1
|
Temeyer KB, Schlechte KG, Gross AD, Lohmeyer KH. Identification, Baculoviral Expression, and Biochemical Characterization of a Novel Cholinesterase of Amblyomma americanum (Acari: Ixodidae). Int J Mol Sci 2023; 24:ijms24097681. [PMID: 37175388 PMCID: PMC10178864 DOI: 10.3390/ijms24097681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
A cDNA encoding a novel cholinesterase (ChE, EC 3.1.1.8) from the larvae of Amblyomma americanum (Linnaeus) was identified, sequenced, and expressed in Sf21 insect cell culture using the baculoviral expression vector pBlueBac4.5/V5-His. The open reading frame (1746 nucleotides) of the cDNA encoded 581 amino acids beginning with the initiation codon. Identical cDNA sequences were amplified from the total RNA of adult tick synganglion and salivary gland, strongly suggesting expression in both tick synganglion and saliva. The recombinant enzyme (rAaChE1) was highly sensitive to eserine and BW284c51, relatively insensitive to tetraisopropyl pyrophosphoramide (iso-OMPA) and ethopropazine, and hydrolyzed butyrylthiocholine (BuTCh) 5.7 times as fast as acetylthiocholine (ATCh) at 120 µM, with calculated KM values for acetylthiocholine (ATCh) and butyrylthiocholine of 6.39 µM and 14.18 µM, respectively. The recombinant enzyme was highly sensitive to inhibition by malaoxon, paraoxon, and coroxon in either substrate. Western blots using polyclonal rabbit antibody produced by immunization with a peptide specific for rAaChE1 exhibited reactivity in salivary and synganglial extract blots, indicating the presence of AaChE1 antigenic protein. Total cholinesterase activities of synganglial or salivary gland extracts from adult ticks exhibited biochemical properties very different from the expressed rAaACh1 enzyme, evidencing the substantial presence of additional cholinesterase activities in tick synganglion and saliva. The biological function of AaChE1 remains to be elucidated, but its presence in tick saliva is suggestive of functions in hydrolysis of cholinergic substrates present in the large blood mean and potential involvement in the modulation of host immune responses to tick feeding and introduced pathogens.
Collapse
Affiliation(s)
- Kevin B Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Arthropod Genomics Center, USDA-ARS, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
| | - Kristie G Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Arthropod Genomics Center, USDA-ARS, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
| | - Aaron D Gross
- Molecular Physiology and Toxicology Laboratory, Department of Entomology (MC 0390), Virginia Polytechnic Institute and State University, Latham Hall (Rm 307), 220 Ag Quad Lane, Blacksburg, VA 24061, USA
| | - Kimberly H Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Arthropod Genomics Center, USDA-ARS, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
| |
Collapse
|
2
|
Lu S, Danchenko M, Macaluso KR, Ribeiro JMC. Revisiting the sialome of the cat flea Ctenocephalides felis. PLoS One 2023; 18:e0279070. [PMID: 36649293 PMCID: PMC9844850 DOI: 10.1371/journal.pone.0279070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023] Open
Abstract
The hematophagous behaviour emerged independently in several instances during arthropod evolution. Survey of salivary gland and saliva composition and its pharmacological activity led to the conclusion that blood-feeding arthropods evolved a distinct salivary mixture that can interfere with host defensive response, thus facilitating blood acquisition and pathogen transmission. The cat flea, Ctenocephalides felis, is the major vector of several pathogens, including Rickettsia typhi, Rickettsia felis and Bartonella spp. and therefore, represents an important insect species from the medical and veterinary perspectives. Previously, a Sanger-based sialome of adult C. felis female salivary glands was published and reported 1,840 expressing sequence tags (ESTs) which were assembled into 896 contigs. Here, we provide a deeper insight into C. felis salivary gland composition using an Illumina-based sequencing approach. In the current dataset, we report 8,892 coding sequences (CDS) classified into 27 functional classes, which were assembled from 42,754,615 reads. Moreover, we paired our RNAseq data with a mass spectrometry analysis using the translated transcripts as a reference, confirming the presence of several putative secreted protein families in the cat flea salivary gland homogenates. Both transcriptomic and proteomic approaches confirmed that FS-H-like proteins and acid phosphatases lacking their putative catalytic residues are the two most abundant salivary proteins families of C. felis and are potentially related to blood acquisition. We also report several novel sequences similar to apyrases, odorant binding proteins, antigen 5, cholinesterases, proteases, and proteases inhibitors, in addition to putative novel sequences that presented low or no sequence identity to previously deposited sequences. Together, the data represents an extended reference for the identification and characterization of the pharmacological activity present in C. felis salivary glands.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, Maryland, United States of America
- * E-mail:
| | - Monika Danchenko
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, Maryland, United States of America
| |
Collapse
|
3
|
Lohmeyer KH. Highlights in Veterinary Entomology, 2020: The Importance of the Contributions of Government Scientists to Research in Veterinary Entomology. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2016-2020. [PMID: 34342346 DOI: 10.1093/jme/tjab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 06/13/2023]
Abstract
The field of veterinary entomology is primarily associated with the study of arthropods that impact the health of animals. Papers featured in the compilation of highlighted research from 2020 focused on studies conducted by scientists from the federal government that sought to understand and manage arthropods associated with wild and domesticated animals. The topics of these articles included research from the basic tenets of veterinary entomology: 1) biology and ecology of economically important pests, 2) novel control tactics and resistance management, 3) genomics, and 4) pathogen transmission. Key findings of the highlighted papers are presented and discussed to serve as a presentation record.
