1
|
Qiu L, Ma Z, Wu X. Mutant p53-Mediated Tumor Secretome: Bridging Tumor Cells and Stromal Cells. Genes (Basel) 2024; 15:1615. [PMID: 39766882 PMCID: PMC11675497 DOI: 10.3390/genes15121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor secretome comprises the totality of protein factors secreted by various cell components within the tumor microenvironment, serving as the primary medium for signal transduction between tumor cells and between tumor cells and stromal cells. The deletion or mutation of the p53 gene leads to alterations in cellular secretion characteristics, contributing to the construction of the tumor microenvironment in a cell non-autonomous manner. This review discusses the critical roles of mutant p53 in regulating the tumor secretome to remodel the tumor microenvironment, drive tumor progression, and influence the plasticity of cancer-associated fibroblasts (CAFs) as well as the dynamics of tumor immunity by focusing on both secreted protein expression and secretion pathways. The aim is to provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (L.Q.); (Z.M.)
| |
Collapse
|
2
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
3
|
Efe G, Rustgi AK, Prives C. p53 at the crossroads of tumor immunity. NATURE CANCER 2024; 5:983-995. [PMID: 39009816 DOI: 10.1038/s43018-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
The p53 tumor suppressor protein has a plethora of cell-intrinsic functions and consequences that impact diverse cell types and tissues. Recent studies are beginning to unravel how wild-type and mutant p53 work in distinct ways to modulate tumor immunity. This sets up a disequilibrium between tumor immunosurveillance and escape therefrom. The ability to exploit this emerging knowledge for translational approaches may shape immunotherapy and targeted therapeutics in the future, especially in combinatorial settings.
Collapse
Affiliation(s)
- Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Carol Prives
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
5
|
Zhu KL, Su F, Yang JR, Xiao RW, Wu RY, Cao MY, Ling XL, Zhang T. TP53 to mediate immune escape in tumor microenvironment: an overview of the research progress. Mol Biol Rep 2024; 51:205. [PMID: 38270700 PMCID: PMC10811008 DOI: 10.1007/s11033-023-09097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Increasing evidence suggests that key cancer-causing driver genes continue to exert a sustained influence on the tumor microenvironment (TME), highlighting the importance of immunotherapeutic targeting of gene mutations in governing tumor progression. TP53 is a prominent tumor suppressor that encodes the p53 protein, which controls the initiation and progression of different tumor types. Wild-type p53 maintains cell homeostasis and genomic instability through complex pathways, and mutant p53 (Mut p53) promotes tumor occurrence and development by regulating the TME. To date, it has been wildly considered that TP53 is able to mediate tumor immune escape. Herein, we summarized the relationship between TP53 gene and tumors, discussed the mechanism of Mut p53 mediated tumor immune escape, and summarized the progress of applying p53 protein in immunotherapy. This study will provide a basic basis for further exploration of therapeutic strategies targeting p53 protein.
Collapse
Affiliation(s)
- Kai-Li Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jing-Ru Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ruo-Wen Xiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Rui-Yue Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Meng-Yue Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xiao-Ling Ling
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Tao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
6
|
Chen C, Zhang Y, Lin Y, Shen C, Zhang Z, Wu Z, Qie Y, Zhao G, Hu H. The prognostic significance and immune characteristics of bone morphogenetic proteins (BMPs) family: A pan-cancer multi-omics analysis. Technol Health Care 2024; 32:4123-4175. [PMID: 39031404 PMCID: PMC11613112 DOI: 10.3233/thc-232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are a group of cancer-related proteins vital for development and progression of certain cancer types. Nevertheless, function of BMP family in pan-cancer was not detailedly researched. OBJECTIVE Investigating expression pattern and prognostic value of the BMPs family (BMP1-8A and BMP8B) expression across multiple cancer types. METHODS Our research integrated multi-omics data for exploring potential associations between BMPs expression and prognosis, clinicopathological characteristics, copy number or somatic mutations, immune characteristics, tumor microenvironment (TME), tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint genes and drug sensitivity in The Cancer Genome Atlas (TCGA) tumors. Furthermore, association of BMPs expression and immunotherapy effectiveness was investigated in some confirmatory cohorts (GSE111636, GSE78220, GSE67501, GSE176307, IMvigor210 and mRNA sequencing data from currently undergoing TRUCE01 clinical research included), and biological function and potential signaling pathways of BMPs in bladder cancer (BCa) was explored via Gene Set Enrichment Analysis (GSEA). Eventually, immune infiltration analysis was done