virus after exposing female pupae to a 40 Gy of gamma radiation. The results suggest that the genetic damage induced by exposure of females to this dose level promotes their total sterility, but it does not influence their vector competence. However, our data point out that ionizing radiation may decrease the proportion of infective mosquitoes.
Collapse
Affiliation(s)
- Edvane Borges da Silva
- Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitoria de Santo Antão, Pernambuco, Brazil; Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Postgraduate Programme in Energy and Nuclear Technologies (PROTEN), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil.
| | - Carlos Messias de Mendonça
- Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitoria de Santo Antão, Pernambuco, Brazil
| | | | - Marcelo Henrique Santos Paiva
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil; Centro Acadêmico do Agreste (CAA), Universidade Federal de Pernambuco (UFPE), Caruaru, Pernambuco, Brazil
| | - Jaziela de Arruda Mendonça
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil
| | | | - Sloana Giesta Lemos Florêncio
- Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Postgraduate Programme in Energy and Nuclear Technologies (PROTEN), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Ademir Amaral
- Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Postgraduate Programme in Energy and Nuclear Technologies (PROTEN), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - André Maciel Netto
- Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Postgraduate Programme in Energy and Nuclear Technologies (PROTEN), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
4
|
Increased Attraction and Stability of Beauveria bassiana-Formulated Microgranules for Aedes aegypti Biocontrol. J Fungi (Basel) 2022; 8:jof8080828. [PMID: 36012816 PMCID: PMC9409880 DOI: 10.3390/jof8080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Aedes aegypti (Linn.) incidence has increased in recent years, causing human viral diseases such as dengue, which are often fatal. Beauveria bassiana (Bals., Vuillemin) efficacy for Ae. aegypti biological control has been evidenced but it relies on host susceptibility and strain virulence. We hypothesized that B. bassiana conidia microgranular formulations (MGF) with the additives acetone, lactic acid, and sugar increase Ae. aegypti adult exposure, thus improving their biocontrol effectiveness. Beauveria bassiana strain four (BBPTG4) conidia stability was assessed after 0 d, 5 d, and 30 d storage at 25 °C ± 2 °C with additives or in MGF after 91 d of storage at 25 °C ± 2 °C or 4 °C ± 1 °C, whereas mortality was evaluated after adult exposure to MGF + conidia, using home-made traps. Additives did not show toxicity to conidia. In addition, we observed that sugar in MGF increased Ae. aegypti adults’ attraction and their viability resulted in a 3-fold reduction after 5 d and 1- to 4-fold decrease after 30 d of storage, and formulations were less attractive (p < 0.05). Conidia stability was higher on MGF regardless of the storage temperature, losing up to 2.5-fold viability after 91 d. In conclusion, BBPTG4 infected and killed Ae. aegypti, whereas MGF attracting adults resulted in 42.2% mortality, increasing fungus auto dissemination potential among infected surviving adults. It is necessary to further evaluate MGF against Ae. aegypti in the field.
Collapse
|
5
|
Silva EB, Mendonça CM, Mendonça JDA, Dias ESF, Florêncio SGL, Guedes DRD, Paiva MHS, Amaral A, Netto AM, Melo-Santos MAV. Effects of gamma radiation on the reproductive viability of Aedes aegypti and its descendants (Diptera: Culicidae). Acta Trop 2022; 228:106284. [PMID: 34922909 DOI: 10.1016/j.actatropica.2021.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
This work evaluated the genetic damage in descendants of male pupae of Aedes (Stegomyia) aegypti (Diptera: Culicidae) separately exposed to 20, 30, and 40 Gy of gamma radiation in the context of Sterile Insect Technique (SIT). Despite the transmission of the dominant lethal mutation, the employed dose levels did not promote a marked reduction in adult mosquito emergence and fertility. This study emphasized that semi-sterilizing doses < 50 Gy for SIT of Aedes aegypti are not recommended.
