1
|
Richards J, Kania S, Wilson A, Kent E, Gerhold R. Novel methods of immunogenic antigen selection for serological diagnosis of Parelaphostrongylus tenuis infection. Sci Rep 2023; 13:10989. [PMID: 37419916 PMCID: PMC10329008 DOI: 10.1038/s41598-023-37481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
This paper outlines methods used to identify novel antigens for use in the development of serological assays. Specifically, we applied these methods to a neurogenic parasitic nematode of cervids called Parelaphostrongylus tenuis. This parasite is of particular concern in both wild and domestic ungulates as it causes significant neurological signs and definitive diagnosis is only possible post-mortem, necessitating the development of serologic assays for antemortem diagnosis. Proteins extracted from P. tenuis organisms were affinity isolated using antibodies enriched from seropositive moose (Alces alces). The proteins were analyzed using mass spectrometry and liquid chromatography to obtain amino acid sequences that were then cross-referenced to open reading frames predicted from an assembled transcriptome. An antigen of interest was assessed for immunogenic epitopes and subsequently synthesized into 10-mer synthetic overlapping peptides representing these regions. These synthetic peptides were then assessed for reactivity against positive and negative moose sera and demonstrated potential use as a serological assay in diagnostic laboratories. Known negative moose sera revealed significantly lower optical density when compared to the positive samples (p < 0.05). This method serves as a pipeline for the construction of diagnostic assays of pathogens in both human and veterinary medicine.
Collapse
Affiliation(s)
- Jessie Richards
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA.
- The University of Tennessee Comparative & Experimental Medicine, Knoxville, USA.
| | - Stephen Kania
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA
- The University of Tennessee Comparative & Experimental Medicine, Knoxville, USA
| | - Abigail Wilson
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA
| | - Emily Kent
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA
| | - Richard Gerhold
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA.
- The University of Tennessee Comparative & Experimental Medicine, Knoxville, USA.
| |
Collapse
|
2
|
Marrotte RR, Patterson BR, Northrup JM. Harvest and density-dependent predation drive long-term population decline in a northern ungulate. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2629. [PMID: 35403759 PMCID: PMC9541669 DOI: 10.1002/eap.2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The relative effect of top-down versus bottom-up forces in regulating and limiting wildlife populations is an important theme in ecology. Untangling these effects is critical for a basic understanding of trophic dynamics and effective management. We examined the drivers of moose (Alces alces) population growth by integrating two independent sources of observations within a hierarchical Bayesian population model. We used one of the largest existing spatiotemporal data sets on ungulate population dynamics globally. We documented a 20% population decline over the period examined. There was negative density-dependent population growth of moose. Although we could not determine the mechanisms producing density-dependent suppression of population growth, the relatively low densities at which we documented moose populations suggested it could be due to density-dependent predation. Predation primarily limited population growth, except at low density, where it was regulating. After we simulated several harvest scenarios, it appeared that harvest was largely additive and likely contributed to population declines. Our results highlight how population dynamics are context dependent and vary strongly across gradients in climate, forest type, and predator abundance. These results help clarify long-standing questions in population ecology and highlight the complex relationships between natural and human-caused mortality in driving ungulate population dynamics.
Collapse
Affiliation(s)
- Robby R. Marrotte
- Ontario Ministry of Natural Resources & Forestry, Wildlife Research & Monitoring SectionTrent UniversityPeterboroughOntarioCanada
| | - Brent R. Patterson
- Ontario Ministry of Natural Resources & Forestry, Wildlife Research & Monitoring SectionTrent UniversityPeterboroughOntarioCanada
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| | - Joseph M. Northrup
- Ontario Ministry of Natural Resources & Forestry, Wildlife Research & Monitoring SectionTrent UniversityPeterboroughOntarioCanada
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
3
|
Hinton JW, Hurst JE, Kramer DW, Stickles JH, Frair JL. A model-based estimate of winter distribution and abundance of white-tailed deer in the Adirondack Park. PLoS One 2022; 17:e0273707. [PMID: 36040913 PMCID: PMC9426880 DOI: 10.1371/journal.pone.0273707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
In the Adirondack Park region of northern New York, USA, white-tailed deer (Odocoileus virginianus) and moose (Alces alces) co-occur along a temperate-boreal forest ecotone. In this region, moose exist as a small and vulnerable low-density population and over-browsing by white-tailed deer is known to reduce regeneration, sustainability, and health of forests. Here, we assess the distribution and abundance of white-tailed deer at a broad spatial scale relevant for deer and moose management in northern New York. We used density surface modeling (DSM) under a conventional distance sampling framework, tied to a winter aerial survey, to create a spatially explicit estimate of white-tailed deer abundance and density across a vast, northern forest region. We estimated 16,352 white-tailed deer (95% CI 11,762–22,734) throughout the Adirondack Park with local density ranging between 0.00–5.73 deer/km2. Most of the Adirondack Park (91.2%) supported white-tailed deer densities of ≤2 individuals/km2. White-tailed deer density increased with increasing proximity to anthropogenic land cover such as timber cuts, roads, and agriculture and decreased in areas with increasing elevation and days with snow cover. We conclude that climate change will be more favorable for white-tailed deer than for moose because milder winters and increased growing seasons will likely have a pronounced influence on deer abundance and distribution across the Adirondack Park. Therefore, identifying specific environmental conditions facilitating the expansion of white-tailed deer into areas with low-density moose populations can assist managers in anticipating potential changes in ungulate distribution and abundance and to develop appropriate management actions to mitigate negative consequences such as disease spread and increased competition for limiting resources.
