1
|
Jiang L, Li Y, Gu Y, Zheng J, Wei L, Wei M, Zou J, Wei C, Mo B, Pan L, Zhao L, Wang D. Identification of the Beta Subunit Fas1p of Fatty Acid Synthetase as an Interacting Partner of Yeast Calcium/Calmodulin-Dependent Protein Kinase Cmk2p Through Mass Spectrometry Analysis. Appl Biochem Biotechnol 2024; 196:6836-6848. [PMID: 38411936 DOI: 10.1007/s12010-024-04891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
The calcium/calmodulin-dependent protein kinase II (CaMKII) is a mediator of calcium signals and regulates fatty acid metabolism in mammalian cells. Cmk2p is a yeast homolog of CaMKII and functions as a negative regulator of calcium signaling. However, its substrates remain to be identified. Combination of immunoprecipitation (IP) and mass spectrometry has been proven to be very useful for identification of interacting partner proteins and interactome. In this study, through these approaches, we have identified 65 and 110 potential Cmk2p-interacting proteins in yeast cells in the absence or presence of calcium stress, respectively. In yeast cells expressing both CMK2-HA and FAS1-GFP fusion proteins, in the absence or presence of calcium stress, less amounts of FAS1-GFP proteins are present in cell lysates after IP with anti-HA antibody than cell lysates before IP, while FAS1-GFP proteins are detected on both types of IP beads. However, as an internal control, similar amounts of Pgk1p proteins were detected in both after-IP and before-IP cell lysates but not on the IP beads. Therefore, our biochemical analysis demonstrates that the β subunit Fas1p of fatty acid synthetase interacts with Cmk2p in yeast cells independent of calcium stress. It is also interesting to note that, in addition to the expected 52-kDa CMK2-HA band, a faster-moving 48-kDa CMK2-HA band is present in the calcium-stressed cell lysate but not in the cell lysate without calcium stress. Our data would provide important clues for understanding the functions of CaMKII in the regulation of fatty acid metabolism as well as related diseases such as cancers, diabetes, and obesity.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China.
| | - Yiwu Li
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Jiashi Zheng
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Liudan Wei
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Min Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Jie Zou
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Chunyu Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Bei Mo
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Lingxin Pan
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Lijiao Zhao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| |
Collapse
|
2
|
Jiang L, Shen Y, Jiang Y, Mei W, Wei L, Feng J, Wei C, Liao X, Mo Y, Pan L, Wei M, Gu Y, Zheng J. Amino acid metabolism and MAP kinase signaling pathway play opposite roles in the regulation of ethanol production during fermentation of sugarcane molasses in budding yeast. Genomics 2024; 116:110811. [PMID: 38387766 DOI: 10.1016/j.ygeno.2024.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.
| | - Yuzhi Shen
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yongqiang Jiang
- Institute of Biology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Weiping Mei
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Liudan Wei
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Jinrong Feng
- Pathogen Biology Department, Nantong University, Nantong, Jiangsu 226001, China
| | - Chunyu Wei
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Xiufan Liao
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yiping Mo
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Lingxin Pan
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Min Wei
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Jiashi Zheng
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
3
|
Jiang L, Xu H, Wei M, Gu Y, Yan H, Pan L, Wei C. Transcriptional expression of PHR2 is positively controlled by the calcium signaling transcription factor Crz1 through its binding motif in the promoter. Microbiol Spectr 2024; 12:e0168923. [PMID: 38054721 PMCID: PMC10783099 DOI: 10.1128/spectrum.01689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The fungal cell wall consists of glucans, mannoproteins, and chitin and is essential for cell viability, morphogenesis, and pathogenesis. The enzymes of the GH72 family are responsible for ß-(1,3)-glucan elongation and branching, which is crucial for the formation of the glucan-chitin polymer at the bud neck of yeast cells. In the human fungal pathogen Candida albicans, there are five GH72 enzyme-encoding genes: PHR1, PHR2, PHR3, PGA4, and PGA5. It is known that expression of PHR1 and PHR2 is controlled by the pH-responsive Rim101 pathway through the transcription factor Rim101. In this study, we have demonstrated that the transcription expression of PHR2 is also controlled by the transcription factor Crz1 through its binding motif in the promoter. Therefore, we have uncovered a dual-control mechanism by which PHR2 expression is negatively regulated via CaRim101 through the pH-responsive pathway and positively modulated by CaCrz1 through the calcium/calcineurin signaling pathway.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Huihui Xu
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Min Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hongbo Yan
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lingxin Pan
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Chunyu Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
4
|
Jiang L, Xu H, Gu Y, Wei L. A glycosylated Phr1 protein is induced by calcium stress and its expression is positively controlled by the calcium/calcineurin signaling transcription factor Crz1 in Candida albicans. Cell Commun Signal 2023; 21:237. [PMID: 37723578 PMCID: PMC10506259 DOI: 10.1186/s12964-023-01224-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023] Open
Abstract
As one of the most important human fungal pathogens, Candida albicans senses and adapts to host niches with different pH values through the pH-responsive Rim101 pathway. Its transcription factor Rim101 activates the expression of alkaline pH-induced genes including PHR1 that encodes a glycosylphosphatidylinsitol-anchored β(1,3)-glucanosyltransferase critical for hyphal wall formation. The calcium/calcineurin signaling pathway is mediated by the transcription factor Crz1 in yeasts and other lower eukaryotes. Here we report that deletion of PHR1 leads to calcium sensitivity of C. albicans cells. In addition, expression of Phr1 is induced by calcium stress and under the control of Crz1 in C. albicans. EMSA assay demonstrates that Crz1 binds to one CDRE element in the PHR1 promoter. Alkaline treatment induces two species of glycosylated Phr1 proteins with different degrees of glycosylation, which is independent of Crz1. In contrast, only one species of Phr1 protein with a low degree of glycosylation is induced by calcium stress in a Crz1-dependent fashion. Therefore, we have provided an evidence that regulation of cell wall remodeling is integrated through differential degrees of Phr1 glycosylation by both the pH-regulated Rim101 pathway and the calcium/calcineurin signaling pathway in C. albicans. Video Abstract.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China.