Collapse
Affiliation(s)
- Edvane Borges Silva
- Universidade Federal de Pernambuco (UFPE), Centro Acadêmico de Vitória (CAV), Vitoria de Santo Antão, Pernambuco, Brazil; Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil.
| | - Carlos Messias Mendonça
- Universidade Federal de Pernambuco (UFPE), Centro Acadêmico de Vitória (CAV), Vitoria de Santo Antão, Pernambuco, Brazil
| | - Jaziela de Arruda Mendonça
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil
| | | | - Sloana Giesta Lemos Florêncio
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | | | - Marcelo Henrique Santos Paiva
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil; Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste (CAA), Caruaru, Pernambuco, Brazil
| | - Ademir Amaral
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | - André Maciel Netto
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | | |
Collapse
|
6
|
Hafez AM, Abbas N. Insecticide resistance to insect growth regulators, avermectins, spinosyns and diamides in Culex quinquefasciatus in Saudi Arabia. Parasit Vectors 2021; 14:558. [PMID: 34715900 PMCID: PMC8555291 DOI: 10.1186/s13071-021-05068-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Culex quinquefasciatus is not only a biting nuisance but also an important vector of fatal diseases. In Saudi Arabia, management measures to control this mosquito and thereby prevent associated disease transmission have focused on insecticides. Nevertheless, information on the resistance status of C. quinquefasciatus is insufficient, especially concerning insecticides containing novel classes of insecticides. METHODS We evaluated six insecticides belonging to four classes of insecticides (insect growth regulators [3], avermectins [1], diamides [1] and spinosyns [1]) for toxicity and resistance in eight C. quinquefasciatus populations (from Ishbiliya, Al-Masfa, Al-Masanie, Al-Washlah, Al-Nakhil, Irqah, Al-Suwaidi and Al-Ghanemiya) following World Health Organisation protocols. RESULTS Resistance status ranging from susceptibility/low resistance to high resistance, in comparison with the susceptible strain, was detected for cyromazine in the eight C. quinquefasciatus populations: Ishbiliya (resistance ratio [RR] = 3.33), Al-Masfa (RR = 4.33), Al-Masanie (RR = 3.67), Al-Washlah (RR = 2.33), Al-Nakhil (RR = 5.33), Irqah (RR = 7.00), Al-Suwaidi (RR = 21.33) and Al-Ghanemiya (RR = 16.00). All C. quinquefasciatus populations exhibited a high level of resistance to diflubenzuron (RR = 13.33-43.33), with the exception of Al-Nakhil which exhibited moderate resistance (RR = 10.00). Susceptibility/low resistance to high resistance was observed for triflumuron in the eight C. quinquefasciatus populations: Ishbiliya (RR = 0.50), Al-Ghanemiya (RR = 3.00), Al-Suwaidi (RR = 10.00), Al-Masfa (RR = 5.00), Al-Masanie (RR = 10.00), Al-Nakhil (RR = 5.00), Irqah (RR = 5.00) and Al-Washlah (RR = 15.00). Susceptibility/low resistance was assessed for abamectin, chlorantraniliprole and spinosad in all C. quinquefasciatus populations, with RR ranges of 0.25-3.50, 0.17-2.19, and 0.02-0.50, respectively. However, the population collected from Irqah showed high resistance to chlorantraniliprole (RR = 11.93). CONCLUSIONS The detection of widespread resistance to insect growth regulators in C. quinquefasciatus highlights an urgent need to establish integrated vector management strategies. Our results may facilitate the selection of potent insecticides for integrated vector management programmes for C. quinquefasciatus.