Collapse
Affiliation(s)
- Joseph W. Hinton
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America
- * E-mail:
| | - Jeremy E. Hurst
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, Albany, New York, United States of America
| | - David W. Kramer
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, Albany, New York, United States of America
| | - James H. Stickles
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, Albany, New York, United States of America
| | - Jacqueline L. Frair
- Roosevelt Wild Life Station, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America
| |
Collapse
|
4
|
|
5
|
Oliveira-Santos LGR, Moore SA, Severud WJ, Forester JD, Isaac EJ, Chenaux-Ibrahim Y, Garwood T, Escobar LE, Wolf TM. Spatial compartmentalization: A nonlethal predator mechanism to reduce parasite transmission between prey species. SCIENCE ADVANCES 2021; 7:eabj5944. [PMID: 34936450 PMCID: PMC8694586 DOI: 10.1126/sciadv.abj5944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Predators can modulate disease transmission within prey populations by influencing prey demography and behavior. Predator-prey dynamics can involve multiple species in heterogeneous landscapes; however, studies of predation on disease transmission rarely consider the role of landscapes or the transmission among diverse prey species (i.e., spillover). We used high-resolution habitat and movement data to model spillover risk of the brainworm parasite (Parelaphostrongylus tenuis) between two prey species [white-tailed deer (Odocoileus virginianus) and moose (Alces alces)], accounting for predator [gray wolf (Canis lupus)] presence and landscape configuration. Results revealed that spring migratory movements of cervid hosts increased parasite spillover risk from deer to moose, an effect tempered by changes in elevation, land cover, and wolf presence. Wolves induced host-species segregation, a nonlethal mechanism that modulated disease emergence by reducing spatiotemporal overlap between infected and susceptible prey, showing that wildlife disease dynamics may change with landscape disturbance and the loss of large carnivores.
Collapse
Affiliation(s)
- L. Gustavo R. Oliveira-Santos
- Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave, 495 AnSci/VetMed Bldg, St. Paul, MN 55108, USA
- Movement and Population Ecology Laboratory, Ecology Department, Federal University of Mato Grosso do Sul, Av. Costa e Silva, s/n°, Bairro Universitário, Campo Grande-MS 79070-900, Brazil
| | - Seth A. Moore
- Grand Portage Band of Lake Superior Chippewa Biology and Environment, 27 Store Road, Grand Portage, MN 55605, USA
| | - William J. Severud
- Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave, 495 AnSci/VetMed Bldg, St. Paul, MN 55108, USA
| | - James D. Forester
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Edmund J. Isaac
- Grand Portage Band of Lake Superior Chippewa Biology and Environment, 27 Store Road, Grand Portage, MN 55605, USA
| | - Yvette Chenaux-Ibrahim
- Grand Portage Band of Lake Superior Chippewa Biology and Environment, 27 Store Road, Grand Portage, MN 55605, USA
| | - Tyler Garwood
- Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave, 495 AnSci/VetMed Bldg, St. Paul, MN 55108, USA
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA
| | - Tiffany M. Wolf
- Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave, 495 AnSci/VetMed Bldg, St. Paul, MN 55108, USA
| |
Collapse
|
6
|
Ferrante JA, Smith CH, Thompson LM, Hunter ME. Genome-wide SNP analysis of three moose subspecies at the southern range limit in the contiguous United States. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractGenome-wide evaluations of genetic diversity and population structure are important for informing management and conservation of trailing-edge populations. North American moose (Alces alces) are declining along portions of the southern edge of their range due to disease, species interactions, and marginal habitat, all of which may be exacerbated by climate change. We employed a genotyping by sequencing (GBS) approach in an effort to collect baseline information on the genetic variation of moose inhabiting the species’ southern range periphery in the contiguous United States. We identified 1920 single nucleotide polymorphisms (SNPs) from 155 moose representing three subspecies from five states: A. a. americana (New Hampshire), A. a. andersoni (Minnesota), and A. a. shirasi (Idaho, Montana, and Wyoming). Molecular analyses supported three geographically isolated clusters, congruent with currently recognized subspecies. Additionally, while moderately low genetic diversity was observed, there was little evidence of inbreeding. Results also indicated > 20% shared ancestry proportions between A. a. shirasi samples from northern Montana and A. a. andersoni samples from Minnesota, indicating a putative hybrid zone warranting further investigation. GBS has proven to be a simple and effective method for genome-wide SNP discovery in moose and provides robust data for informing herd management and conservation priorities. With increasing disease, predation, and climate related pressure on range edge moose populations in the United States, the use of SNP data to identify gene flow between subspecies may prove a powerful tool for moose management and recovery, particularly if hybrid moose are more able to adapt.