| | - Huihui Xu
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Liudan Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| |
Collapse
|
5
|
Zhao Y, Zuo F, Shu Q, Yang X, Deng Y. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Appl Environ Microbiol 2023; 89:e0053523. [PMID: 37212714 PMCID: PMC10304745 DOI: 10.1128/aem.00535-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Glucaric acid is a valuable chemical with applications in the detergent, polymer, pharmaceutical and food industries. In this study, two key enzymes for glucaric acid biosynthesis, MIOX4 (myo-inositol oxygenase) and Udh (uronate dehydrogenase), were fused and expressed with different peptide linkers. It was found that a strain harboring the fusion protein MIOX4-Udh linked by the peptide (EA3K)3 produced the highest glucaric acid titer and thereby resulted in glucaric acid production that was 5.7-fold higher than that of the free enzymes. Next, the fusion protein MIOX4-Udh linked by (EA3K)3 was integrated into delta sequence sites of the Saccharomyces cerevisiae opi1 mutant, and a strain, GA16, that produced a glucaric acid titer of 4.9 g/L in a shake flask fermentation was identified by a high-throughput screening method using an Escherichia coli glucaric acid biosensor. Strain improvement by further engineering was performed to regulate the metabolic flux of myo-inositol to increase the supply of glucaric acid precursors. The downregulation of ZWF1 and the overexpression of INM1 and ITR1 increased glucaric acid production significantly, and glucaric acid production was increased to 8.49 g/L in the final strain GA-ZII in a shake flask fermentation. Finally, in a 5-L bioreactor, GA-ZII produced a glucaric acid titer of 15.6 g/L through fed-batch fermentation. IMPORTANCE Glucaric acid is a value-added dicarboxylic acid that was synthesized mainly through the oxidation of glucose chemically. Due to the problems of the low selectivity, by-products, and highly polluting waste of this process, producing glucaric acid biologically has attracted great attention. The activity of key enzymes and the intracellular myo-inositol level were both rate-limiting factors for glucaric acid biosynthesis. To increase glucaric acid production, this work improved the activity of the key enzymes in the glucaric acid biosynthetic pathway through the expression of a fusion of Arabidopsis thaliana MIOX4 and Pseudomonas syringae Udh as well as a delta sequence-based integration. Furthermore, intracellular myo-inositol flux was optimized by a series of metabolic strategies to increase the myo-inositol supply, which improved glucaric acid production to a higher level. This study provided a way for constructing a glucaric acid-producing strain with good synthetic performance, making glucaric acid production biologically in yeast cells much more competitive.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanxian Shu
- Shandong Provincial Key Laboratory of Fat and Oil Deep-Processing, Shandong Bohi Industry Co., Ltd., Binzhou, Shandong, China
| | - Xiaoyan Yang
- Shandong Provincial Key Laboratory of Fat and Oil Deep-Processing, Shandong Bohi Industry Co., Ltd., Binzhou, Shandong, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Li S, Fu W, Su R, Zhao Y, Deng Y. Metabolic engineering of the malonyl-CoA pathway to efficiently produce malonate in Saccharomyces cerevisiae. Metab Eng 2022; 73:1-10. [DOI: 10.1016/j.ymben.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/17/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
|
7
|
Wróbel M, Cendrowski J, Szymańska E, Grębowicz-Maciukiewicz M, Budick-Harmelin N, Macias M, Szybińska A, Mazur M, Kolmus K, Goryca K, Dąbrowska M, Paziewska A, Mikula M, Miączyńska M. ESCRT-I fuels lysosomal degradation to restrict TFEB/TFE3 signaling via the Rag-mTORC1 pathway. Life Sci Alliance 2022; 5:5/7/e202101239. [PMID: 35354596 PMCID: PMC8967991 DOI: 10.26508/lsa.202101239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
ESCRT-I deficiency impairs lysosome membrane turnover and induces homeostatic responses to lysosomal nutrient starvation including activation of MiT-TFE signaling caused by inhibition of the substrate-specific mTORC1 pathway. Within the endolysosomal pathway in mammalian cells, ESCRT complexes facilitate degradation of proteins residing in endosomal membranes. Here, we show that mammalian ESCRT-I restricts the size of lysosomes and promotes degradation of proteins from lysosomal membranes, including MCOLN1, a Ca2+ channel protein. The altered lysosome morphology upon ESCRT-I depletion coincided with elevated expression of genes annotated to biogenesis of lysosomes due to prolonged activation of TFEB/TFE3 transcription factors. Lack of ESCRT-I also induced transcription of cholesterol biosynthesis genes, in response to inefficient delivery of cholesterol from endolysosomal compartments. Among factors that could possibly activate TFEB/TFE3 signaling upon ESCRT-I deficiency, we excluded lysosomal cholesterol accumulation and Ca2+-mediated dephosphorylation of TFEB/TFE3. However, we discovered that this activation occurs due to the inhibition of Rag GTPase–dependent mTORC1 pathway that specifically reduced phosphorylation of TFEB at S122. Constitutive activation of the Rag GTPase complex in cells lacking ESCRT-I restored S122 phosphorylation and prevented TFEB/TFE3 activation. Our results indicate that ESCRT-I deficiency evokes a homeostatic response to counteract lysosomal nutrient starvation, that is, improper supply of nutrients derived from lysosomal degradation.
Collapse
Affiliation(s)
- Marta Wróbel
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jarosław Cendrowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewelina Szymańska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Noga Budick-Harmelin
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Matylda Macias
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Aleksandra Szybińska
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michał Mazur
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Kolmus
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
8
|
Pallares RM, An DD, Hébert S, Faulkner D, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Delineating toxicity mechanisms associated with MRI contrast enhancement through a multidimensional toxicogenomic profiling of gadolinium. Mol Omics 2022; 18:237-248. [PMID: 35040455 DOI: 10.1039/d1mo00267h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms. In this study, we employ functional toxicogenomics to assess mechanistic interactions of gadolinium with Saccharomyces cerevisiae. Furthermore, we determine which mechanisms are conserved in humans, and their implications for diseases related to the use of gadolinium-based contrast agents in medicine. A homozygous deletion pool of 4291 strains were screened to identify biological functions and pathways disturbed by the metal. Gene ontology and pathway enrichment analyses showed endocytosis and vesicle-mediated transport as the main yeast response to gadolinium, while certain metabolic processes, such as glycosylation, were the primary disrupted functions after the metal treatments. Cluster and protein-protein interaction network analyses identified proteins mediating vesicle-mediated transport through the Golgi apparatus and the vacuole, and vesicle cargo exocytosis as key components to reduce the metal toxicity. Moreover, the metal seemed to induce cytotoxicity by disrupting the function of enzymes (e.g. transferases and proteases) and chaperones involved in metabolic processes. Several of the genes and proteins associated with gadolinium toxicity are conserved in humans, suggesting that they may participate in pathologies linked to gadolinium-based contrast agent exposures. We thereby discuss the potential role of these conserved genes and gene products in gadolinium-induced nephrogenic systemic fibrosis, and propose potential prophylactic strategies to prevent its adverse health effects.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Li G, Fu W, Deng Y, Zhao Y. Role of Calcium/Calcineurin Signalling in Regulating Intracellular Reactive Oxygen Species Homeostasis in Saccharomyces cerevisiae. Genes (Basel) 2021; 12:genes12091311. [PMID: 34573294 PMCID: PMC8466207 DOI: 10.3390/genes12091311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 01/14/2023] Open
Abstract
The calcium/calcineurin signalling pathway is required for cell survival under various environmental stresses. Using Saccharomyces cerevisiae, we explored the mechanism underlying calcium-regulated homeostasis of intracellular reactive oxygen species (ROS). We found that deletion of acyltransferase Akr1 and C-5 sterol desaturase Erg3 increased the intracellular ROS levels and cell death, and this could be inhibited by the addition of calcium. The hexose transporter Hxt1 and the amino acid permease Agp1 play crucial roles in maintaining intracellular ROS levels, and calcium induced the expression of the HXT1 and AGP1 genes. The cytosolic calcium concentration was decreased in both the akr1Δ and erg3Δ mutants relative to wild-type cells, potentially lowering basal expression of HXT1 and AGP1. Moreover, the calcium/calcineurin signalling pathway also induced the expression of AKR1 and ERG3, indicating that Akr1 and Erg3 might perform functions that help yeast cells to survive under high calcium concentrations. Our results provided mechanistic insight into how calcium regulated intracellular ROS levels in yeast.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (G.L.); (Y.D.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenxuan Fu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (G.L.); (Y.D.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (G.L.); (Y.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
- Correspondence:
| |
Collapse
|
10
|
Zhao Y, Su R, Li S, Mao Y. Mechanistic analysis of cadmium toxicity in Saccharomyces cerevisiae. FEMS Microbiol Lett 2021; 368:6346568. [PMID: 34370016 DOI: 10.1093/femsle/fnab095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
As a potentially toxic heavy metal, Cadmium (Cd) can cause endoplasmic reticulum and oxidative stress, and thus lead to cell death. To explore the mechanisms of Cd toxicity, we investigated the UPRE-lacZ expression, the intracellular reactive oxygen species (ROS) and cell death in the 151 Cd-sensitive mutants of Saccharomyces cerevisiae in response to Cd stress. We identified 101 genes regulating UPRE-lacZ expression were involved in preventing ROS production and/or cell death from increasing to high levels, while mutants for 72 genes caused both elevated ROS production and cell death, indicating the Cd-induced ROS production and cell death are mediated by UPR. Genes involved in cell wall integrity (CWI) pathway, vacuolar protein sorting (VPS) and vacuolar transport, calcium/calcineurin pathway and PHO pathways were all required for the Cd-induced UPR, intracellular ROS and cell death. To conclude, this study highlights the importance of Cd-induced UPR, intracellular ROS levels and cell death that may play crucial roles in Cd-induced toxicity.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruifang Su
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yin Mao
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Zhao Y, Li S, Wang J, Liu Y, Deng Y. Roles of High Osmolarity Glycerol and Cell Wall Integrity Pathways in Cadmium Toxicity in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22126169. [PMID: 34201004 PMCID: PMC8226467 DOI: 10.3390/ijms22126169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a carcinogen that can induce ER stress, DNA damage, oxidative stress and cell death. The yeast mitogen-activated protein kinase (MAPK) signalling pathways paly crucial roles in response to various stresses. Here, we demonstrate that the unfolded protein response (UPR) pathway, the high osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway are all essential for yeast cells to defend against the cadmium-induced toxicity, including the elevated ROS and cell death levels induced by cadmium. We show that the UPR pathway is required for the cadmium-induced phosphorylation of HOG_MAPK Hog1 but not for CWI_MAPK Slt2, while Slt2 but not Hog1 is required for the activation of the UPR pathway through the transcription factors of Swi6 and Rlm1. Moreover, deletion of HAC1 and IRE1 could promote the nuclear accumulation of Hog1, and increase the cytosolic and bud neck localisation of Slt2, indicating crucial roles of Hog1 and Slt2 in regulating the cellular process in the absence of UPR pathway. Altogether, our findings highlight the significance of these two MAPK pathways of HOG and CWI and their interrelationship with the UPR pathway in responding to cadmium-induced toxicity in budding yeast.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Shiyun Li
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Jing Wang
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (J.W.); (Y.L.)
| | - Yingli Liu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (J.W.); (Y.L.)