Collapse
Affiliation(s)
- Abdulwahab M Hafez
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
7
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
8
|
Maciel LG, Barbosa ADS, de Alencar-Filho EB, Soares TA, Dos Anjos JV. A second generation of 1,2,4-oxadiazole derivatives with enhanced solubility for inhibition of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. RSC Med Chem 2021; 12:222-236. [PMID: 34046611 PMCID: PMC8127416 DOI: 10.1039/d0md00305k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
The most widely used method for the control of the Aedes aegypti mosquito population is the chemical control method. It represents a time- and cost-effective way to curb several diseases (e.g. dengue, Zika, chikungunya, yellow fever) through vector control. For this reason, the discovery of new compounds with a distinct mode of action from the available ones is essential in order to minimize the rise of insecticide resistance. Detoxification enzymes are an attractive target for the discovery of new insecticides. The kynurenine pathway is an important metabolic pathway, and it leads to the chemically stable xanthurenic acid, biosynthesized from 3-hydroxykynurenine, a precursor of reactive oxygen and nitrogen species, by the enzyme 3-hydroxykynurenine transaminase (HKT). Previously, we have reported the effectiveness of 1,2,4-oxadiazole derivatives acting as larvicides for A. aegypti and AeHKT inhibitors from in vitro and in silico studies. Here, we report the synthesis of new sodium 4-[3-(aryl)-1,2,4-oxadiazol-5-yl] propanoates and the cognate HKT-inhibitory activity. These new derivatives act as competitive inhibitors with IC50 values in the range of 42 to 339 μM. We further performed molecular docking simulations and QSAR analysis for the previously synthesized sodium 4-[3-(aryl)-1,2,4-oxadiazol-5-yl] butanoates reported earlier by our group and the data produced herein. Most of the 1,2,4-oxadiazole derivatives, including the canonical compounds for both series, showed a similar binding mode with HKT. The binding occurs similarly to the co-crystallized inhibitor via anchoring to Arg356 and positioning of the aromatic ring and its substituents outwards at the entry of the active site. QSAR analysis was performed in search of more than 770 molecular descriptors to establish a relationship between the lowest energy conformations and the IC50 values. The five best descriptors were selected to create and validate the model, which exhibited parameters that attested to its robustness and predictability. In summary, we observed that compounds with a para substitution and heavier groups (i.e. CF3 and NO2 substituents) had an enhanced HKT-inhibition profile. These compounds comprise a series described as AeHKT inhibitors via enzymatic inhibition experiments, opening the way to further the development of new substances with higher potency against HKT from Aedes aegypti.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | - Andrey da S Barbosa
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | | | - Thereza A Soares
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | - Janaína V Dos Anjos
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| |
Collapse
|
9
|
Sayono S, Anwar R, Sumanto D. Larvicidal Activity of Ethyl Acetate Extract of Derris elliptica Root against the Third-Instar Larvae of Cypermethrin-Resistant Aedes aegypti Offspring. J Arthropod Borne Dis 2020; 14:391-399. [PMID: 33954212 PMCID: PMC8053070 DOI: 10.18502/jad.v14i4.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Derris elliptica extracts have a high larvicidal potential against the laboratory strain of Aedes aegypti larvae, but the effect on offspring larvae of pyrethroid-resistant strains of the species is lack understood. This study aimed to determine the larvicidal activity of the ethyl acetate extract of tuba root against the third-instar larvae of the Cypermethrin-resistant Ae. aegypti offspring. Methods: The experimental study occupied four levels of ethyl acetate extract of D. elliptica namely 10, 25, 50, and 100 ppm, and each level was four times replicated. As many as twenty of healthy third-instar larvae, offspring of Cypermethrin-resistant Ae. aegypti were subjected to each experiment group. Larval mortality rate and lethal concentration 50% subject (LC50) were calculated after 24 and 48 hours of exposure time. Results: Mortality of larvae increased directly proportional to the increase of extract concentration. Larval mortality rates after 24 and 48 hours of exposure were 40–67.5% and 62.5–97.5%, and LC50 were 34.945 and 6.461ppm, respectively. Conclusion: The ethyl acetate extract of D. elliptica has the high effectiveness larvicidal potential against the third-instar larvae, offspring of the Cypermethrin-resistant Ae. aegypti. Isolation of the specific compound is necessarily done to obtain the active ingredient for larvicide formulation.