via BMPs expression, copy number or somatic mutations in BCa, as well as validation of the expression levels by reverse transcription-quantitative PCR and western blot, and in vitro functional experiments of BMP8A. RESULTS Discoveries displayed BMPs expression was related to prognosis, clinicopathological characteristics, mutations, TME, TMB, MSI and immune checkpoint genes of TCGA tumors. Anticancer drug sensitivity analysis displayed BMPs were associated with various drug sensitivities. What's more, it was discovered that expression level of certain BMP family members related to objective response to immunotherapy. By GSEA, we discovered multiple immune-associated functions and pathways were enriched. Immune infiltration analysis on BCa also displayed significant associations among BMPs copy number variations, mutation status and infiltration level of diverse immune cells. Furthermore, differential expression validation and in vitro phenotypic experiment indicated that BMP8A significantly promoted BCa cell proliferation, migration and invasion. CONCLUSIONS Current results confirmed significance of both BMPs expression and genomic alteration in the prognosis and treatment of diverse cancer types, and suggested that BMPs may be vital for BCa and can possibly be utilized as biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Changsheng Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Haihe Hospital, Tianjin, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Eco-City Hospital of Tianjin Fifth Central Hospital, Tianjin, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Jia L, Chen J, Zhao J, Yang J. Identification of enhancer RNA AC005515.1 as a novel biomarker for prognosis in esophageal cancer and predictors of immunotherapy response. Transl Cancer Res 2023; 12:3266-3283. [PMID: 38192978 PMCID: PMC10774053 DOI: 10.21037/tcr-23-777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024]
Abstract
Background The enhancer RNA (eRNA) signature shows excellent promise in the prognostic role of many malignancies, but its value has not been fully explored in esophageal cancer (ESCA). Methods We comprehensively analyzed 33 oncogene expression matrices and clinical data from The Cancer Genome Atlas (TCGA) and identified ESCA prognostic-related key eRNAs by Kaplan-Meier and co-expression analysis. We also investigated the prognostic role of the key eRNA using a series of bioinformatics approaches, including immune infiltration, immune function, immune subtypes, and the tumor microenvironment. Finally, the tumor immune dysfunction and exclusion (TIDE) score was used to predict the immune response to immune checkpoint blockade (ICB) therapy. Results We identified eRNA AC005515.1, AC012368.1, AP003469.2, Clorf61, and WDFY3-AS2 were associated with the prognosis of ESCA. AC005515.1 is a critical prognostic-related eRNA in ESCA and was significantly co-expressed with immune checkpoint genes (CTLA4, CD274, etc.). In the pan-cancer analysis, AC005515.1 was also associated with the prognosis of seven cancers, including kidney renal papillary cell carcinoma and low-grade brain glioma. It was also found to be co-expressed with immune checkpoint genes in these tumors. Moreover, high expression of AC005515.1 was associated with CD8+ T cells and M1 macrophages infiltration, and the AC005515.1 high-expression group had a higher TIDE score in ESCA. Conclusions Overall, eRNA AC005515.1 is associated with the local immune environment of ESCA and may become a new biomarker of ESCA prognosis and immunotherapy response.
Collapse
Affiliation(s)
- Lihua Jia
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianghua Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jia Zhao
- Department of Medical Laboratory, Nanchong Central Hospital, Nanchong, China
| | - Junbao Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Clinical Genetics, School of Medical Laboratory, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
8
|
Hassin O, Sernik M, Seligman A, Vogel FCE, Wellenstein MD, Smollich J, Halperin C, Pirona AC, Toledano LN, Caballero CD, Schlicker L, Salame TM, Sarusi Portuguez A, Aylon Y, Scherz-Shouval R, Geiger T, de Visser KE, Schulze A, Oren M. p53 deficient breast cancer cells reprogram preadipocytes toward tumor-protective immunomodulatory cells. Proc Natl Acad Sci U S A 2023; 120:e2311460120. [PMID: 38127986 PMCID: PMC10756271 DOI: 10.1073/pnas.2311460120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The TP53 gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression. This, in turn, promotes the establishment of an inflammatory tumor microenvironment, including increased abundance of Ly6C+ and Ly6G+ myeloid cells and elevated expression of the immune checkpoint ligand PD-L1. We also describe a potential gain-of-function effect of common p53 missense mutations on the inflammatory reprogramming of preadipocytes. Altogether, our study implicates p53 deregulation in breast cancer cells as a driver of tumor-supportive adipose tissue reprogramming, expanding the network of non-cell autonomous mechanisms whereby p53 dysfunction may promote cancer. Further elucidation of the interplay between p53 and adipocytes within the tumor microenvironment may suggest effective therapeutic targets for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Miriam Sernik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Adi Seligman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Felix C. E. Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Max D. Wellenstein
