1
|
Hedenström A. Effects of wing damage and moult gaps on vertebrate flight performance. J Exp Biol 2023; 226:307304. [PMID: 37132410 DOI: 10.1242/jeb.227355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vertebrates capable of powered flight rely on wings, muscles that drive their flapping and sensory inputs to the brain allowing for control of the motor output. In birds, the wings are formed of arrangements of adjacent flight feathers (remiges), whereas the wings of bats consist of double-layered skin membrane stretched out between the forelimb skeleton, body and legs. Bird feathers become worn from use and brittle from UV exposure, which leads to loss of function; to compensate, they are renewed (moulted) at regular intervals. Bird feathers and the wings of bats can be damaged by accident. Wing damage and loss of wing surface due to moult almost invariably cause reduced flight performance in measures such as take-off angle and speed. During moult in birds, this is partially counteracted by concurrent mass loss and enlarged flight muscles. Bats have sensory hairs covering their wing surface that provide feedback information about flow; thus, wing damage affects flight speed and turning ability. Bats also have thin, thread-like muscles, distributed within the wing membrane and, if these are damaged, the control of wing camber is lost. Here, I review the effects of wing damage and moult on flight performance in birds, and the consequences of wing damage in bats. I also discuss studies of life-history trade-offs that make use of experimental trimming of flight feathers as a way to handicap parent birds feeding their young.
Collapse
Affiliation(s)
- Anders Hedenström
- Department of Biology, Animal Flight Lab, SE-223 62 Ecology Building, Lund University, 22362 Lund, Sweden
| |
Collapse
|
2
|
Salinas-Ramos VB, Mori E, Bosso L, Ancillotto L, Russo D. Zoonotic Risk: One More Good Reason Why Cats Should Be Kept Away from Bats. Pathogens 2021; 10:304. [PMID: 33807760 PMCID: PMC8002059 DOI: 10.3390/pathogens10030304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Bats are often unfairly depicted as the direct culprit in the current COVID-19 pandemic, yet the real causes of this and other zoonotic spillover events should be sought in the human impact on the environment, including the spread of domestic animals. Here, we discuss bat predation by cats as a phenomenon bringing about zoonotic risks and illustrate cases of observed, suspected or hypothesized pathogen transmission from bats to cats, certainly or likely following predation episodes. In addition to well-known cases of bat rabies, we review other diseases that affect humans and might eventually reach them through cats that prey on bats. We also examine the potential transmission of SARS-CoV-2, the causal agent of COVID-19, from domestic cats to bats, which, although unlikely, might generate a novel wildlife reservoir in these mammals, and identify research and management directions to achieve more effective risk assessment, mitigation or prevention. Overall, not only does bat killing by cats represent a potentially serious threat to biodiversity conservation, but it also bears zoonotic implications that can no longer be neglected.
Collapse
Affiliation(s)
- Valeria B. Salinas-Ramos
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (V.B.S.-R.); (L.A.)
| | - Emiliano Mori
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Luciano Bosso
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (V.B.S.-R.); (L.A.)
| | - Leonardo Ancillotto
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (V.B.S.-R.); (L.A.)
| | - Danilo Russo
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (V.B.S.-R.); (L.A.)
| |
Collapse
|
3
|
Khayat ROS, Grant RA, Ryan H, Melling LM, Dougill G, Killick DR, Shaw KJ. Investigating cat predation as the cause of bat wing tears using forensic DNA analysis. Ecol Evol 2020; 10:8368-8378. [PMID: 32788986 PMCID: PMC7417221 DOI: 10.1002/ece3.6544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/05/2022] Open
Abstract
Cat predation upon bat species has been reported to have significant effects on bat populations in both rural and urban areas. The majority of research in this area has focussed on observational data from bat rehabilitators documenting injuries, and cat owners, when domestic cats present prey. However, this has the potential to underestimate the number of bats killed or injured by cats. Here, we use forensic DNA analysis techniques to analyze swabs taken from injured bats in the United Kingdom, mainly including Pipistrellus pipistrellus (40 out of 72 specimens). Using quantitative PCR, cat DNA was found in two-thirds of samples submitted by bat rehabilitators. Of these samples, short tandem repeat analysis produced partial DNA profiles for approximately one-third of samples, which could be used to link predation events to individual cats. The use of genetic analysis can complement observational data and potentially provide additional information to give a more accurate estimation of cat predation.
Collapse
Affiliation(s)
- Rana O. S. Khayat
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
- Department of BiologyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Robyn A. Grant
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | | | - Louise M. Melling
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Gary Dougill
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - David R. Killick
- Institute of Infection, Veterinary and Ecological SciencesUniversity of Liverpool, LeahurstLiverpoolUK
| | - Kirsty J. Shaw
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
4
|
Fuller NW, McGuire LP, Pannkuk EL, Blute T, Haase CG, Mayberry HW, Risch TS, Willis CKR. Disease recovery in bats affected by white-nose syndrome. J Exp Biol 2020; 223:jeb211912. [PMID: 32054681 DOI: 10.1242/jeb.211912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
Processes associated with recovery of survivors are understudied components of wildlife infectious diseases. White-nose syndrome (WNS) in bats provides an opportunity to study recovery of disease survivors, understand implications of recovery for individual energetics, and assess the role of survivors in pathogen transmission. We documented temporal patterns of recovery from WNS in little brown bats (Myotis lucifugus) following hibernation to test the hypotheses that: (1) recovery of wing structure from WNS matches a rapid time scale (i.e. approximately 30 days) suggested by data from free-ranging bats; (2) torpor expression plays a role in recovery; (3) wing physiological function returns to normal alongside structural recovery; and (4) pathogen loads decline quickly during recovery. We collected naturally infected bats at the end of hibernation, brought them into captivity, and quantified recovery over 40 days by monitoring body mass, wing damage, thermoregulation, histopathology of wing biopsies, skin surface lipids and fungal load. Most metrics returned to normal within 30 days, although wing damage was still detectable at the end of the study. Torpor expression declined overall throughout the study, but bats expressed relatively shallow torpor bouts - with a plateau in minimum skin temperature - during intensive healing between approximately days 8 and 15. Pathogen loads were nearly undetectable after the first week of the study, but some bats were still detectably infected at day 40. Our results suggest that healing bats face a severe energetic imbalance during early recovery from direct costs of healing and reduced foraging efficiency. Management of WNS should not rely solely on actions during winter, but should also aim to support energy balance of recovering bats during spring and summer.
Collapse
Affiliation(s)
- Nathan W Fuller
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
| | - Liam P McGuire
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
| | - Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Todd Blute
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Catherine G Haase
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Heather W Mayberry
- Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6
| | - Thomas S Risch
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 847, Jonesboro, AR 72467, USA
| | - Craig K R Willis
- Department of Biology and Centre for Forest Inter-Disciplinary Research (C-FIR), University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada R3B 2E9
| |
Collapse
|