Collapse
Affiliation(s)
- Sayono Sayono
- Faculty of Public Health, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Risyandi Anwar
- Herbal medicine research of Dentistry Faculty, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Didik Sumanto
- Laboratory of Epidemiology and Tropical Diseases, Faculty of Public Health, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| |
Collapse
|
10
|
Falqueto SA, Pitaluga BF, de Sousa JR, Targanski SK, Campos MG, de Oliveira Mendes TA, da Silva GF, Silva DHS, Soares MA. Bacillus spp. metabolites are effective in eradicating Aedes aegypti (Diptera: Culicidae) larvae with low toxicity to non-target species. J Invertebr Pathol 2020; 179:107525. [PMID: 33383067 DOI: 10.1016/j.jip.2020.107525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
The growing spread of dengue, chikungunya and Zika viruses demand the development of new and environmentally safe control methods for their vector, the mosquito Aedes aegypti. This study aims to find novel larvicidal agents from mutualistic (endophytic and rhizospheric) or edaphic bacteria that have no action against non-target organisms. Eleven out of the 254 bacterial strains tested were able to kill Ae. aegypti larvae. Larvicidal activity did not depend on presence of cells, since culture supernatants or crude lipopeptide extracts (CLEs) killed the larvae. Bacillus safensis BacI67 and Bacillus paranthracis C21 supernatants were the best performing supernatants, displaying the lowest lethal concentrations (LC50 = 31.11 µL/mL and 45.84 µL/mL, respectively). Bacillus velezensis B64a and Bacillus velezensis B15 produced the best performing CLEs (LC50 = 0.11 mg/mL and 0.12 mg/mL, respectively). Mass spectrometry analysis of CLEs detected a mixture of surfactins, iturins, and fengycins. The samples tested were weakly- or non-toxic to mammalian cells (RAW 264.7 macrophages and VERO cells) and non-target organisms (Caenorhabditis elegans, Galleria mellonella, Scenedesmus obliquus, and Tetrahymena pyriformis) - especially B. velezensis B15 CLE. The biosynthetic gene clusters related to secondary metabolism identified by whole genome sequencing of the four best performing bacteria strains revealed clusters for bacteriocin, beta-lactone, lanthipeptide, non-ribosomal peptide synthetases, polyketide synthases (PKS), siderophores, T3PKS, type 1 PKS-like, terpenes, thiopeptides, and trans-AT-PKS. Purification of lipopeptides may clarify the mechanisms by which these extracts kill Ae. aegypti larvae.
Collapse
Affiliation(s)
- Silvia Altoé Falqueto
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Bruno Faria Pitaluga
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Janaína Rosa de Sousa
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Sabrina Ketrin Targanski
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Mateus Gandra Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Dulce Helena Siqueira Silva
- Centro de Inovação em Biodiversidade e Fármacos, Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Marcos Antônio Soares
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil.
| |
Collapse
|
11
|
Melo Costa M, Campos KB, Brito LP, Roux E, Melo Rodovalho C, Bellinato DF, Lima JBP, Martins AJ. Kdr genotyping in Aedes aegypti from Brazil on a nation-wide scale from 2017 to 2018. Sci Rep 2020; 10:13267. [PMID: 32764661 PMCID: PMC7414026 DOI: 10.1038/s41598-020-70029-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/22/2020] [Indexed: 01/20/2023] Open
Abstract
Insecticide resistance is currently a threat to the control of Aedes agypti, the main vector of arboviruses in urban centers. Mutations in the voltage gated sodium channel (NaV), known as kdr (knockdown resistance), constitute an important selection mechanism for resistance against pyrethroids. In the present study, we investigated the kdr distribution for the Val1016Ile and Phe1534Cys alterations in Ae. aegypti from 123 Brazilian municipalities, based on SNP genotyping assays in over 5,500 mosquitoes. The alleles NaVS (1016Val+ + 1534Phe+), NaVR1 (1016Val+ + 1534Cyskdr) and NaVR2 (1016Ilekdr + 1534Cyskdr) were consistently observed, whereas kdr alleles have rapidly spread and increased in frequency. NaVS was the less frequent allele, mostly found in Northeastern populations. The highest allelic frequencies were observed for NaVR1, especially in the North, which was fixed in one Amazonian population. The double kdr NaVR2 was more prevalent in the Central-west and South-eastern populations. We introduce the 'kdr index', which revealed significant spatial patterns highlighting two to three distinct Brazilian regions. The 410L kdr mutation was additionally evaluated in 25 localities, evidencing that it generally occurs in the NaVR2 allele. This nationwide screening of a genetic mechanism for insecticide resistance is an important indication on how pyrethroid resistance in Ae. aegypti is evolving in Brazil.