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Joachim Smollich
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Coral Halperin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Anna Chiara Pirona
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Liron Nomi Toledano
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Carolina Dehesa Caballero
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avital Sarusi Portuguez
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tamar Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Karin E. de Visser
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
9
|
Wang Y, Wang B, Ma X. A novel predictive model based on inflammatory response-related genes for predicting endometrial cancer prognosis and its experimental validation. Aging (Albany NY) 2023; 15:204767. [PMID: 37276865 DOI: 10.18632/aging.204767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Inflammatory response is an important feature of most tumors. Local inflammation promotes tumor cell immune evasion and chemotherapeutic drug resistance. We aimed to build a prognostic model for endometrial cancer patients based on inflammatory response-related genes (IRGs). RNA sequencing and clinical data for uterine corpus endometrial cancer were obtained from TCGA datasets. LASSO-penalized Cox regression was used to obtain the risk formula of the model: the score = esum(corresponding coefficient × each gene's expression). The "ESTIMATE" and "pRRophetic" packages in R were used to evaluate the tumor microenvironment and the sensitivity of patients to chemotherapy drugs. Data sets from IMvigor210 were used to evaluate the efficacy of immunotherapy in cancer patients. For experimental verification, 37 endometrial cancer and 43 normal endometrial tissues samples were collected. The mRNA expression of the IRGs was measured using qRT-PCR. The effects of IRGs on the malignant biological behaviors of endometrial cancer were detected using CCK-8, colony formation, Transwell invasion, and apoptosis assays. We developed a novel prognostic signature comprising 13 IRGs, which is an independent prognostic marker for endometrial cancer. A nomogram was developed to predict patient survival accurately. Three key IRGs (LAMP3, MEP1A, and ROS1) were identified in this model. Furthermore, we verified the expression of the three key IRGs using qRT-PCR. Functional experiments also confirmed the influence of the three key IRGs on the malignant biological behavior of endometrial cancer. Thus, a characteristic model constructed using IRGs can predict the survival, chemotherapeutic drug sensitivity, and immunotherapy response in patients with endometrial cancer.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| |
Collapse
|
10
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
11
|
OuYang LY, Deng ZJ, You YF, Fang JM, Chen XJ, Liu JJ, Li XZ, Lian L, Chen S. SIRGs score may be a predictor of prognosis and immunotherapy response for esophagogastric junction adenocarcinoma. Front Immunol 2022; 13:977894. [PMID: 36052090 PMCID: PMC9424497 DOI: 10.3389/fimmu.2022.977894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEsophagogastric junction adenocarcinoma (EGJA) is a special malignant tumor with unknown biological behavior. PD-1 checkpoint inhibitors have been recommended as first-line treatment for advanced EGJA patients. However, the biomarkers for predicting immunotherapy response remain controversial.MethodsWe identified stromal immune-related genes (SIRGs) by ESTIMATE from the TCGA-EGJA dataset and constructed a signature score. In addition, survival analysis was performed in both the TCGA cohort and GEO cohort. Subsequently, we explored the differences in tumor-infiltrating immune cells, immune subtypes, immune-related functions, tumor mutation burden (TMB), immune checkpoint gene expression, immunophenoscore (IPS) between the high SIRGs score and low SIRGs score groups. Finally, two validation cohorts of patients who had accepted immunotherapy was used to verify the value of SIRGs score in predicting immunotherapy response.ResultsEight of the SIRGs were selected by LASSO regression to construct a signature score (SIRGs score). Univariate and multivariate analyses in the TCGA and GEO cohort suggested that SIRGs score was an independent risk factor for the overall survival (OS) and it could increase the accuracy of clinical prediction models for survival. However, in the high SIRGs score group, patients had more immune cell infiltration, more active immune-related functions, higher immune checkpoint gene expression and higher IPS-PD1 and IPS-PD1-CTLA4 scores, which indicate a better response to immunotherapy. The external validation illustrated that high SIRGs score was significantly associated with immunotherapy response and immune checkpoint inhibitors (ICIs) can improve OS in patients with high SIRGs score.ConclusionThe SIRGs score may be a predictor of the prognosis and immune-therapy response for esophagogastric junction adenocarcinoma.