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
- Correspondence:
| |
Collapse
|
12
|
Zhou X, Suo J, Liu C, Niu C, Zheng F, Li Q, Wang J. Genome comparison of three lager yeasts reveals key genes affecting yeast flocculation during beer fermentation. FEMS Yeast Res 2021; 21:6284804. [PMID: 34037755 DOI: 10.1093/femsyr/foab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 11/14/2022] Open
Abstract
Yeast flocculation plays an essential role in industrial application. Appropriate flocculation of yeast cells at the end of fermentation benefits the cell separation in production, which is an important characteristic of lager yeast for beer production. Due to the complex fermentation environment and diverse genetic background of yeast strains, it is difficult to explain the flocculation mechanism and find key genes that affect yeast flocculation during beer brewing. By analyzing the genomic mutation of two natural mutant yeasts with stronger flocculation ability compared to the parental strain, it was found that the mutated genes common in both mutants were enriched in protein processing in endoplasmic reticulum, membrane lipid metabolism and other pathways or biological processes involved in stress responses. Further functional verification of genes revealed that regulation of RIM101 and VPS36 played a role in lager yeast flocculation under the brewing condition. This work provided new clues for improving yeast flocculation in beer brewing.
Collapse
Affiliation(s)
- Xuefei Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Jingyi Suo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| |
Collapse
|
13
|
Genome-wide toxicogenomic study of the lanthanides sheds light on the selective toxicity mechanisms associated with critical materials. Proc Natl Acad Sci U S A 2021; 118:2025952118. [PMID: 33903247 DOI: 10.1073/pnas.2025952118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lanthanides are a series of critical elements widely used in multiple industries, such as optoelectronics and healthcare. Although initially considered to be of low toxicity, concerns have emerged during the last few decades over their impact on human health. The toxicological profile of these metals, however, has been incompletely characterized, with most studies to date solely focusing on one or two elements within the group. In the current study, we assessed potential toxicity mechanisms in the lanthanide series using a functional toxicogenomics approach in baker's yeast, which shares many cellular pathways and functions with humans. We screened the homozygous deletion pool of 4,291 Saccharomyces cerevisiae strains with the lanthanides and identified both common and unique functional effects of these metals. Three very different trends were observed within the lanthanide series, where deletions of certain proteins on membranes and organelles had no effect on the cellular response to early lanthanides while inducing yeast sensitivity and resistance to middle and late lanthanides, respectively. Vesicle-mediated transport (primarily endocytosis) was highlighted by both gene ontology and pathway enrichment analyses as one of the main functions disturbed by the majority of the metals. Protein-protein network analysis indicated that yeast response to lanthanides relied on proteins that participate in regulatory paths used for calcium (and other biologically relevant cations), and lanthanide toxicity included disruption of biosynthetic pathways by enzyme inhibition. Last, multiple genes and proteins identified in the network analysis have human orthologs, suggesting that those may also be targeted by lanthanides in humans.
Collapse
|
14
|
Zhao Y, Li J, Su R, Liu Y, Wang J, Deng Y. Effect of magnesium ions on glucaric acid production in the engineered Saccharomyces cerevisiae. J Biotechnol 2021; 332:61-71. [PMID: 33812897 DOI: 10.1016/j.jbiotec.2021.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/27/2022]
Abstract
Glucaric acid has been successfully produced in Escherichia coli and fungus. Here, we first analyzed the effects of different metal ions on glucaric acid production in the engineered Saccharomyces cerevisiae Bga-3 strain harboring the glucaric acid synthesis pathway. We found that magnesium ions could promote the growth rate of yeast cells, and thus, increase the glucaric acid production by elevating the glucose and myo-inositol utilization of Bga-3 strain. RNA-Seq transcriptome analysis results showed that the upregulation of genes involved in the gluconeogenesis pathway, as well as the downregulation of genes associated with the glycolysis pathway and pentose phosphate pathway in response to MgCl2 were all benefit for the enhancement of the glucose-6-phosphate flux, which was the precursor for myo-inositol and glucaric acid. In addition, we found that MgCl2 could also increase the activity of MIOX4, which was also crucial for glucaric acid synthesis. At last, a final glucaric acid titer of 10.6 g/L, the highest reported titer, was achieved in the fed-batch fermentation using a 5-L bioreactor by adding 100 mM MgCl2. Our findings will provide a new way of promoting the production of other chemicals in the engineered yeast cells.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jie Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ruifang Su
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, 100048, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Sánchez-Arreguin JA, Ruiz-Herrera J, Mares-Rodriguez FDJ, León-Ramírez CG, Sánchez-Segura L, Zapata-Morín PA, Coronado-Gallegos J, Aréchiga-Carvajal ET. Acid pH Strategy Adaptation through NRG1 in Ustilago maydis. J Fungi (Basel) 2021; 7:91. [PMID: 33525315 PMCID: PMC7912220 DOI: 10.3390/jof7020091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
The role of the Ustilago maydis putative homolog of the transcriptional repressor ScNRG1, previously described in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans, was analyzed by means of its mutation. In S. cerevisiae this gene regulates a set of stress-responsive genes, and in C. neoformans it is involved in pathogenesis. It was observed that the U. maydisNRG1 gene regulates several aspects of the cell response to acid pH, such as the production of mannosyl-erythritol lipids, inhibition of the expression of the siderophore cluster genes, filamentous growth, virulence and oxidative stress. A comparison of the gene expression pattern of the wild type strain versus the nrg1 mutant strain of the fungus, through RNA Seq analyses, showed that this transcriptional factor alters the expression of 368 genes when growing at acid pH (205 up-regulated, 163 down-regulated). The most relevant genes affected by NRG1 were those previously reported as the key ones for particular cellular stress responses, such as HOG1 for osmotic stress and RIM101 for alkaline pH. Four of the seven genes included WCO1 codifying PAS domain ( These has been shown as the key structural motif involved in protein-protein interactions of the circadian clock, and it is also a common motif found in signaling proteins, where it functions as a signaling sensor) domains sensors of blue light, two of the three previously reported to encode opsins, one vacuolar and non-pH-responsive, and another one whose role in the acid pH response was already known. It appears that all these light-reactive cell components are possibly involved in membrane potential equilibrium and as virulence sensors. Among previously described specific functions of this transcriptional regulator, it was found to be involved in glucose repression, metabolic adaptation to adverse conditions, cellular transport, cell rescue, defense and interaction with an acidic pH environment.
Collapse
Affiliation(s)
- José Alejandro Sánchez-Arreguin
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - F de Jesus Mares-Rodriguez
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Patricio Adrián Zapata-Morín
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Jordan Coronado-Gallegos
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
16
|
The pH-sensing Rim101 pathway positively regulates the transcriptional expression of the calcium pump gene PMR1 to affect calcium sensitivity in budding yeast. Biochem Biophys Res Commun 2020; 532:453-458. [PMID: 32891431 DOI: 10.1016/j.bbrc.2020.08.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the Rim101 pathway senses extracellular pH changes through a complex consisted of Rim8, Rim9 and Rim21 at the plasma membrane. Activation of this sensor complex induces a proteolytical complex composed of Rim13 and Rim20 and leads to the C-terminal processing and activation of the transcription factor Rim101. Deletion mutants for RIM8, RIM9, RIM13, RIM20, RIM21 and RIM101 causes yeast cells to be sensitive to calcium stress, but how they regulate calcium sensitivity remain unknown. Here we show that deletion mutations of these six Rim101 pathway components elevate the activation level of the calcium/calcineurin signaling and the transcriptional expression level of the vacuolar calcium pump gene PMC1, but lead to a reduction in transcriptional expression level of the ER/Golgi calcium pump gene PMR1 in yeast cells. Deletion of NRG1, encoding one of the repression targets of Rim101, rescues the transcriptional expression of PMR1 in all these mutants. Furthermore, ectopic expression of a constitutively active form of Rim101 or further deletion of NRG1 suppresses the calcium sensitivity of these six deletion mutants. Therefore, the pH-sensing Rim101 pathway positively regulates the transcriptional expression of PMR through its downstream target Nrg1 to affect the calcium sensitivity of yeast cells.