Collapse
|
7
|
McMahon MC, Ditmer MA, Forester JD. Comparing unmanned aerial systems with conventional methodology for surveying a wild white-tailed deer population. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract Context Ungulate populations are subject to fluctuations caused by extrinsic factors and require efficient and frequent surveying to monitor population sizes and demographics. Unmanned aerial systems (UAS) have become increasingly popular for ungulate research; however, little is understood about how this novel technology compares with conventional methodologies for surveying wild populations. Aims We examined the feasibility of using a fixed-wing UAS equipped with a thermal infrared sensor for estimating the population density of wild white-tailed deer (Odocoileus virginianus) at the Cedar Creek Ecosystem Science Reserve (CCESR), Minnesota, USA. We compared UAS density estimates with those derived from faecal pellet-group counts. Methods We conducted UAS thermal survey flights from March to April of 2018 and January to March of 2019. Faecal pellet-group counts were conducted from April to May in 2018 and 2019. We modelled deer counts and detection probabilities and used these results to calculate point estimates and bootstrapped prediction intervals for deer density from UAS and pellet-group count data. We compared results of each survey approach to evaluate the relative efficacy of these two methodologies. Key results Our best-fitting model of certain deer detections derived from our UAS-collected thermal imagery produced deer density estimates (WR20204_IE1.gif, 95% prediction interval = 4.32–17.84 deer km−2) that overlapped with the pellet-group count model when using our mean pellet deposition rate assumption (WR20204_IE2.gif, 95% prediction interval = 4.14–11.29 deer km−2). Estimates from our top UAS model using both certain and potential deer detections resulted in a mean density of 13.77 deer km−2 (95% prediction interval = 6.64–24.35 deer km−2), which was similar to our pellet-group count model that used a lower rate of pellet deposition (WR20204_IE3.gif, 95% prediction interval = 6.46–17.65 deer km−2). The mean point estimates from our top UAS model predicted a range of 136.68–273.81 deer, and abundance point estimates using our pellet-group data ranged from 112.79 to 239.67 deer throughout the CCESR. Conclusions Overall, UAS yielded results similar to pellet-group counts for estimating population densities of wild ungulates; however, UAS surveys were more efficient and could be conducted at multiple times throughout the winter. Implications We demonstrated how UAS could be applied for regularly monitoring changes in population density. We encourage researchers and managers to consider the merits of UAS and how they could be used to enhance the efficiency of wildlife surveys.
Collapse
|
8
|
EVALUATING THE THRESHOLD DENSITY HYPOTHESIS FOR MOOSE (ALCES ALCES), WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS), AND PARELAPHOSTRONGYLUS TENUIS. J Wildl Dis 2021; 57:569-578. [PMID: 33961048 DOI: 10.7589/jwd-d-20-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022]
Abstract
Despite the importance of the Parelaphostrongylus tenuis infection for moose (Alces alces) and white-tailed deer (Odocoileus virginianus) management, only one peer-reviewed study has evaluated the relationship between deer and moose densities and the potential for parasite-mediated competition between the species. Using polynomial-regression modeling, that study identified a deer-density threshold above which moose populations declined; however, the nature of the data and apparent outliers suggests the approach used to develop that threshold may not have been appropriate. We used the data from the original study to test whether alternative models, including linear models and negative binomial models would be less sensitive to outliers and could better explain that relationship. We found no evidence that moose density decreases as deer density increases. We concluded that, although the proposed moose-deer-P. tenuis relationship could be partially density dependent, additional factors, such as frequency dependence of disease transmission, gastropod abundance, and shared use of resources by moose and deer should also be considered.
Collapse
|