Collapse
Affiliation(s)
- Li-Ying OuYang
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Jian Deng
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Yu-Feng You
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Ming Fang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Xi-Jie Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Jun-Jie Liu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Xian-Zhe Li
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Lei Lian
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Shi Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
- *Correspondence: Shi Chen,
| |
Collapse
|
12
|
Feng D, Shi X, You J, Xiong Q, Zhu W, Wei Q, Yang L. A cellular senescence-related gene prognostic index for biochemical recurrence and drug resistance in patients with prostate cancer. Am J Cancer Res 2022; 12:3811-3828. [PMID: 36119834 PMCID: PMC9441995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023] Open
Abstract
In this study, we aimed to establish a novel cellular senescence-related gene prognostic index (CSG PI) to predict biochemical recurrence (BCR) and drug resistance in patients with prostate cancer (PCa) undergoing radical radiotherapy or prostatectomy. We performed all analyses using R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish a network of transcription factors and competing endogenous RNAs. Three cellular senescence-related genes were used to establish the CSGPI. We observed that CSGPI was an independent risk factor for BCR in PCa patients (HR: 2.62; 95% CI: 1.55-4.44), consistent with the results of external validation (HR: 1.88; 95% CI: 1.12-3.14). The CSGPI had a moderate diagnostic effect on drug resistance (AUC: 0.812, 95% CI: 0.586-1.000). The lncRNA PART1 was significantly associated with BCR (HR: 0.46; 95% CI: 0.27-0.77), and might modulate the mRNA expression of definitive genes through interactions with 57 miRNAs. Gene set enrichment analysis indicated that CSGPI was closely related to ECM receptor interaction, focal adhesion, TGF beta signaling pathway, pathway in cancer, regulation of actin cytoskeleton, and so on. Immune checkpoint analysis showed that PDCD1LG2 and CD96 were significantly higher in the BCR group compared to non-BCR group, and patients with higher expression of CD96 were more prone to BCR than their counterparts (HR: 1.79; 95% CI: 1.06-3.03). In addition, the CSGPI score was significantly associated with the mRNA expression of HAVCR2, CD96, and CD47. Analysis of mismatch repair and methyltransferase genes showed that DNMT3B was more highly expressed in the BCR group and that patients with higher expression of DNMT3B experienced a higher risk of BCR (HR: 2.08; 95% CI: 1.23-3.52). We observed that M1 macrophage, CD8+ T cells, stromal score, immune score, and ESTIMATE score were higher in the BCR group. In contrast, tumor purity was less scored in the BCR group. Spearman analysis revealed a positive relationship between CSGPI and M1 macrophages, CD4+ T cells, dendritic cells, stromal score, immune score, and ESTIMATE score. In conclusion, we found that the CSGPI might serve as a biomarker to predict BCR and drug resistance in PCa patients. Moreover, CD96 and DNMT3B might be potential treatment targets, and immune evasion might contribute to the BCR process of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University Chengdu 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University Chengdu 610041, Sichuan, People's Republic of China
| | - Jia You
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University Chengdu 610041, Sichuan, People's Republic of China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University Chengdu 610041, Sichuan, People's Republic of China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University Chengdu 610041, Sichuan, People's Republic of China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University Chengdu 610041, Sichuan, People's Republic of China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Seliger B, Massa C. Modulation of Lymphocyte Functions in the Microenvironment by Tumor Oncogenic Pathways. Front Immunol 2022; 13:883639. [PMID: 35663987 PMCID: PMC9160824 DOI: 10.3389/fimmu.2022.883639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Despite the broad application of different immunotherapeutic strategies for the treatment of solid as well as hematopoietic cancers, the efficacy of these therapies is still limited, with only a minority of patients having a long-term benefit resulting in an improved survival rate. In order to increase the response rates of patients to the currently available immunotherapies, a better understanding of the molecular mechanisms underlying the intrinsic and/or extrinsic resistance to treatment is required. There exist increasing evidences that activation of different oncogenic pathways as well as inactivation of tumor suppressor genes (TSG) in tumor cells inhibit the immune cell recognition and influegnce the composition of the tumor microenvironment (TME), thus leading to an impaired anti-tumoral immune response. A deeper understanding of the link between the tumor milieu and genomic alterations of TSGs and oncogenes is indispensable for the optimization of immunotherapies and to predict the patients’ response to these treatments. This review summarizes the role of different cancer-related, oncogene- and TSG-controlled pathways in the context of anti-tumoral immunity and response to different immunotherapies.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
p53 Signaling on Microenvironment and Its Contribution to Tissue Chemoresistance. MEMBRANES 2022; 12:membranes12020202. [PMID: 35207121 PMCID: PMC8877489 DOI: 10.3390/membranes12020202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Chemoresistance persists as a significant, unresolved clinical challenge in many cancer types. The tumor microenvironment, in which cancer cells reside and interact with non-cancer cells and tissue structures, has a known role in promoting every aspect of tumor progression, including chemoresistance. However, the molecular determinants of microenvironment-driven chemoresistance are mainly unknown. In this review, we propose that the TP53 tumor suppressor, found mutant in over half of human cancers, is a crucial regulator of cancer cell-microenvironment crosstalk and a prime candidate for the investigation of microenvironment-specific modulators of chemoresistance. Wild-type p53 controls the secretion of factors that inhibit the tumor microenvironment, whereas altered secretion or mutant p53 interfere with p53 function to promote chemoresistance. We highlight resistance mechanisms promoted by mutant p53 and enforced by the microenvironment, such as extracellular matrix remodeling and adaptation to hypoxia. Alterations of wild-type p53 extracellular function may create a cascade of spatial amplification loops in the tumor tissue that can influence cellular behavior far from the initial oncogenic mutation. We discuss the concept of chemoresistance as a multicellular/tissue-level process rather than intrinsically cellular. Targeting p53-dependent crosstalk mechanisms between cancer cells and components of the tumor environment might disrupt the waves of chemoresistance that spread across the tumor tissue, increasing the efficacy of chemotherapeutic agents.