Collapse
|
17
|
Schmidt O, Weyer Y, Sprenger S, Widerin MA, Eising S, Baumann V, Angelova M, Loewith R, Stefan CJ, Hess MW, Fröhlich F, Teis D. TOR complex 2 (TORC2) signaling and the ESCRT machinery cooperate in the protection of plasma membrane integrity in yeast. J Biol Chem 2020; 295:12028-12044. [PMID: 32611771 PMCID: PMC7443507 DOI: 10.1074/jbc.ra120.013222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Indexed: 12/26/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.
Collapse
Affiliation(s)
- Oliver Schmidt
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Yannick Weyer
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Sprenger
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael A Widerin
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Eising
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Verena Baumann
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, United Kingdom
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Michael W Hess
- Institute for Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Fröhlich
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Kaul Z, Mookherjee D, Das S, Chatterjee D, Chakrabarti S, Chakrabarti O. Loss of tumor susceptibility gene 101 (TSG101) perturbs endoplasmic reticulum structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118741. [PMID: 32422153 DOI: 10.1016/j.bbamcr.2020.118741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA..
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
19
|
Zhao YY, Cao CL, Liu YL, Wang J, Li SY, Li J, Deng Y. Genetic analysis of oxidative and endoplasmic reticulum stress responses induced by cobalt toxicity in budding yeast. Biochim Biophys Acta Gen Subj 2020; 1864:129516. [DOI: 10.1016/j.bbagen.2020.129516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 12/23/2022]
|
20
|
Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:479-488. [PMID: 31836620 PMCID: PMC7003084 DOI: 10.1534/g3.119.400933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zinc is essential for almost all living organisms, since it serves as a crucial cofactor for transcription factors and enzymes. However, it is toxic to cell growth when present in excess. The present work aims to investigate the toxicity mechanisms induced by zinc stress in yeast cells. To this end, 108 yeast single-gene deletion mutants were identified sensitive to 6 mM ZnCl2 through a genome-wide screen. These genes were predominantly related to the biological processes of vacuolar acidification and transport, polyphosphate metabolic process, cytosolic transport, the process utilizing autophagic mechanism. A result from the measurement of intracellular zinc content showed that 64 mutants accumulated higher intracellular zinc under zinc stress than the wild-type cells. We further measured the intracellular ROS (reactive oxygen species) levels of 108 zinc-sensitive mutants treated with 3 mM ZnCl2. We showed that the intracellular ROS levels in 51 mutants were increased by high zinc stress, suggesting their possible involvement in regulating ROS homeostasis in response to high zinc. The results also revealed that excess zinc could generate oxidative damage and then activate the expression of several antioxidant defenses genes. Taken together, the data obtained indicated that excess zinc toxicity might be mainly due to the high intracellular zinc levels and ROS levels induced by zinc stress in yeast cells. Our current findings would provide a basis to understand the molecular mechanisms of zinc toxicity in yeast cells.
Collapse
|
21
|
Xu H, Fang T, Omran RP, Whiteway M, Jiang L. RNA sequencing reveals an additional Crz1-binding motif in promoters of its target genes in the human fungal pathogen Candida albicans. Cell Commun Signal 2020; 18:1. [PMID: 31900175 PMCID: PMC6942403 DOI: 10.1186/s12964-019-0473-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background The calcium/calcineurin signaling pathway is mediated by the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeasts and other lower eukaryotes. A previous microarray analysis identified a putative Crz1-binding motif in promoters of its target genes in Candida albicans, but it has not been experimentally demonstrated. Methods An inactivation mutant for CaCRZ1 was generated through CRISPR/Cas9 approach. Transcript profiling was carried out by RNA sequencing of the wild type and the inactivation mutant for CaCRZ1 in response to 0.2 M CaCl2. Gene promoters were scanned by the online MEME (Multiple Em for Motif Elicitation) software. Gel electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were used for in vitro and in vivo CaCrz1-binding experiments, respectively. Results RNA sequencing reveals that expression of 219 genes is positively, and expression of 59 genes is negatively, controlled by CaCrz1 in response to calcium stress. These genes function in metabolism, cell cycling, protein fate, cellular transport, signal transduction, transcription, and cell wall biogenesis. Forty of these positively regulated 219 genes have previously been identified by DNA microarray analysis. Promoter analysis of these common 40 genes reveals a consensus motif [5′-GGAGGC(G/A)C(T/A)G-3′], which is different from the putative CaCrz1-binding motif [5′-G(C/T)GGT-3′] identified in the previous study, but similar to Saccharomyces cerevisiae ScCrz1-binding motif [5′-GNGGC(G/T)CA-3′]. EMSA and ChIP assays indicate that CaCrz1 binds in vitro and in vivo to both motifs in the promoter of its target gene CaUTR2. Promoter mutagenesis demonstrates that these two CaCrz1-binding motifs play additive roles in the regulation of CaUTR2 expression. In addition, the CaCRZ1 gene is positively regulated by CaCrz1. CaCrz1 can bind in vitro and in vivo to its own promoter, suggesting an autoregulatory mechanism for CaCRZ1 expression. Conclusions CaCrz1 differentially binds to promoters of its target genes to regulate their expression in response to calcium stress. CaCrz1 also regulates its own expression through the 5′-TGAGGGACTG-3′ site in its promoter. Video abstract
Collapse
Affiliation(s)
- Huihui Xu
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
22
|
Xu H, Whiteway M, Jiang L. The tricarboxylic acid cycle, cell wall integrity pathway, cytokinesis and intracellular pH homeostasis are involved in the sensitivity of Candida albicans cells to high levels of extracellular calcium. Genomics 2019; 111:1226-1230. [DOI: 10.1016/j.ygeno.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
|
23
|
Fang T, Yan H, Li G, Chen W, Liu J, Jiang L. Chromatin remodeling complexes are involvesd in the regulation of ethanol production during static fermentation in budding yeast. Genomics 2019; 112:1674-1679. [PMID: 31618673 DOI: 10.1016/j.ygeno.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
The budding yeast Saccharomyces cerevisiae remains a central position among biofuel-producing organisms. However, the gene expression regulatory networks behind the ethanol fermentation is still not fully understood. Using a static fermentation model, we have examined the ethanol yields on biomass of deletion mutants for all yeast nonessential genes encoding transcription factors and their related proteins in the yeast genome. A total of 20 (about 10%) transcription factors are identified to be regulators of ethanol production during fermentation. These transcription factors are mainly involved in cell cycling, chromatin remodeling, transcription, stress response, protein synthesis and lipid synthesis. Our data provides a basis for further understanding mechanisms regulating ethanol production in budding yeast.
Collapse
Affiliation(s)
- Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Hongbo Yan
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Gaozhen Li
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Weipeng Chen
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Jian Liu
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China
| | - Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, Department of Food Science, School of Agricultural Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, Shandong Province, China.