Collapse
Affiliation(s)
- Kimberly H Lohmeyer
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
| |
Collapse
|
4
|
Santos EGGD, Bezerra WADS, Temeyer KB, León AAPD, Costa-Junior LM, Soares AMDS. Effects of essential oils on native and recombinant acetylcholinesterases of Rhipicephalus microplus. ACTA ACUST UNITED AC 2021; 30:e002221. [PMID: 34076049 DOI: 10.1590/s1984-29612021024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 09/20/2024]
Abstract
This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract (S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by mechanism(s) other than AChE inhibition.
Collapse
Affiliation(s)
| | | | - Kevin B Temeyer
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX, United States of America
| | | | | | | |
Collapse
|
5
|
Arafa WM, Aboelhadid SM, Moawad A, Shokeir KM, Ahmed O, Pérez de León AA. Control of Rhipicephalus annulatus resistant to deltamethrin by spraying infested cattle with synergistic eucalyptus essential oil-thymol-deltamethrin combination. Vet Parasitol 2021; 290:109346. [PMID: 33418076 DOI: 10.1016/j.vetpar.2021.109346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
The current study investigated the synergistic effect of combinations containing deltamethrin (D), Eucalyptus essential oil (E), and the thyme essential oil component thymol (T), against a field population of Rhipicephalus annulatus in Egypt that was characterized to be resistant to D. Solutions of T, E, or TE at concentrations of 1.25-5% were combined with 5% deltamethrin at different dilutions (0.25-2 mL/L). Results of the adult immersion test used to estimate the in vitro acaricidal activity of these combinations at 5% yielded LC50 values for D, E-D, T-D, and TE-D of 3.87 mL/L, 3.89 mL/L, 0.14 mL/L, and 0.05 mL/L, respectively. Biochemical analyses using whole-body homogenate of ticks from the in vitro tests revealed that the lowest acetylcholinesterase and glutathione peroxidase activity, and the maximum lipid peroxidation were recorded in ticks treated with 5% TE-D. Glutathione content significantly decreased (p ≤ 0.05) in all treated ticks. Three groups, each containing five cross breed cattle naturally infested with R. annulatus from the same area where resistance to D was detected, were sprayed twice at two-week intervals using 1 mL/L of 5% solutions of D, T-D, or TE-D. Overall efficacy of the D, T-D, and TE-D sprays by day 30 post-treatment was 21.6, 88.3, and 95 %, respectively. Ticks collected from infested cattle three days after treatment with the D spray deposited egg masses that were able to hatch, deposited small masses of eggs unable to hatch when exposed to the T-D spray, and laid few eggs that didn't hatch when sprayed with the TE-D combination. Values for liver and kidney function parameters were comparable in cattle before and after treatment with the combination sprays tested. The TE-D spray overcame the insensitivity to D of this R. annulatus population in Egypt, which also highlighted the significant synergistic effect of thymol on the acaricidal activity of deltamethrin observed in vitro. Acaricidal activity of the TE-D combination apparently has deleterious effects on multiple tick systems involving inhibition of acetylcholinesterase, increased lipid peroxidation, and oxidative stress. These findings document that combinations of natural and synthetic products can be part of integrated management solutions to the problem with widespread resistance to pyrethroids like deltamethrin in populations of cattle ticks, including R. annulatus, around the world.
Collapse
Affiliation(s)
- Waleed M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Shawky M Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Abeer Moawad
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Osama Ahmed
- Physiology Division, Zoology Department, Faculty of Sciences, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Adalberto A Pérez de León
- USDA, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, Texas, 78028, USA
| |
Collapse
|