1
|
Yi D, Zhu L, Liu Y, Zeng J, Chang J, Sun W, Teng J, Zhang Y, Dong Y, Pan X, Chen Y, Zhou Y, Lai M, Zhou Q, Liu J, Chen B, Ma F. The distinct effects of P18 overexpression on different stages of hematopoiesis involve TGF-β and NF-κB signaling. Sci Rep 2021; 11:24014. [PMID: 34907231 PMCID: PMC8671498 DOI: 10.1038/s41598-021-03263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Deficiency of P18 can significantly improve the self-renewal potential of hematopoietic stem cells (HSC) and the success of long-term engraftment. However, the effects of P18 overexpression, which is involved in the inhibitory effects of RUNX1b at the early stage of hematopoiesis, have not been examined in detail. In this study, we established inducible P18/hESC lines and monitored the effects of P18 overexpression on hematopoietic differentiation. Induction of P18 from day 0 (D0) dramatically decreased production of CD34highCD43- cells and derivative populations, but not that of CD34lowCD43- cells, changed the cell cycle status and apoptosis of KDR+ cells and downregulated the key hematopoietic genes at D4, which might cause the severe blockage of hematopoietic differentiation at the early stage. By contrast, induction of P18 from D10 dramatically increased production of classic hematopoietic populations and changed the cell cycle status and apoptosis of CD45+ cells at D14. These effects can be counteracted by inhibition of TGF-β or NF-κB signaling respectively. This is the first evidence that P18 promotes hematopoiesis, a rare property among cyclin-dependent kinase inhibitors (CKIs).
Collapse
Affiliation(s)
- Danying Yi
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Lijiao Zhu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yuanling Liu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiahui Zeng
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jing Chang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Wencui Sun
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiawen Teng
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiaxin Liu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China.
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China.
- State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, 300020, China.
| |
Collapse
|
2
|
Ma Z, Zhu H, Su Y, Meng Y, Lin H, He K, Fan H. Screening of Streptococcus Suis serotype 2 resistance genes with GWAS and transcriptomic microarray analysis. BMC Genomics 2018; 19:907. [PMID: 30541452 PMCID: PMC6292034 DOI: 10.1186/s12864-018-5339-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swine streptococcosis has caused great economic loss in the swine industry, and the major pathogen responsible for this disease is Streptococcus Suis serotype 2 (SS2). Disease resistance breeding is a fundamental way of resolving this problem. With the development of GWAS and transcriptomic microarray technology, we now have powerful research tools to identify SS2 resistance genes. RESULTS In this research, we generated an F2 generation of SS2 resistant C57BL/6 and SS2 susceptive A/J mice. With the F2 generation of these two mice strains and GWAS analysis, we identified 286 significant mouse genome SNPs sites associated with the SS2 resistance trait. Gene expression profiles for C57BL/6 and A/J were analyzed under SS2 infection pressure by microarray. In total, 251 differentially expressed genes were identified between these two mouse strains during SS2 infection. After combining the GWAS and gene expression profile data, we located two genes that were significantly associated with SS2 resistance, which were the UBA domain containing 1 gene (Ubac1) and Epsin 1 gene (Epn 1). GO classification and over-representation analysis revealed nine up-regulated related to immune function, which could potentially be involved in the C57BL/6 SS2 resistance trait. CONCLUSION This is the first study to use both SNP chip and gene express profile chip for SS2 resistance gene identification in mouse, and these results will contribute to swine SS2 resistance breeding.