| |
Collapse
|
24
|
Hameed S, Hans S, Singh S, Fatima Z. Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans. Curr Drug Discov Technol 2019; 17:415-429. [PMID: 30827249 DOI: 10.2174/1570163816666190227231437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
Abstract
Fungal infections, particularly of Candida species, which are the commensal organisms of human, are one of the major debilitating diseases in immunocompromised patients. The limited number of antifungal drugs available to treat Candida infections, with the concomitant increasing incidence of multidrug-resistant (MDR) strains, further worsens the therapeutic options. Thus, there is an urgent need for the better understanding of MDR mechanisms, and their reversal, by employing new strategies to increase the efficacy and safety profiles of currently used therapies against the most prevalent human fungal pathogen, Candida albicans. Micronutrient availability during C. albicans infection is regarded as a critical factor that influences the progression and magnitude of the disease. Intracellular pathogens colonize a variety of anatomical locations that are likely to be scarce in micronutrients, as a defense strategy adopted by the host, known as nutritional immunity. Indispensable critical micronutrients are required both by the host and by C. albicans, especially as a cofactor in important metabolic functions. Since these micronutrients are not freely available, C. albicans need to exploit host reservoirs to adapt within the host for survival. The ability of pathogenic organisms, including C. albicans, to sense and adapt to limited micronutrients in the hostile environment is essential for survival and confers the basis of its success as a pathogen. This review describes that micronutrients availability to C. albicans is a key attribute that may be exploited when one considers designing strategies aimed at disrupting MDR in this pathogenic fungi. Here, we discuss recent advances that have been made in our understanding of fungal micronutrient acquisition and explore the probable pathways that may be utilized as targets.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
25
|
The protein kinase Cmk2 negatively regulates the calcium/calcineurin signalling pathway and expression of calcium pump genes PMR1 and PMC1 in budding yeast. Cell Commun Signal 2019; 17:7. [PMID: 30665402 PMCID: PMC6341702 DOI: 10.1186/s12964-019-0320-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Through a genome-wide screen we have identified calcium-tolerant deletion mutants for five genes in the budding yeast Saccharomyces cerevisiae. In addition to CNB1 and RCN1 that are known to play a role in the calcium signalling pathway, the protein kinase gene CMK2, the sphingolipid homeostasis-related gene ORM2 and the gene SIF2 encoding the WD40 repeat-containing subunit of Set3C histone deacetylase complex are involved in the calcium sensitivity of yeast cells to extracellular calcium. Cmk2 and the transcription factor Crz1 have opposite functions in the response of yeast cells to calcium stress. Deletion of CMK2 elevates the level of calcium/calcineurin signalling and increases the expression level of PMR1 and PMC1, which is dependent on Crz1. Effects of Cmk2 on calcium sensitivity and calcium/calcineurin signalling are dependent on its kinase activity. Therefore, Cmk2 is a negative feedback controller of the calcium/calcineurin signalling pathway. Furthermore, the cmk2 crz1 double deletion mutant is more resistant than the crz1 deletion mutant, suggesting that Cmk2 has an additional Crz1-independent role in promoting calcium tolerance.
Collapse
|
26
|
Asghar F, Yan H, Jiang L. The putative transcription factor CaMaf1 controls the sensitivity to lithium and rapamycin and represses RNA polymerase III transcription in Candida albicans. FEMS Yeast Res 2018; 18:5047891. [PMID: 29982370 DOI: 10.1093/femsyr/foy068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/23/2018] [Indexed: 12/19/2022] Open
Abstract
Maf1 is a repressor of RNA polymerase (Pol) III transcription for tRNA. Nutrient deprivation and environmental stress repress Pol III transcription through Maf1 in Saccharomyces cerevisiae. The sole Candida albicans homolog CaMaf1 is a protein of 380 amino acids with conserved domains and motifs of the eukaryotic Maf1 family. Here, we show that C. albicans cells lacking CaMAF1 show elevated levels of tRNA. Deletion of CaMAF1 increases the sensitivity of C. albicans cells to lithium cation and SDS as well as tolerance to rapamycin and azole. In addition, deletion of CaMAF1 reduces the level of filamentation and alters the surface morphology of colonies. CaMaf1 is localized in the nucleus of log-phase growing cells. However, a dynamic change of subcellular localization of CaMaf1 exists during serum-induced morphological transition, with CaMaf1 being localized in the nuclei of cells with germ tubes and short filaments but outside of the nuclei of cells with long filaments. In addition, CaMaf1 is required for rapamycin-induced repression of CaERG20, encoding the farnesyl pyrophosphate synthetase involved in ergosterol biosynthesis. Therefore, CaMaf1 plays a role as a general repressor of Pol III transcription in C. albicans.
Collapse
Affiliation(s)
- Faiza Asghar
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 XiCunXi Road, Zibo 255000, China
| | - Hongbo Yan
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 XiCunXi Road, Zibo 255000, China
| | - Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 XiCunXi Road, Zibo 255000, China
| |
Collapse
|
27
|
Jiang L, Wang L, Fang T, Papadopoulos V. Disruption of ergosterol and tryptophan biosynthesis, as well as cell wall integrity pathway and the intracellular pH homeostasis, lead to mono-(2-ethylhexyl)-phthalate toxicity in budding yeast. CHEMOSPHERE 2018; 206:643-654. [PMID: 29783050 DOI: 10.1016/j.chemosphere.2018.05.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/13/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are substances in the environment, food, and consumer products that interfere with hormone homeostasis, metabolism or reproduction in humans and animals. One such EDC, the plasticizer di-(2-ethylhexyl)-phthalate (DEHP), exerts its function through its principal bioactive metabolite, mono-(2-ethylhexyl)-phthalate (MEHP). To fully understand the effects of MEHP on cellular processes and metabolism as well as to assess the impact of genetic alteration on the susceptibility to MEHP-induced toxicity, we screened MEHP-sensitive mutations on a genome-scale in the eukaryotic model organism Saccharomyces cerevisiae. We identified a total of 96 chemical-genetic interactions between MEHP and gene mutations in this study. In response to MEHP treatment, most of these gene mutants accumulated higher intracellular MEHP content, which correlated with their MEHP sensitivity. Twenty-seven of these genes are involved in the metabolism, twenty-two of them play roles in protein sorting, and ten of them regulate ion homeostasis. Functional categorization of these genes indicated that the biosynthetic pathways of both ergosterol and tryptophan, as well as cell wall integrity and the intracellular pH homeostasis, were involved in the protective response of yeast cells to the MEHP toxicity. Our study demonstrated that a collection of yeast gene deletion mutants is useful for a functional toxicogenomic analysis of EDCs, which could provide important clues to the effects of EDCs on higher eukaryotic organisms.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Litong Wang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
28
|
Jiang L, Wang J, Asghar F, Snyder N, Cunningham KW. CaGdt1 plays a compensatory role for the calcium pump CaPmr1 in the regulation of calcium signaling and cell wall integrity signaling in Candida albicans. Cell Commun Signal 2018; 16:33. [PMID: 29954393 PMCID: PMC6025805 DOI: 10.1186/s12964-018-0246-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae ScGdt1 and mammalian TMEM165 are two members of the UPF0016 membrane protein family that is likely to form a new group of Ca2+/H+ antiporter and/or a Mn2+ transporter in the Golgi apparatus. We have previously shown that Candida albicans CaGDT1 is a functional ortholog of ScGDT1 in the response of S. cerevisiae to calcium stress. However, how CaGdt1 together with the Golgi calcium pump CaPmr1 regulate calcium homeostasis and cell wall integrity in this fungal pathogen remains unknown. METHODS Chemical sensitivity was tested by dilution assay. Cell survival was examined by measuring colony-forming units and staining with Annexin V-FITC and propidium iodide. Calcium signaling was examined by expression of downstream target gene CaUTR2, while cell wall integrity signaling was revealed by detection of phosphorylated Mkc1 and Cek1. Subcellular localization of CaGdt1 was examined through direct and indirect immunofluorescent approaches. Transcriptomic analysis was carried out with RNA sequencing. RESULTS This study shows that Candida albicans CaGDT1 is also a functional ortholog of ScGDT1 in the response of S. cerevisiae to cell wall stress. CaGdt1 is localized in the Golgi apparatus but at distinct sites from CaPmr1 in C. albicans. Loss of CaGDT1 increases the sensitivity of cell lacking CaPMR1 to cell wall and ER stresses. Deletion of CaGDT1 and/or CaPMR1 increases calcium uptake and activates the calcium/calcineurin signaling. Transcriptomic profiling reveals that core functions shared by CaGdt1 and CaPmr1 are involved in the regulation of cellular transport of metal ions and amino acids. However, CaGdt1 has distinct functions from CaPmr1. Chitin synthase gene CHS2 is up regulated in all three mutants, while CHS3 is only up regulated in the pmr1/pmr1 and the gdt1/gdt1 pmr1/pmr1 mutants. Five genes (DIE2, STT3, OST3, PMT1 and PMT4) of glycosylation pathway and one gene (SWI4) of the cell wall integrity (CWI) pathway are upregulated due to deletion of CaGDT1 and/or CaPMR1. Consistently, deletion of either CaPMR1 or CaGDT1 activates the CaCek1-mediated CWI signaling in a cell wall stress-independent fashion. Calcineurin function is required for the integrity of the cell wall and vacuolar compartments of cells lacking both GDT1 and CaPMR1. CONCLUSIONS CaPmr1 is the major player in the regulation of calcium homeostasis and cell wall stress, while CaGdt1 plays a compensatory role for CaPmr1 in the Golgi compartment in C. albicans.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China.
