1
|
Valcourt M, Fauteux D, Gauthier G. Influence of habitat on fine-scale space use by brown lemmings ( Lemmus trimucronatus) in the High Arctic. J Mammal 2024; 105:1141-1150. [PMID: 39345852 PMCID: PMC11427541 DOI: 10.1093/jmammal/gyae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Space use by small mammals should mirror their immediate needs for food and predator shelters but can also be influenced by seasonal changes in biotic and abiotic factors. Lemmings are keystone species of the tundra food web, but information on their spatial distribution in relation to habitat heterogeneity is still scant, especially at a fine scale. In this study, we used spatially explicit capture-recapture methods to determine how topography, hydrology, vegetation, and soil characteristics influence the fine-scale spatial variations in summer density of brown lemmings (Lemmus trimucronatus). Lemmings were monitored throughout the summer in wet and mesic tundra habitats and in a predator exclusion grid, which was also located in mesic tundra. We found that in wet tundra, lemming densities were higher at sites with a rugged topography dominated by hummocks, but only during snow melt. In both mesic tundra sites, lemming densities were higher in sites with poor drainage and low aspect throughout the summer. We found no clear association between lemming densities and any tested vegetation or soil variables. Overall, hydrology and topography appear to play a dominant role in small-scale space use of brown lemmings with a secondary role for predator avoidance and food plant abundance.
Collapse
Affiliation(s)
- Marianne Valcourt
- Department of Biology and Centre d'Études Nordiques, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Dominique Fauteux
- Department of Biology and Centre d'Études Nordiques, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Centre for Arctic Knowledge and Exploration, Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada
| | - Gilles Gauthier
- Department of Biology and Centre d'Études Nordiques, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Gauthier G, Ehrich D, Belke-Brea M, Domine F, Alisauskas R, Clark K, Ecke F, Eide NE, Framstad E, Frandsen J, Gilg O, Henttonen H, Hörnfeldt B, Kataev GD, Menyushina IE, Oksanen L, Oksanen T, Olofsson J, Samelius G, Sittler B, Smith PA, Sokolov AA, Sokolova NA, Schmidt NM. Taking the beat of the Arctic: are lemming population cycles changing due to winter climate? Proc Biol Sci 2024; 291:20232361. [PMID: 38351802 PMCID: PMC10865006 DOI: 10.1098/rspb.2023.2361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.
Collapse
Affiliation(s)
- Gilles Gauthier
- Department of Biology and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
| | - Dorothée Ehrich
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Maria Belke-Brea
- Department of Geography, Takuvik Joint International Laboratory and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
| | - Florent Domine
- Department of Chemistry, Takuvik Joint International Laboratory and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
- CNRS-INSU, Paris, France
| | - Ray Alisauskas
- Wildlife Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Karin Clark
- Environment and Natural Resources, Government of Northwest Territories, Yellowknife, Northwest Territories, Canada
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nina E. Eide
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim/Oslo, Norway
| | - Erik Framstad
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim/Oslo, Norway
| | - Jay Frandsen
- Western Arctic Field Unit, Parks Canada, Kingmingya, Inuvik, Northwest Territories, Canada
| | - Olivier Gilg
- UMR 6249 Chrono-Environnement, CNRS, Université de Bourgogne Franche-Comté, Francheville, France
- Groupe de recherche en Écologie Arctique, Francheville, France
| | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Helsinki, Finland
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | - Lauri Oksanen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Alta, Norway
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
| | - Tarja Oksanen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Alta, Norway
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | - Benoit Sittler
- Groupe de recherche en Écologie Arctique, Francheville, France
- Chair for Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Paul A. Smith
- Wildlife Research Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Aleksandr A. Sokolov
- Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Labytnangi, Russia
| | - Natalia A. Sokolova
- Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Labytnangi, Russia
| | - Niels M. Schmidt
- Department of Ecoscience and Arctic Research Centre, Aarhus University, 4000 Roskilde, Denmark
| |
Collapse
|
3
|
Poirier M, Gauthier G, Domine F, Fauteux D. Lemming winter habitat: the quest for warm and soft snow. Oecologia 2023:10.1007/s00442-023-05385-y. [PMID: 37351629 DOI: 10.1007/s00442-023-05385-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
During the cold arctic winter, small mammals like lemmings seek refuge inside the snowpack to keep warm and they dig tunnels in the basal snow layer, usually formed of a soft depth hoar, to find vegetation on which they feed. The snowpack, however, is a heterogenous medium and lemmings should use habitats where snow properties favor their survival and winter reproduction. We determined the impact of snow physical properties on lemming habitat use and reproduction in winter by sampling their winter nests for 13 years and snow properties for 6 years across 4 different habitats (mesic, riparian, shrubland, and wetland) on Bylot Island in the Canadian High Arctic. We found that lemmings use riparian habitat most intensively because snow accumulates more rapidly, the snowpack is the deepest and temperature of the basal snow layer is the highest in this habitat. However, in the deepest snowpacks, the basal depth hoar layer was denser and less developed than in habitats with shallower snowpacks, and those conditions were negatively related to lemming reproduction in winter. Shrubland appeared a habitat of moderate quality for lemmings as it favored a soft basal snow layer and a deep snowpack compared with mesic and wetland, but snow conditions in this habitat critically depend on weather conditions at the beginning of the winter. With climate change, a hardening of the basal layer of the snowpack and a delay in snow accumulation are expected, which could negatively affect the winter habitat of lemmings and be detrimental to their populations.
Collapse
Affiliation(s)
- Mathilde Poirier
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Québec, QC, Canada.
- Department of Biology, Université Laval, 1045 av. de la Médecine, Québec, QC, Canada.
- Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), 1045 av. de la Médecine, Québec, QC, Canada.
| | - Gilles Gauthier
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Québec, QC, Canada
- Department of Biology, Université Laval, 1045 av. de la Médecine, Québec, QC, Canada
| | - Florent Domine
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), 1045 av. de la Médecine, Québec, QC, Canada
- Department of Chemistry, Université Laval, 1045 av. de la Médecine, Québec, QC, Canada
| | - Dominique Fauteux
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Québec, QC, Canada
- Centre for Arctic Knowledge and Exploration, Canadian Museum of Nature, Station D, P.O. Box 3443, Ottawa, ON, Canada
| |
Collapse
|
4
|
Reinking AK, Højlund Pedersen S, Elder K, Boelman NT, Glass TW, Oates BA, Bergen S, Roberts S, Prugh LR, Brinkman TJ, Coughenour MB, Feltner JA, Barker KJ, Bentzen TW, Pedersen ÅØ, Schmidt NM, Liston GE. Collaborative wildlife–snow science: Integrating wildlife and snow expertise to improve research and management. Ecosphere 2022. [DOI: 10.1002/ecs2.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Adele K. Reinking
- Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins Colorado USA
| | - Stine Højlund Pedersen
- Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins Colorado USA
- Department of Biological Sciences University of Alaska Anchorage Anchorage Alaska USA
| | - Kelly Elder
- US Forest Service Rocky Mountain Research Station Fort Collins Colorado USA
| | - Natalie T. Boelman
- Lamont‐Doherty Earth Observatory Columbia University Palisades New York USA
| | - Thomas W. Glass
- Wildlife Conservation Society Fairbanks Alaska USA
- Department of Biology and Wildlife University of Alaska Fairbanks Fairbanks Alaska USA
| | - Brendan A. Oates
- Washington Department of Fish and Wildlife Ellensburg Washington USA
| | - Scott Bergen
- Idaho Department of Fish and Game Pocatello Idaho USA
| | - Shane Roberts
- Idaho Department of Fish and Game Pocatello Idaho USA
| | - Laura R. Prugh
- School of Environmental and Forest Sciences University of Washington Seattle Washington USA
| | - Todd J. Brinkman
- Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska USA
| | - Michael B. Coughenour
- Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado USA
| | | | - Kristin J. Barker
- Department of Environmental Science, Policy, and Management University of California Berkeley Berkeley California USA
| | | | | | - Niels M. Schmidt
- Department of Bioscience and Arctic Research Centre Aarhus University Aarhus Denmark
| | - Glen E. Liston
- Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins Colorado USA
| |
Collapse
|
5
|
Berteaux D, Lai S. Walking on water: terrestrial mammal migrations in the warming Arctic. ANIMAL MIGRATION 2021. [DOI: 10.1515/ami-2020-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Caribou and reindeer migrations are the tip of the iceberg when one considers migration among the 70 species of Arctic terrestrial mammals. About 26% of species indeed have migratory individuals, while 33% are non-migratory and 41% are data deficient. Such figures demonstrate the need to both better document and better understand seasonal movements in these vertebrates. Whereas spatiotemporal variations in resources are key drivers of Arctic terrestrial mammal migrations, the changes of water phase around 0°C, from liquid to solid and vice versa, have considerable impacts given that liquid water, snow, and ice differ so strongly in their physical properties. We explore how the interplay between resources and water phase shape Arctic terrestrial mammal migrations, demonstrate that a rich set of research questions emerges from this interaction, and introduce new concepts such as the micro-migrations of small mammals. We also list key questions about the migrations of Arctic terrestrial mammals, with emphasis on the impacts of climate change. We conclude by arguing that the strong exposure of the Arctic to climate change, combined with the quick development of biologging techniques, rapidly increase both the need and the capacity to enhance our knowledge of migration in Arctic terrestrial mammals.
Collapse
Affiliation(s)
- Dominique Berteaux
- Canada Research Chair on Northern Biodiversity, Centre for Northern Studies and Quebec Center for Biodiversity Science , Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1 , Canada
| | - Sandra Lai
- Canada Research Chair on Northern Biodiversity, Centre for Northern Studies and Quebec Center for Biodiversity Science , Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1 , Canada
| |
Collapse
|
6
|
Poirier M, Fauteux D, Gauthier G, Domine F, Lamarre J. Snow hardness impacts intranivean locomotion of arctic small mammals. Ecosphere 2021. [DOI: 10.1002/ecs2.3835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Mathilde Poirier
- Centre d'Études Nordiques Université Laval Quebec Québec QC G1V 0A6 Canada
- Department of Biology Université Laval Quebec Québec QC G1V 0A6 Canada
| | - Dominique Fauteux
- Centre d'Études Nordiques Université Laval Quebec Québec QC G1V 0A6 Canada
- Centre for Arctic Knowledge and Exploration, Canadian Museum of Nature Gatineau Québec QC J9J 3N7 Canada
| | - Gilles Gauthier
- Centre d'Études Nordiques Université Laval Quebec Québec QC G1V 0A6 Canada
- Department of Biology Université Laval Quebec Québec QC G1V 0A6 Canada
| | - Florent Domine
- Centre d'Études Nordiques Université Laval Quebec Québec QC G1V 0A6 Canada
- Takuvik Joint International Laboratory Université Laval (Canada) and CNRS‐INSU (France) Quebec Québec QC G1V 0A6 Canada
- Department of Chemistry Université Laval Quebec Québec QC G1V 0A6 Canada
| | - Jean‐François Lamarre
- Canadian High Arctic Research Station Polar Knowledge Canada Cambridge Bay Nunavut NU X0B 0C0 Canada
| |
Collapse
|