Collapse
|
15
|
Liu X, Luo Z, Ren X, Chen Z, Bao X, Zheng J, Zuo Z. The Crosstalk Between Malignant Cells and Tumor-Promoting Immune Cells Relevant to Immunotherapy in Pancreatic Ductal Adenocarcinoma. Front Cell Dev Biol 2022; 9:821232. [PMID: 35087839 PMCID: PMC8787220 DOI: 10.3389/fcell.2021.821232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is dominated by an immunosuppressive microenvironment, which makes immune checkpoint blockade (ICB) often non-responsive. Understanding the mechanisms by which PDAC forms an immunosuppressive microenvironment is important for the development of new effective immunotherapy strategies. Methods: This study comprehensively evaluated the cell-cell communications between malignant cells and immune cells by integrative analyses of single-cell RNA sequencing data and bulk RNA sequencing data of PDAC. A Malignant-Immune cell crosstalk (MIT) score was constructed to predict survival and therapy response in PDAC patients. Immunological characteristics, enriched pathways, and mutations were evaluated in high- and low MIT groups. Results: We found that PDAC had high level of immune cell infiltrations, mainly were tumor-promoting immune cells. Frequent communication between malignant cells and tumor-promoting immune cells were observed. 15 ligand-receptor pairs between malignant cells and tumor-promoting immune cells were identified. We selected genes highly expressed on malignant cells to construct a Malignant-Immune Crosstalk (MIT) score. MIT score was positively correlated with tumor-promoting immune infiltrations. PDAC patients with high MIT score usually had a worse response to immune checkpoint blockade (ICB) immunotherapy. Conclusion: The ligand-receptor pairs identified in this study may provide potential targets for the development of new immunotherapy strategy. MIT score was established to measure tumor-promoting immunocyte infiltration. It can serve as a prognostic indicator for long-term survival of PDAC, and a predictor to ICB immunotherapy response.
Collapse
Affiliation(s)
- Xuefei Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ziwei Luo
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuechen Ren
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhihang Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoqiong Bao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianghua Zheng
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol 2021; 12:674-687. [PMID: 32722796 PMCID: PMC7749743 DOI: 10.1093/jmcb/mjaa040] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
p53 is a key tumor suppressor, and loss of p53 function is frequently a prerequisite for cancer development. The p53 gene is the most frequently mutated gene in human cancers; p53 mutations occur in >50% of all human cancers and in almost every type of human cancers. Most of p53 mutations in cancers are missense mutations, which produce the full-length mutant p53 (mutp53) protein with only one amino acid difference from wild-type p53 protein. In addition to loss of the tumor-suppressive function of wild-type p53, many mutp53 proteins acquire new oncogenic activities independently of wild-type p53 to promote cancer progression, termed gain-of-function (GOF). Mutp53 protein often accumulates to very high levels in cancer cells, which is critical for its GOF. Given the high mutation frequency of the p53 gene and the GOF activities of mutp53 in cancer, therapies targeting mutp53 have attracted great interest. Further understanding the mechanisms underlying mutp53 protein accumulation and GOF will help develop effective therapies treating human cancers containing mutp53. In this review, we summarize the recent advances in the studies on mutp53 regulation and GOF as well as therapies targeting mutp53 in human cancers.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Tianliang Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
17
|
Tissues and Tumor Microenvironment (TME) in 3D: Models to Shed Light on Immunosuppression in Cancer. Cells 2021; 10:cells10040831. [PMID: 33917037 PMCID: PMC8067689 DOI: 10.3390/cells10040831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022] Open
Abstract
Immunosuppression in cancer has emerged as a major hurdle to immunotherapy efforts. Immunosuppression can arise from oncogene-induced signaling within the tumor as well as from tumor-associated immune cells. Understanding various mechanisms by which the tumor can undermine and evade therapy is critical in improving current cancer immunotherapies. While mouse models have allowed for the characterization of key immune cell types and their role in tumor development, extrapolating these mechanisms to patients has been challenging. There is need for better models to unravel the effects of genetic alterations inherent in tumor cells and immune cells isolated from tumors on tumor growth and to investigate the feasibility of immunotherapy. Three-dimensional (3D) organoid model systems have developed rapidly over the past few years and allow for incorporation of components of the tumor microenvironment such as immune cells and the stroma. This bears great promise for derivation of patient-specific models in a dish for understanding and determining the impact on personalized immunotherapy. In this review, we will highlight the significance of current experimental models employed in the study of tumor immunosuppression and evaluate current tumor organoid-immune cell co-culture systems and their potential impact in shedding light on cancer immunosuppression.