| | - Junjun Wang
- Department of Food Engineering, Weihai Ocean Vocational College, Weihai, Shandong, China
| | - Faiza Asghar
- Laboratory for Yeast Molecular and Cell Biology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Nathan Snyder
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
| | - Kyle W Cunningham
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Jiang L, Yang Y. The putative transient receptor potential channel protein encoded by the orf19.4805 gene is involved in cation sensitivity, antifungal tolerance, and filamentation in Candida albicans. Can J Microbiol 2018; 64:727-731. [PMID: 29791811 DOI: 10.1139/cjm-2018-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels, an ancient family of cation channels, are highly conserved in eukaryotes and play various physiological functions, ranging from sensation of ion homeostasis to reception of pain and vision. Calcium-permeable TRP channels have been identified from the plant Arabidopsis thaliana (AtCsc1) and the budding yeast Saccharomyces cerevisiae (ScCsc1). In this study, we characterized the functions of the Csc1 homolog, orf19.4805, in Candida albicans. Orf19.4805 is a protein of 866 amino acids and 11 transmembrane domains, which shares 49% identity (69% similarity) in amino acid sequence with ScRsn1. Here, we demonstrate that deletion of the orf19.4805 gene causes C. albicans cells to be sensitive to SDS (sodium dodecyl sulfate) and antifungal drugs, and tolerance to zinc, manganese, and cadmium ions. Candida albicans cells lacking orf19.4805 show a defect in filamentation in vitro. Therefore, orf19.4805 is involved in the regulation of cation homeostasis and filamentation in C. albicans.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.,Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yi Yang
- Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.,Laboratory for Yeast Molecular and Cell Biology, the Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
30
|
Kaul Z, Chakrabarti O. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration. Traffic 2018; 19:485-495. [DOI: 10.1111/tra.12569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
- Homi Bhabha National Institute; Mumbai India
| |
Collapse
|
31
|
Jiang L, Xu D, Hameed A, Fang T, Bakr Ahmad Fazili A, Asghar F. The plasma membrane protein Rch1 and the Golgi/ER calcium pump Pmr1 have an additive effect on filamentation in Candida albicans. Fungal Genet Biol 2018; 115:1-8. [PMID: 29621626 DOI: 10.1016/j.fgb.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/18/2018] [Accepted: 04/01/2018] [Indexed: 12/17/2022]
Abstract
Pmr1 is the Golgi/ER calcium pump, while Rch1 is a newly identified negative regulator of calcium influx in the plasma membrane of yeast cells. We show here that CaRch1 plays a dominant role over CaPmr1 in response of Candida albicans to SDS and tunicamycin stresses, while CaPmr1 has a major role in cell wall stress. Deletion of CaRCH1 increases the calcium/calcineurin signaling level in cells lacking CaPMR1. Calcineurin function is required for the role of CaRch1 in SDS stresses, while it is required for the function of CaPmr1 under all conditions examined. Disruption of CaRCH1 alone does not reduce the cell wall chitin, mannan or β-glucan content, but lack of CaRCH1 slightly decreases the chitin content of cells lacking CaPMR1. Furthermore, CaRch1 and CaPmr1 have an additive effect on filamentation of C. albicans cells in vitro. Cells lacking both CaRCH1 and CaPMR1 and cells lacking CaPMR1 alone show a similar degree of virulence attenuation, being much more attenuated than cells lacking CaRCH1 alone. Therefore, CaRch1 genetically interacts with CaPmr1 in the regulation of in vitro filamentation in C. albicans.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Dayong Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Ahsan Hameed
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Abu Bakr Ahmad Fazili
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Faiza Asghar
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| |
Collapse
|
32
|
Venturi V, Little R, Bircham PW, Rodigheri Brito J, Atkinson PH, Maass DR, Teesdale-Spittle PH. Characterisation of the biological response of Saccharomyces cerevisiae to the loss of an allele of the eukaryotic initiation factor 4A. Biochem Biophys Res Commun 2018; 496:1082-1087. [PMID: 29397069 DOI: 10.1016/j.bbrc.2018.01.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 11/29/2022]
Abstract
The translation initiation machinery is emerging as an important target for therapeutic intervention, with potential in the treatment of cancer, viral infections, and muscle wasting. Amongst the targets for pharmacological control of translation initiation is the eukaryotic initiation factor 4A (eIF4A), an RNA helicase that is essential for cap-dependent translation initiation. We set out to explore the system-wide impact of a reduction of functional eIF4A. To this end, we investigated the effect of deletion of TIF1, one of the duplicate genes that produce eIF4A in yeast, through synthetic genetic array interactions and system-wide changes in GFP-tagged protein abundances. We show that there is a biological response to deletion of the TIF1 gene that extends through the proteostasis network. Effects of the deletion are apparent in processes as distributed as chromatin remodelling, ribosome biogenesis, amino acid metabolism, and protein trafficking. The results from this study identify protein complexes and pathways that will make ideal targets for combination therapies with eIF4A inhibitors.
Collapse
Affiliation(s)
- Veronica Venturi
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Richard Little
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Peter W Bircham
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | | - Paul H Atkinson
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - David R Maass
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
33
|
Feng J, Duan Y, Qin Y, Sun W, Zhuang Z, Zhu D, Jiang L. The N-terminal pY33XL motif of CaPsy2 is critical for the function of protein phosphatase 4 in CaRad53 deactivation, DNA damage-induced filamentation and virulence in Candida albicans. Int J Med Microbiol 2017; 307:471-480. [PMID: 28967545 DOI: 10.1016/j.ijmm.2017.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022] Open
Abstract
Protein phosphatase PP4 is composed of one catalytic subunit and one or two regulatory subunits and conserved in eukaryotic cells. The catalytic subunit CaPph3 forms a complex with the regulatory subunit CaPsy2, which dephosphorylates activated CaRad53 during adaptation to and recovery from MMS-mediated DNA damage. We show here that the N-terminal Y33A mutation of CaPsy2 blocks the interaction between CaPph3 and CaRad53, the deactivation of CaRad53 and the morphologic switch in recovery from genotoxic stress. In Saccharomyces cerevisiae, the ScPph3-ScPsy2-ScPsy4 complex functions to dephosphorylate γH2A. In this study, we show that CaPsy4 is a functional homolog of ScPsy4 and not involved in the deactivation of CaRad53 or CaHta, the ortholog of H2A. However, deletion of CaPSY4 causes C. albicans cells a sensitivity to genotoxic reagents and a defect in DNA damage-induced filamentation. CaPsy4 interacts with both CaPph3 and CaPsy2, but the function of CaPsy4 is independent of CaPph3 and CaPsy2 in response to genotoxic stress. C. albicans cells lacking CaPPH3, CaPSY2 or CaPSY4, and C. albicans cells carrying the Y33A mutation of CaPSY2, show increased virulence to mice. Therefore, PP4 plays a negative role in regulating the DNA damage-induced filamentation and the virulence in C. albicans.
Collapse
Affiliation(s)
- Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Wei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Zhong Zhuang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
34
|
Kaul Z, Chakrabarti O. Tumor susceptibility gene 101 regulates predisposition to apoptosis via ESCRT machinery accessory proteins. Mol Biol Cell 2017; 28:2106-2122. [PMID: 28539405 PMCID: PMC5509423 DOI: 10.1091/mbc.e16-12-0855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
ESCRT proteins are implicated in myriad cellular processes, including endosome formation, fusion of autophagosomes/amphisomes with lysosomes, and apoptosis. The role played by these proteins in either facilitating or protecting against apoptosis is unclear. In this study, while trying to understand how deficiency of Mahogunin RING finger 1 (MGRN1) affects cell viability, we uncovered a novel role for its interactor, the ESCRT-I protein TSG101: it directly participates in mitigating ER stress-mediated apoptosis. The association of TSG101 with ALIX prevents predisposition to apoptosis, whereas ALIX-ALG-2 interaction favors a death phenotype. Altered Ca2+ homeostasis in cells and a simultaneous increase in the protein levels of ALIX and ALG-2 are required to elicit apoptosis by activating ER stress-associated caspase 4/12. We further demonstrate that in the presence of membrane-associated, disease-causing prion protein CtmPrP, increased ALIX and ALG-2 levels are detected along with ER stress markers and associated caspases in transgenic brain lysates and cells. These effects were rescued by overexpression of TSG101. This is significant because MGRN1 deficiency is closely associated with neurodegeneration and prenatal and neonatal mortality, which could be due to excess cell death in selected brain regions or myocardial apoptosis during embryonic development.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| |
Collapse
|
35
|
Zhao Y, Xu H, Zhang Y, Jiang L. Vcx1-D1 (M383I), the Vcx1 mutant with a calcineurin-independent vacuolar Ca(2+)/H(+) exchanger activity, confers calcineurin-independent Mn(2+) tolerance in Saccharomyces cerevisiae. Can J Microbiol 2016; 62:475-84. [PMID: 27100389 DOI: 10.1139/cjm-2015-0595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Vcx1-M1 mutant is known to confer calcineurin-dependent Mn(2+) tolerance in budding yeast. Here, we demonstrate that another Vcx1 mutant, Vcx1-D1 with calcineurin-independent vacuolar Ca(2+)/H(+) exchanger activity, confers calcineurin-independent Mn(2+) tolerance. Unlike Vcx1-M1, the Mn(2+) tolerance conferred by Vcx1-D1 is dependent on the presence of Pmr1 or Pmc1. The Pmr1-dependent Mn(2+) tolerance of Vcx1-D1 requires the presence of calcineurin but not the functioning of the Ca(2+)/calcineurin signaling pathway. Similar to the wild-type Vcx1, C-terminally green fluorescent protein tagged Vcx1-D1 and Vcx1-M1 mutants localize to the endoplasmic reticulum instead of its normal vacuolar destination, but they remain functional in Ca(2+) sensitivity and Mn(2+) tolerance.