Collapse
Affiliation(s)
- Monique Melo Costa
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Kauara Brito Campos
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil
- Coordenação Geral de Vigilância de Aboviroses, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Luiz Paulo Brito
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Emmanuel Roux
- ESPACE-DEV, IRD, Université de Montpellier, Université de La Réunion, Université de la Guyane and Université des Antilles, Montpellier, France
- Laboratório Misto Internacional "Sentinela", FIOCRUZ, UnB, IRD, Rio de Janeiro, Brazil
| | - Cynara Melo Rodovalho
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Diogo Fernandes Bellinato
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
- Laboratório Misto Internacional "Sentinela", FIOCRUZ, UnB, IRD, Rio de Janeiro, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Chen M, Du Y, Nomura Y, Zhorov BS, Dong K. Chronology of sodium channel mutations associated with pyrethroid resistance in Aedes aegypti. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21686. [PMID: 32378259 PMCID: PMC8060125 DOI: 10.1002/arch.21686] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Mengli Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of life sciences, China Jiliang University, Hangzhou, China
| | - Yuzhe Du
- USDA-ARS, Biological Control of Pest Research Unit, 59 Lee Road, Stoneville, MS 38776, USA
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Henriques BS, Garcia ES, Azambuja P, Genta FA. Determination of Chitin Content in Insects: An Alternate Method Based on Calcofluor Staining. Front Physiol 2020; 11:117. [PMID: 32132935 PMCID: PMC7040371 DOI: 10.3389/fphys.2020.00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022] Open
Abstract
Chitin is an aminopolysaccharide present in yeast cells and arthropod cuticle and is one of the most abundant biopolymers. The conventional methods for the quantitation of chitin content in biological samples are based on its hydrolysis (acid or enzymatic), and the assessment of the byproduct, glucosamine. However, previously described methodologies are time-consuming, laborious, low throughput, and not applicable to insect samples in many cases. Here we describe a new approach to chitin content quantitation based on calcofluor fluorescent brightener staining of samples, followed by microplate fluorescence readings. Calcofluor is a specific chitin stain commonly used for topological localization of the polymer. The protocol was tested in three important disease vector species, namely Lutzomyia longipalpis, Aedes aegypti, and Rhodnius prolixus, and then compared to a classic colorimetric chitin assessment method. Results show that chitin content in the tested insects can vary largely in a range of 8–4600 micrograms of chitin per insect, depending on species, sex, and instar. Comparisons between measurements from the previous protocol and calcofluor method showed statistically significant differences in some samples. However, the difference might be due to interference in the classic method from non-chitin sources of glucosamine and reducing agents. Furthermore, chitinase hydrolysis reduces the total chitin mass estimated between 36 and 74%, consolidating the fluorescent measurements as actual stained chitin in the same extent that was observed with the standard protocol. Therefore, the calcofluor staining method revealed to be a fast and reliable technique for chitin quantitation in homogenized insect samples.
Collapse
Affiliation(s)
- Bianca Santos Henriques
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Eloi Souza Garcia
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Maciel LG, Oliveira AA, Romão TP, Leal LLL, Guido RVC, Silva-Filha MHNL, Dos Anjos JV, Soares TA. Discovery of 1,2,4-oxadiazole derivatives as a novel class of noncompetitive inhibitors of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. Bioorg Med Chem 2019; 28:115252. [PMID: 31864777 DOI: 10.1016/j.bmc.2019.115252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
The mosquito Aedes aegypti is the vector of arboviruses such as Zika, Chikungunya, dengue and yellow fever. These infectious diseases have a major impact on public health. The unavailability of effective vaccines or drugs to prevent or treat most of these diseases makes vector control the main form of prevention. One strategy to promote mosquito population control is the use of synthetic insecticides to inhibit key enzymes in the metabolic pathway of these insects, particularly during larval stages. One of the main targets of the kynurenine detoxification pathway in mosquitoes is the enzyme 3-hydroxykynurenine transaminase (HKT), which catalyzes the conversion of 3-hydroxykynurenine (3-HK) into xanthurenic acid (XA). In this work, we report eleven newly synthesized oxadiazole derivatives and demonstrate that these compounds are potent noncompetitive inhibitors of HKT from Ae. aegypti. The present data provide direct evidence that HKT can be explored as a molecular target for the discovery of novel larvicides against Ae. aegypti. More importantly, it ensures that structural information derived from the HKT 3D-structure can be used to guide the development of more potent inhibitors.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Andrew A Oliveira
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | - Tatiany P Romão
- Institute Aggeu Magalhães (IAM) - FIOCRUZ, Av. Professor Moraes Rego s/n°, Recife, PE 50740-560 Brazil
| | - Laylla L L Leal
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | | | - Janaína V Dos Anjos
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| | - Thereza A Soares
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| |
Collapse
|