Collapse
|
18
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
19
|
Zhao Y, Xu L, Wang X, Niu S, Chen H, Li C. A novel prognostic mRNA/miRNA signature for esophageal cancer and its immune landscape in cancer progression. Mol Oncol 2021; 15:1088-1109. [PMID: 33463006 PMCID: PMC8024720 DOI: 10.1002/1878-0261.12902] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/12/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence shows that MicroRNAs (miRNAs) and their target genes are aberrantly expressed in many cancers and are linked to tumor occurrence and progression, especially in esophageal cancer (EC). This study purposed to explore new biomarkers related to the prognosis of EC and to uncover their potential mechanisms in promoting tumor progression. We identified 162 differentially expressed miRNAs and 4555 differentially expressed mRNAs in EC. Then, a risk model involving three miRNAs (miR‐4521, miR‐3682‐3p, and miR‐1269a) was designed to predict prognosis in EC patients. Furthermore, 7 target genes (Rho GTPase‐activating protein 24, Chromobox 3, Contactin‐associated protein 2, ELOVL fatty acid elongase 5, LIF receptor subunit alpha, transmembrane protein 44, and transmembrane protein 67) were selected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to reveal their potential mechanisms in promoting EC progression. After a series of correlation analyses, miRNA target genes were found to be significantly positively or negatively associated with immune infiltration, tumor microenvironment, cancer stemness properties, and tumor mutation burden at different degrees in EC. To further elucidate the role of miRNA signature in cancer progression, we performed a pan‐cancer analysis to determine whether these genes exert similar effects on other tumors. Interestingly, the miRNA target genes altered expression on tumor immunity; however, pan‐cancer progression was the same as that of EC. Thus, we explored the immune landscape of the miRNA signature and its target genes in EC and pan‐cancer. These findings demonstrated the versatility and effectiveness of our model in various cancers and provided a new direction for cancer management.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medical, Tongji University, Shanghai, China
| | - Li Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medical, Tongji University, Shanghai, China
| | - Xinyu Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuai Niu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - ChunGuang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Gao S, Yan L, Zhang H, Fan X, Jiao X, Shao F. Identification of a Metastasis-Associated Gene Signature of Clear Cell Renal Cell Carcinoma. Front Genet 2021; 11:603455. [PMID: 33613617 PMCID: PMC7889952 DOI: 10.3389/fgene.2020.603455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most frequent pathological subtypes of kidney cancer, accounting for ~70-75%, and the major cause of mortality is metastatic disease. The difference in gene expression profiles between primary ccRCC tumors and metastatic tumors has not been determined. Thus, we report integrated genomic and transcriptomic analysis for identifying differentially expressed genes (DEGs) between primary and metastatic ccRCC tumors to understand the molecular mechanisms underlying the development of metastases. The microarray datasets GSE105261 and GSE85258 were obtained from the Gene Expression Omnibus (GEO) database, and the R package limma was used for DEG analyses. In summary, the results described herein provide important molecular evidence that metastatic ccRCC tumors are different from primary tumors. Enrichment analysis indicated that the DEGs were mainly enriched in ECM-receptor interaction, platelet activation, protein digestion, absorption, focal adhesion, and the PI3K-Akt signaling pathway. Moreover, we found that DEGs associated with a higher level of tumor immune infiltrates and tumor mutation burden were more susceptible to poor prognosis of ccRCC. Specifically, our study indicates that seven core genes, namely the collagen family (COL1A2, COL1A1, COL6A3, and COL5A1), DCN, FBLN1, and POSTN, were significantly upregulated in metastatic tumors compared with those in primary tumors and, thus, potentially offer insight into novel therapeutic and early diagnostic biomarkers of ccRCC.