Collapse
Affiliation(s)
- Yunying Zhao
- a The State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,b The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Huihui Xu
- b The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yan Zhang
- b The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Linghuo Jiang
- a The State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,b The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
36
|
Wu Y, Du J, Xu G, Jiang L. The transcription factor Ace2 and its paralog Swi5 regulate ethanol production during static fermentation through their targets Cts1 and Rps4a inSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow022. [DOI: 10.1093/femsyr/fow022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/26/2022] Open
|
37
|
Zhao Y, Yan H, Happeck R, Peiter-Volk T, Xu H, Zhang Y, Peiter E, van Oostende Triplet C, Whiteway M, Jiang L. The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast. Eur J Cell Biol 2016; 95:164-74. [DOI: 10.1016/j.ejcb.2016.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 01/19/2023] Open
|
38
|
Feng J, Duan Y, Sun W, Qin Y, Zhuang Z, Zhu D, Sun X, Jiang L. CaTip41 regulates protein phosphatase 2A activity, CaRad53 deactivation and the recovery of DNA damage-induced filamentation to yeast form in Candida albicans. FEMS Yeast Res 2016; 16:fow009. [PMID: 26851402 DOI: 10.1093/femsyr/fow009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation and dephosphorylation of the checkpoint kinase CaRad53 is crucial for fungal cells in response to genotoxic stresses. The protein phosphatase 2A (PP2A) CaPph3/CaPsy2 phosphatase complex is involved in CaRad53 dephosphorylation in Candida albicans. In view of the role of ScTip41/ScTap42 in regulating PP2A phosphatases in Saccharomyces cerevisiae, we have explored the function of CaTip41 in C. albicans. Here, we show that CaTIP41 is a functional ortholog of ScTIP41 in the sensitivity of S. cerevisiae cells to rapamycin. Deletion of CaTIP41 causes C. albicans cells to be sensitive to DNA damaging agents, methylmethane sulfonate (MMS) and cisplatin, and resistant to both rapamycin and caffeine. Accordingly, expression of CaTip41 increases in response to MMS and cisplatin. In addition, C. albicans cells lacking CaTIP41 show a delay in the recovery from MMS-induced filamentation to yeast form, decreased PP2A activity and a defect in deactivation of CaRad53 during recovery from DNA damage. Through yeast two-hybrid assay we show that CaTip41 interacts with either CaPph3, CaPsy2 or CaTap42. Therefore, CaTip41 plays regulatory roles in both the CaRad53 deactivation during recovery from DNA damage and the target of rapamycin signaling pathway.
Collapse
Affiliation(s)
- Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Wei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Zhong Zhuang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
Cadmium induces the activation of cell wall integrity pathway in budding yeast. Chem Biol Interact 2015; 240:316-23. [PMID: 26362500 DOI: 10.1016/j.cbi.2015.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/07/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022]
Abstract
MAP kinases are important signaling molecules regulating cell survival, proliferation and differentiation, and can be activated by cadmium stress. In this study, we demonstrate that cadmium induces phosphorylation of the yeast cell wall integrity (CWI) pathway_MAP kinase Slt2, and this cadmium-induced CWI activation is mediated by the cell surface sensor Mid2 through the GEF Rom1, the central regulator Rho1 and Bck1. Nevertheless, cadmium stress does not affect the subcellular localization of Slt2 proteins. In addition, this cadmium-induced CWI activation is independent on the calcium/calcineurin signaling and the high osmolarity glycerol (HOG) signaling pathways in yeast cells. Furthermore, we tested the cadmium sensitivity of 42 paired double-gene deletion mutants between six CWI components and seven components of the HOG pathway. Our results indicate that the CWI pathway is epistatic to the HOG pathway in cadmium sensitivity. However, gene deletion mutations for the Swi4/Swi6 transcription factor complex show synergistic effects with mutations of HOG components in cadmium sensitivity.
Collapse
|
40
|
Prohibitin: A Novel Molecular Player in KDEL Receptor Signalling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:319454. [PMID: 26064897 PMCID: PMC4442004 DOI: 10.1155/2015/319454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/14/2015] [Indexed: 01/25/2023]
Abstract
The KDEL receptor (KDELR) is a seven-transmembrane-domain protein involved in retrograde transport of protein chaperones from the Golgi complex to the endoplasmic reticulum. Our recent findings have shown that the Golgi-localised KDELR acts as a functional G-protein-coupled receptor by binding to and activating Gs and Gq. These G proteins induce activation of PKA and Src and regulate retrograde and anterograde Golgi trafficking. Here we used an integrated coimmunoprecipitation and mass spectrometry approach to identify prohibitin-1 (PHB) as a KDELR interactor. PHB is a multifunctional protein that is involved in signal transduction, cell-cycle control, and stabilisation of mitochondrial proteins. We provide evidence that depletion of PHB induces intense membrane-trafficking activity at the ER–Golgi interface, as revealed by formation of GM130-positive Golgi tubules, and recruitment of p115, β-COP, and GBF1 to the Golgi complex. There is also massive recruitment of SEC31 to endoplasmic-reticulum exit sites. Furthermore, absence of PHB decreases the levels of the Golgi-localised KDELR, thus preventing KDELR-dependent activation of Golgi-Src and inhibiting Golgi-to-plasma-membrane transport of VSVG. We propose a model whereby in analogy to previous findings (e.g., the RAS-RAF signalling pathway), PHB can act as a signalling scaffold protein to assist in KDELR-dependent Src activation.
Collapse
|
41
|
Herrero E, Wellinger RE. Yeast as a model system to study metabolic impact of selenium compounds. MICROBIAL CELL 2015; 2:139-149. [PMID: 28357286 PMCID: PMC5349236 DOI: 10.15698/mic2015.05.200] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se forms may be converted into selenide through a reductive pathway that in physiological conditions involves reduced glutathione with its consequent oxidation into diglutathione and alteration of the cellular redox buffering capacity. Selenide can subsequently be converted by molecular oxygen into elemental Se, with production of superoxide anions and other reactive oxygen species. Overall, these events result in DNA damage and dose-dependent reversible or irreversible protein oxidation, although additional oxidation of other cellular macromolecules cannot be discarded. Stress-adaptation pathways are essential for efficient Se detoxification, while activation of DNA damage checkpoint and repair pathways protects against Se-mediated genotoxicity. We propose that yeast may be used to improve our knowledge on the impact of Se on metal homeostasis, the identification of Se-targets at the DNA and protein levels, and to gain more insights into the mechanism of Se-mediated apoptosis.