Collapse
Affiliation(s)
- Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Haodan Zhu
- Jiangsu Academy Agricultural Sciences, Nanjing, 210095, China
| | - Yiqi Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Kongwang He
- Jiangsu Academy Agricultural Sciences, Nanjing, 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
3
|
In vivo selection with lentiviral expression of Bcl2 T69A/S70A/S87A mutant in hematopoietic stem cell-transplanted mice. Gene Ther 2018. [PMID: 29523881 DOI: 10.1038/s41434-018-0008-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current in vivo selections for hematopoietic stem cell (HSC)-based gene therapy are drug dependent and not without risk of cytotoxicity or tumorigenesis. We developed a new in vivo selection system with the non-phosphorylatable Bcl2 mutant Bcl2T69A/S70A/S87A (Bcl2AAA), which makes in vivo selection drug independent and without risk of cytotoxicity or tumorigenesis. We demonstrated in HSC-transplanted mice that Bcl2AAA facilitated efficient in vivo selection in the absence of any exogenously applied drugs under both myeloablative and non-myeloablative conditioning. In mice transplanted with retrovirally transduced sca-1-positive bone marrow cells, the marked cell level increased from 26.38% of input transduced cells to 92.61 ± 0.95% of peripheral blood cells for myeloablative transplantation or to 37.82 ± 6.35% for non-myeloablative transplantation 6 months after transplantation. Bcl2AAA did not induce tumorigenesis and does not influence hematopoiesis and the function of the reconstituted blood system. However, the high-level constitutive expression of Bcl2AAA mediated by retroviral vector induced exhaustion of the marked cells after tertiary transplantation. Fortunately, low-level constitutive expression of Bcl2AAA driven by an internal promoter in lentiviral vector could both maintain the marked cell level (24.13 ± 5.27%, 27.17 ± 5.51%, 24.33 ± 5.08%, and 22.07 ± 4.44% for primary, secondary, tertiary, and quaternary recipients) and avoid the exhaustion of the marked cells even in quaternary recipients. Importantly, the low-level constitutive expression of Bcl2AAA did not induce tumorigenesis. Thus, the in vivo selection employing the low-level constitutive expression of Bcl2AAA provides a general platform which is relevant for widespread applications of gene therapy.
Collapse
|
4
|
Xu Z, Morel L. Contribution of B-1a cells to systemic lupus erythematosus in the NZM2410 mouse model. Ann N Y Acad Sci 2015; 1362:215-23. [PMID: 25728381 DOI: 10.1111/nyas.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of complex etiology in which B cells play a central role. An expanded number of B-1a cells have been consistently associated with murine lupus, and more recently with human SLE. We have identified Cdkn2c, a gene that controls cell cycle progression, as a key regulator of B-1a cell numbers and have associated Cdkn2c deficiency with autoimmune pathology, including the production of autoantibodies and the skewing of CD4(+) T cells toward inflammatory effector functions. We review the genetic studies that have led to these findings, as well as the possible mechanisms by which B-1a cell expansion and Cdkn2c deficiency are related to SLE pathogenesis.
Collapse
Affiliation(s)
- Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Potula HHSK, Xu Z, Zeumer L, Sang A, Croker BP, Morel L. Cyclin-dependent kinase inhibitor Cdkn2c deficiency promotes B1a cell expansion and autoimmunity in a mouse model of lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:2931-40. [PMID: 22896639 DOI: 10.4049/jimmunol.1200556] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lupus-prone NZM2410 mice present an expanded B1a cell population that we have mapped to the Sle2c1 lupus susceptibility locus. The expression of Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18(Ink4c) and located within Sle2c1, is significantly lower in B6.Sle2c1 B cells than in B6 B cells. To test the hypothesis that the B1a cell expansion in B6.Sle2c1 mice was due to a defective p18 expression, we analyzed the B1a cell phenotypes of p18-deficient C57BL/6 mice. We found a dose-dependent negative correlation between the number of B1a cells and p18 expression in B cells, with p18-deficient mice showing an early expansion of the peritoneal B1a cell pool. p18 deficiency enhanced the homeostatic expansion of B1a cells but not of splenic conventional B cells, and the elevated number of B6.Sle2c1 B1a cells was normalized by cyclin D2 deficiency. These data demonstrated that p18 is a key regulator of the size of the B1a cell pool. B6.p18(-/-) mice produced significant amounts of anti-DNA IgM and IgG, indicating that p18 deficiency contributes to humoral autoimmunity. Finally, we have shown that Sle2c1 increases lpr-associated lymphadenopathy and T cell-mediated pathology. B6.p18(-/-).lpr mice showed a greater lymphadenopathy than B6.Sle2c1.lpr mice, but their renal pathology was intermediate between that of B6.lpr and B6.Sle2c1.lpr mice. This indicated that p18-deficiency synergizes, at least partially, with lpr-mediated pathology. These results show that Cdkn2c contributes to lupus susceptibility by regulating the size of the B1a cell compartment and hence their contribution to autoimmunity.
Collapse
Affiliation(s)
- Hari-Hara S K Potula
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|