Collapse
Affiliation(s)
- Suhua Gao
- He'nan Provincial Key Laboratory of Kidney Disease and Immunology, Department of Nephrology, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yan
- He'nan Provincial Key Laboratory of Kidney Disease and Immunology, Department of Nephrology, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongtao Zhang
- He'nan Provincial Key Laboratory of Kidney Disease and Immunology, Department of Nephrology, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoguang Fan
- He'nan Provincial Key Laboratory of Kidney Disease and Immunology, Department of Nephrology, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojing Jiao
- He'nan Provincial Key Laboratory of Kidney Disease and Immunology, Department of Nephrology, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengmin Shao
- He'nan Provincial Key Laboratory of Kidney Disease and Immunology, Department of Nephrology, He'nan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Cao J, Gong J, Li X, Hu Z, Xu Y, Shi H, Li D, Liu G, Jie Y, Hu B, Chong Y. Unsupervised Hierarchical Clustering Identifies Immune Gene Subtypes in Gastric Cancer. Front Pharmacol 2021; 12:692454. [PMID: 34248641 PMCID: PMC8264374 DOI: 10.3389/fphar.2021.692454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: The pathogenesis of heterogeneity in gastric cancer (GC) is not clear and presents as a significant obstacle in providing effective drug treatment. We aimed to identify subtypes of GC and explore the underlying pathogenesis. Methods: We collected two microarray datasets from GEO (GSE84433 and GSE84426), performed an unsupervised cluster analysis based on gene expression patterns, and identified related immune and stromal cells. Then, we explored the possible molecular mechanisms of each subtype by functional enrichment analysis and identified related hub genes. Results: First, we identified three clusters of GC by unsupervised hierarchical clustering, with average silhouette width of 0.96, and also identified their related representative genes and immune cells. We validated our findings using dataset GSE84426. Subtypes associated with the highest mortality (subtype 2 in the training group and subtype C in the validation group) showed high expression of SPARC, COL3A1, and CCN. Both subtypes also showed high infiltration of fibroblasts, endothelial cells, hematopoietic stem cells, and a high stromal score. Furthermore, subtypes with the best prognosis (subtype 3 in the training group and subtype A in the validation group) showed high expression of FGL2, DLGAP1-AS5, and so on. Both subtypes also showed high infiltration of CD4+ T cells, CD8+ T cells, NK cells, pDC, macrophages, and CD4+ T effector memory cells. Conclusion: We found that GC can be classified into three subtypes based on gene expression patterns and cell composition. Findings of this study help us better understand the tumor microenvironment and immune milieu associated with heterogeneity in GC and provide practical information to guide personalized treatment.
Collapse
Affiliation(s)
- Jing Cao
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinhua Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhaoxia Hu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingjun Xu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Shi
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Danyang Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guangjian Liu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yusheng Jie
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yusheng Jie, ; Bo Hu, ; Yutian Chong,
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yusheng Jie, ; Bo Hu, ; Yutian Chong,
| | - Yutian Chong
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yusheng Jie, ; Bo Hu, ; Yutian Chong,
| |
Collapse
|
22
|
Huang C, Hao Q, Shi G, Zhou X, Zhang Y. BCL7C suppresses ovarian cancer growth by inactivating mutant p53. J Mol Cell Biol 2020; 13:141-150. [PMID: 33306126 PMCID: PMC8104935 DOI: 10.1093/jmcb/mjaa065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
B-cell CLL/lymphoma 7 protein family member C (BCL7C) located at chromosome 16p11.2 shares partial sequence homology with the other two family members, BCL7A and BCL7B. Its role in cancer remains completely unknown. Here, we report our finding of its tumor-suppressive role in ovarian cancer. Supporting this is that BCL7C is downregulated in human ovarian carcinomas, and its underexpression is associated with unfavorable prognosis of ovarian cancer as well as some other types of human cancers. Also, ectopic BCL7C restrains cell proliferation and invasion of ovarian cancer cells. Consistently, depletion of BCL7C reduces apoptosis and promotes cell proliferation and invasion of these cancer cells. Mechanistically, BCL7C suppresses mutant p53-mediated gene transcription by binding to mutant p53, while knockdown of BCL7C enhances the expression of mutant p53 target genes in ovarian cancer cells. Primary ovarian carcinomas that sustain low levels of BCL7C often show the elevated expression of mutant p53 target genes. In line with these results, BCL7C abrogates mutant p53-induced cell proliferation and invasion, but had no impact on proliferation and invasion of cancer cells with depleted p53 or harboring wild-type p53. Altogether, our results demonstrate that BCL7C can act as a tumor suppressor to prevent ovarian tumorigenesis and progression by counteracting mutant p53 activity.
Collapse
Affiliation(s)
- Canhua Huang
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha 410008, China.,Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Getao Shi
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Yu Zhang
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha 410008, China.,Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
23
|
Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y, Fu X. Mutant p53 in Cancer Progression and Targeted Therapies. Front Oncol 2020; 10:595187. [PMID: 33240819 PMCID: PMC7677253 DOI: 10.3389/fonc.2020.595187] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
TP53 is the most frequently mutated tumor suppressor gene in human cancer. The majority of mutations of p53 are missense mutations, leading to the expression of the full length p53 mutant proteins. Mutant p53 (Mutp53) proteins not only lose wild-type p53-dependent tumor suppressive functions, but also frequently acquire oncogenic gain-of-functions (GOF) that promote tumorigenesis. In this review, we summarize the recent advances in our understanding of the oncogenic GOF of mutp53 and the potential therapies targeting mutp53 in human cancers. In particular, we discuss the promising drugs that are currently under clinical trials as well as the emerging therapeutic strategies, including CRISPR/Cas9 based genome edition of mutant TP53 allele, small peptide mediated restoration of wild-type p53 function, and immunotherapies that directly eliminate mutp53 expressing tumor cells.