Collapse
Affiliation(s)
- Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Rovira Roure 80, 25198 Lleida, Spain
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
42
|
Hu G, Caza M, Cadieux B, Bakkeren E, Do E, Jung WH, Kronstad JW. The endosomal sorting complex required for transport machinery influences haem uptake and capsule elaboration in Cryptococcus neoformans. Mol Microbiol 2015; 96:973-92. [PMID: 25732100 DOI: 10.1111/mmi.12985] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2015] [Indexed: 11/29/2022]
Abstract
Iron availability is a key determinant of virulence in the pathogenic fungus Cryptococcus neoformans. Previous work revealed that the ESCRT (endosomal sorting complex required for transport) protein Vps23 functions in iron acquisition, capsule formation and virulence. Here, we further characterized the ESCRT machinery to demonstrate that defects in the ESCRT-II and III complexes caused reduced capsule attachment, impaired growth on haem and resistance to non-iron metalloprotoporphyrins. The ESCRT mutants shared several phenotypes with a mutant lacking the pH-response regulator Rim101, and in other fungi, the ESCRT machinery is known to activate Rim101 via proteolytic cleavage. We therefore expressed a truncated and activated version of Rim101 in the ESCRT mutants and found that this allele restored capsule formation but not growth on haem, thus suggesting a Rim101-independent contribution to haem uptake. We also demonstrated that the ESCRT machinery acts downstream of the cAMP/protein kinase A pathway to influence capsule elaboration. Defects in the ESCRT components also attenuated virulence in macrophage survival assays and a mouse model of cryptococcosis to a greater extent than reported for loss of Rim101. Overall, these results indicate that the ESCRT complexes function in capsule elaboration, haem uptake and virulence via Rim101-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Guanggan Hu
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brigitte Cadieux
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Erik Bakkeren
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
43
|
Papouskova K, Jiang L, Sychrova H. Vcx1 and ESCRT components regulate intracellular pH homeostasis in the response of yeast cells to calcium stress. FEMS Yeast Res 2015; 15:fov007. [PMID: 25690770 DOI: 10.1093/femsyr/fov007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endosomal sorting complexes required for transport (ESCRTs) are involved in the formation of multivesicular bodies and sorting of targeted proteins to the yeast vacuole. The deletion of seven genes encoding components of the ESCRT machinery render Saccharomyces cerevisiae cells sensitive to high extracellular CaCl2 concentrations as well as to low pH in media. In this work, we focused on intracellular pH (pHin) homeostasis of these mutants. None of the studied ESCRT mutants exhibited an altered pHin level compared to the wild type under standard growth conditions. Nevertheless, 60 min of CaCl2 treatment resulted in a more significant drop in pHin levels in these mutants than in the wild type, suggesting that pHin homeostasis is affected in ESCRT mutants upon the addition of calcium. Similarly, CaCl2 treatment caused a bigger pHin decrease in cells lacking the vacuolar Ca(2+)/H(+) antiporter Vcx1 which indicates a role for this protein in the maintenance of proper pHin homeostasis when cells need to cope with a high CaCl2 concentration in media. Importantly, ESCRT gene deletions in the vcx1Δ strain did not result in an increase in the CaCl2-invoked drop in the pHin levels of cells, which demonstrates a genetic interaction between VCX1 and studied ESCRT genes.
Collapse
Affiliation(s)
- Klara Papouskova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China The State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
44
|
Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. EUKARYOTIC CELL 2015; 14:324-34. [PMID: 25636321 DOI: 10.1128/ec.00271-14] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years, the emergence of fungal resistance has become frequent, partly due to the widespread clinical use of fluconazole, which is minimally toxic and effective in the prevention and treatment of Candida albicans infections. The limited selection of antifungal drugs for clinical fungal infection therapy has prompted us to search for new antifungal drug targets. Calcium, which acts as the second messenger in both mammals and fungi, plays a direct role in controlling the expression patterns of its signaling systems and has important roles in cell survival. In addition, calcium and some of the components, mainly calcineurin, in the fungal calcium signaling pathway mediate fungal resistance to antifungal drugs. Therefore, an overview of the components of the fungal calcium-calcineurin signaling network and their potential roles as antifungal targets is urgently needed. The calcium-calcineurin signaling pathway consists of various channels, transporters, pumps, and other proteins or enzymes. Many transcriptional profiles have indicated that mutant strains that lack some of these components are sensitized to fluconazole or other antifungal drugs. In addition, many researchers have identified efficient compounds that exhibit antifungal activity by themselves or in combination with antifungal drugs by targeting some of the components in the fungal calcium-calcineurin signaling pathway. This targeting disrupts Ca(2+) homeostasis, which suggests that this pathway contains potential targets for the development of new antifungal drugs.
Collapse
|
45
|
Jiang L, Cao C, Zhang L, Lin W, Xia J, Xu H, Zhang Y. Cadmium-induced activation of high osmolarity glycerol pathway through its Sln1 branch is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in budding yeast. FEMS Yeast Res 2014; 14:1263-72. [PMID: 25331360 DOI: 10.1111/1567-1364.12220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/29/2014] [Accepted: 10/09/2014] [Indexed: 01/09/2023] Open
Abstract
Cadmium ions disrupt reactive oxygen species/Ca(2+) homeostasis and subsequently elicit cell death and adaptive signaling cascades in eukaryotic cells. Through a functional genomics approach, we have identified deletion mutants of 106 yeast genes, including three MAP kinase genes (HOG1, SLT2, and KSS1), are sensitive to a sublethal concentration of cadmium, and 64 mutants show elevated intracellular cadmium concentrations upon exposure to cadmium. Hog1 is phosphorylated, reaching a peak 30 min after the cadmium treatment. Both Sln1 and Sho1 upstream branches are involved in the cadmium-induced activation of high osmolarity glycerol (HOG) pathway. Cadmium-induced HOG activation is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in the Sln1 branch.
Collapse
Affiliation(s)
- Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, China; The National Key Laboratory for Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Pérez-Sampietro M, Herrero E. The PacC-family protein Rim101 prevents selenite toxicity in Saccharomyces cerevisiae by controlling vacuolar acidification. Fungal Genet Biol 2014; 71:76-85. [PMID: 25239548 DOI: 10.1016/j.fgb.2014.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 01/10/2023]
Abstract
Saccharomyces cerevisiae Rim101 is a member of the fungal PacC family of transcription factors involved in the response to alkaline pH stress. Further studies have also implicated Rim101 in the responses to other stresses, and have shown its genetic interaction with the iron deprivation-responsive factor Aft1. The present study shows that the absence of Rim101 leads to hypersensitivity to oxidants such as t-butyl hydroperoxide and diamide, and also to the prooxidant agent selenite. The protective role of Rim101 against selenite requires the sensing complex component Rim8, the ESCRT-I/II/III complexes and the Rim13 protease involved in proteolytic activation of Rim101. The Nrg1 transcriptional repressor is a downstream effector of Rim101 in this response to selenite, as occurs in the responses to alkaline pH, Na(+) and Li(+) stresses. Deletion of RIM101 causes downregulation of the vacuolar ATPase genes VMA2 and VMA4, which becomes accentuated compared to wild type cells upon selenite stress, and activation of the Rim101 protein prevents inhibition of vacuolar acidification caused by selenite. These observations therefore support a role of Rim101 in modulation of vacuolar acidity necessary for selenite detoxification. In addition, a parallel Rim101-independent pathway requiring the complete ESCRT machinery (including the ESCRT-0 complex) also participates in protection against selenite.
Collapse
Affiliation(s)
- Maria Pérez-Sampietro
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Rovira Roure 198, 25198-Lleida, Spain
| | - Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Rovira Roure 198, 25198-Lleida, Spain.
| |
Collapse
|
47
|
Expression of NYV1 encoding the negative regulator of Pmc1 is repressed by two transcriptional repressors, Nrg1 and Mig1. FEBS Lett 2014; 588:3195-201. [PMID: 25017437 DOI: 10.1016/j.febslet.2014.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022]
Abstract
ESCRT components function to form multivesicular bodies for sorting of proteins destined to the yeast vacuole. The calcium hypersensitivity of ESCRT mutants is mainly due to repressed expression of PMR1 through the Rim101/Nrg1 pathway in budding yeast. Here, we show that overexpression of PMC1 and its negative regulator gene NYV1 suppresses and increases calcium hypersensitivity of ESCRT mutants, respectively. Consistently, deletion of NYV1 suppresses their calcium hypersensitivity. Expression of NYV1 is dramatically reduced in ESCRT mutants. Promoter analysis demonstrates that both Nrg1 and Mig1 repress NYV1 expression. Deletion of ESCRTs increases Nrg1 binding, but not Mig1-binding, to the NYV1 promoter. Deletion of MIG1 increases calcium sensitivity of ESCRT mutants due to derepression of NYV1 expression.
Collapse
|