1
|
Maggi RG, Calchi AC, Moore CO, Kingston E, Breitschwerdt EB. Human Babesia odocoilei and Bartonella spp. co-infections in the Americas. Parasit Vectors 2024; 17:302. [PMID: 38992682 PMCID: PMC11241936 DOI: 10.1186/s13071-024-06385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND In recent years, Babesia and Bartonella species co-infections in patients with chronic, nonspecific illnesses have continued to challenge and change the collective medical understanding of "individual pathogen" vector-borne infectious disease dynamics, pathogenesis and epidemiology. The objective of this case series is to provide additional molecular documentation of Babesia odocoilei infection in humans in the Americas and to emphasize the potential for co-infection with a Bartonella species. METHODS The development of improved and more sensitive molecular diagnostic techniques, as confirmatory methods to assess active infection, has provided increasing clarity to the healthcare community. RESULTS Using a combination of different molecular diagnostic approaches, infection with Babesia odocoilei was confirmed in seven people suffering chronic non-specific symptoms, of whom six were co-infected with one or more Bartonella species. CONCLUSIONS We conclude that infection with Babesia odocoilei is more frequent than previously documented and can occur in association with co-infection with Bartonella spp.
Collapse
Affiliation(s)
- Ricardo G Maggi
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Ana Cláudia Calchi
- Department of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), School of Agricultural and Veterinarian Sciences (FCAV) - São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Charlotte O Moore
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Emily Kingston
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Edward B Breitschwerdt
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA.
| |
Collapse
|
2
|
Bhosale CR, Wilson KN, Ledger KJ, White ZS, Dorleans R, De Jesus CE, Wisely SM. Ticks and Tick-Borne Pathogens in Recreational Greenspaces in North Central Florida, USA. Microorganisms 2023; 11:756. [PMID: 36985329 PMCID: PMC10057063 DOI: 10.3390/microorganisms11030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Tick-borne infections are an increasing medical and veterinary concern in the southeastern United States, but there is limited understanding of how recreational greenspaces influence the hazard of pathogen transmission. This study aimed to estimate the potential human and companion animal encounter risk with different questing tick species, and the bacterial or protozoal agents they carry in recreational greenspaces. We collected ticks bimonthly along trails and designated recreational areas in 17 publicly accessible greenspaces, in and around Gainesville, Florida, USA. We collected Amblyomma americanum, Ixodes scapularis, Amblyomma maculatum, Dermacentor variabilis, Ixodes affinis, and Haemaphysalis leporispalustris. Across the six tick species collected, we detected 18 species of bacteria or protozoa within the Babesia, Borrelia, Cytauxzoon, Cryptoplasma (Allocryptoplasma), Ehrlichia, Hepatozoon, Rickettsia, and Theileria genera, including pathogens of medical or veterinary importance. While tick abundance and associated microorganism prevalence and richness were the greatest in natural habitats surrounded by forests, we found both ticks and pathogenic microorganisms in manicured groundcover. This relationship is important for public health and awareness, because it suggests that the probability of encountering an infected tick is measurable and substantial even on closely manicured turf or gravel, if the surrounding landcover is undeveloped. The presence of medically important ticks and pathogenic microorganisms in recreational greenspaces indicates that public education efforts regarding ticks and tick-borne diseases are warranted in this region of the United States.
Collapse
Affiliation(s)
- Chanakya R. Bhosale
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Kristen N. Wilson
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Kimberly J. Ledger
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Zoe S. White
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Rayann Dorleans
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Carrie E. De Jesus
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Crandall KE, Kerr JT, Millien V. Emerging Tick-Borne Pathogens in Central Canada: Recent Detections of Babesia odocoilei and Rickettsia rickettsii. Vector Borne Zoonotic Dis 2022; 22:535-544. [PMID: 36264197 DOI: 10.1089/vbz.2022.0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The spread of emerging tick-borne pathogens has steadily increased in Canada with the widespread establishment of tick vectors and vertebrate hosts. At present, Borrelia burgdorferi, the bacterium causing Lyme disease, is the most common tick-borne pathogen in Canada and primarily transmitted by Ixodes scapularis. A low prevalence of other emerging tick-borne pathogens, such as Anaplasma phagocytophilum, Babesia species, Borrelia miyamotoi, and Francisella tularensis have also been detected through surveillance efforts in Canada. Although Rickettsia rickettsii has been historically detected in Haemaphysalis leporispalustris in Canada, the current prevalence and geographic extent of this pathogen is unknown. Material and Methods: In this study, we assessed the presence and prevalence of several emerging tick-borne pathogens in ticks and hosts collected through tick dragging and small mammal trapping in Central Canada. Results: Nested PCR testing detected three pathogen species in ticks, with Babesia odocoilei and B. burgdorferi in I. scapularis in addition to R. rickettsii in H. leporispalustris. Three pathogen species were detected in small mammals by nested PCR including B. odocoilei in Blarina brevicauda, Babesia microti in Peromyscus leucopus, and a Hepatozoon species in P. leucopus and Peromyscus maniculatus. B. burgdorferi and Babesia species were the pathogens most often detected in our samples, suggesting they are widely distributed across Central Canada. We also detected B. odocoilei and R. rickettsii beyond their known geographic distribution. Conclusions: Our results provide evidence that emerging tick-borne pathogens may be present outside defined risk areas identified by current surveillance efforts in Canada. As a result, emerging tick-borne pathogens introduced by the dispersal of infected ticks by migratory birds or maintained by hosts and vectors through cryptic transmission cycles may go undetected. More comprehensive testing including all tick life stages and additional tick-borne pathogens will help detect the spread and potential risk of emerging or re-emerging tick-borne pathogens for human and wildlife populations throughout Canada.
Collapse
Affiliation(s)
- Kirsten E Crandall
- Department of Biology, University of Ottawa, Ottawa, Canada.,Department of Biology, McGill University, Montréal, Canada.,Redpath Museum, McGill University, Montréal, Canada
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|