Collapse
Affiliation(s)
- Gaoyang Zhu
- Postdoctoral Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin-Xin Bei
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Liang
- Shenzhen International Institute for Biomedical Research, Shenzhen, China
| | - Yang Xu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Xuemei Fu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Capaci V, Bascetta L, Fantuz M, Beznoussenko GV, Sommaggio R, Cancila V, Bisso A, Campaner E, Mironov AA, Wiśniewski JR, Ulloa Severino L, Scaini D, Bossi F, Lees J, Alon N, Brunga L, Malkin D, Piazza S, Collavin L, Rosato A, Bicciato S, Tripodo C, Mantovani F, Del Sal G. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun 2020; 11:3945. [PMID: 32770028 PMCID: PMC7414119 DOI: 10.1038/s41467-020-17596-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.
Collapse
Affiliation(s)
- Valeria Capaci
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
| | - Lorenzo Bascetta
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | - Marco Fantuz
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | | | | | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, School of Medicine, 90133, Palermo, Italy
| | - Andrea Bisso
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elena Campaner
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Alexander A Mironov
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139, Milan, Italy
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 85152, Martinsried, Germany
| | - Luisa Ulloa Severino
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Denis Scaini
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | - Fleur Bossi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Jodi Lees
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Noa Alon
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ledia Brunga
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Silvano Piazza
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
| | - Licio Collavin
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, School of Medicine, 90133, Palermo, Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy.
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139, Milan, Italy.
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy.
| |
Collapse
|
25
|
Mao M, Yu Q, Huang R, Lu Y, Wang Z, Liao L. Stromal score as a prognostic factor in primary gastric cancer and close association with tumor immune microenvironment. Cancer Med 2020; 9:4980-4990. [PMID: 32432377 PMCID: PMC7367639 DOI: 10.1002/cam4.2801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer remains one of the major causes for tumor‐related deaths worldwide. Our study aimed to provide an understanding of primary gastric cancer and prompt its clinical diagnosis and treatment. Methods We integrated the expression profiles and overall survival information of primary gastric cancer in TCGA and GEO database and estimated the stromal score of each sample by the estimate R package. Stromal score and clinicopathologic characteristics associated with overall survival were analyzed by using Cox regression and the Kaplan‐Meier method. Gene set enrichment analysis (GSEA) and KEGG analysis were performed to explore the potential molecular mechanism in TCGA dataset. The relationship between immunotherapy‐associated markers or immune cell types and stromal score was explored by using Pearson correlation analysis. Results A total of 796 samples were collected for the analysis. Patients with stromal score‐high showed poor overall survival (P < .01, HR: 1.407, 95% CI: 1.144‐1.731) and identified as an independent prognostic factor. KEGG analysis revealed that stromal score actively involved in diverse tumor‐associated pathways. GSEA analysis also revealed stromal score associated with diverse immune‐related biological processes. Furthermore, stromal score was related with immunotherapy‐associated markers and multiple immune cells. Conclusion Our results showed that stromal score could serve as a potential prognostic biomarker in primary gastric cancer and play an important role in the recognition, surveillance, and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Min Mao
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Qingliang Yu
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Rongzhi Huang
- Department of Orthopedic Surgery, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou First People's Hospital, Qinzhou, China
| | - Yunxin Lu
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Zhen Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liang Liao
- Department of Traumatic Orthopedics and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
27
|
Gain-of-Function Mutant p53: All the Roads Lead to Tumorigenesis. Int J Mol Sci 2019; 20:ijms20246197. [PMID: 31817996 PMCID: PMC6940767 DOI: 10.3390/ijms20246197] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The p53 protein is mutated in about 50% of human cancers. Aside from losing the tumor-suppressive functions of the wild-type form, mutant p53 proteins often acquire inherent, novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function (GOF). A growing body of evidence suggests that these pro-oncogenic functions of mutant p53 proteins are mediated by affecting the transcription of various genes, as well as by protein-protein interactions with transcription factors and other effectors. In the current review, we discuss the various GOF effects of mutant p53, and how it may serve as a central node in a network of genes and proteins, which, altogether, promote the tumorigenic process. Finally, we discuss mechanisms by which "Mother Nature" tries to abrogate the pro-oncogenic functions of mutant p53. Thus, we suggest that targeting mutant p53, via its reactivation to the wild-type form, may serve as a promising therapeutic strategy for many cancers that harbor mutant p53. Not only will this strategy abrogate mutant p53 GOF, but it will also restore WT p53 tumor-suppressive functions.
Collapse
|