1
|
Rugman-Jones PF, Dodge CE, Stouthamer R. Pervasive heteroplasmy in an invasive ambrosia beetle (Scolytinae) in southern California. Heredity (Edinb) 2024:10.1038/s41437-024-00722-0. [PMID: 39266674 DOI: 10.1038/s41437-024-00722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Heteroplasmy, the presence of multiple mitochondrial genotypes (mitotypes) within an individual, has long been thought to be a rare aberrance that is quickly removed by selection or drift. However, heteroplasmy is being reported in natural populations of eukaryotes with increasing frequency, in part due to improved diagnostic methods. Here, we report a seemingly stable heteroplasmic state in California populations of the polyphagous shothole borer (PSHB), Euwallacea fornicatus; an invasive ambrosia beetle that is causing significant tree dieback. We develop and validate a qPCR assay utilizing locked nucleic acid probes to detect different mitotypes, and qualitatively assess heteroplasmy in individual PSHB. We prove the utility of this assay by: (1) mitotyping field-collected PSHB, documenting the prevalence of heteroplasmy across its range in California; and, (2) measuring relative titers of each mitotype across multiple generations of heteroplasmic laboratory colonies to assess the stability of transmission through the maternal germline. We show that our findings are unlikely to be explained by the existence of NUMTs by next generation sequencing of contiguous sections of mitochondrial DNA, where each of the observed heteroplasmic sites are found within fully functional coding regions of mtDNA. Subsequently, we find heteroplasmic individuals are common in Californian field populations, and that heteroplasmy persists for at least 10 generations in experimental colonies. We also looked for evidence of the common occurrence of paternal leakage, but found none. In light of our results, we discuss competing hypotheses as to how heteroplasmy may have arisen, and continues to perpetuate, in Californian PSHB populations.
Collapse
Affiliation(s)
- Paul F Rugman-Jones
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - Christine E Dodge
- Department of Entomology, University of California, Riverside, CA, 92521, USA
- Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 W. Truck Rd, Buzzards Bay, MA, 02542, USA
| | - Richard Stouthamer
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
2
|
Sasínková M, Křemenová J, Chajma P, Bartonička T, Massino C, Otti O, Balvín O. Changes in body size and fertility due to artificial and natural feeding of laboratory common bed bugs (Heteroptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:34-45. [PMID: 37889860 DOI: 10.1093/jme/tjad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 10/29/2023]
Abstract
Rearing common bed bugs (Cimex lectularius L.) and other hematophagous insects is essential for basic, medical, and pest-control research. Logistically, acquiring fresh blood can be a challenge, while biologically, the eventual effects of different rearing and blood preparation protocols on bed bug genotype and phenotype pose a risk of biased research results. Using bed bug populations that are either bat- (BL) or human-related (HL), we tested the short- and long-term effects of rearing bugs on live bats or human volunteers, or artificially on CPDA (citrate phosphate dextrose, adenine)-treated blood, measuring meal size, body size, and fertility. We found that artificial feeding did not affect meal size compared with feeding on natural hosts. Long-term rearing across many generations of HL on CPDA-preserved blood led to reduced body size and fertility compared with populations reared on human volunteers. Blood preservatives increased the proportion of sterile eggs even after a single feed. Finally, our results indicated that laboratory reared bed bugs were smaller, regardless of the blood source, than wild bugs. Similar effects of artificial feeding or laboratory rearing alone should be considered in future studies using bed bug cultures to choose an appropriate rearing protocol. With regard to switching between bat and human hosts, HL took smaller meals and BL had lower fertility when fed on bats than when fed on humans. We attribute these results to methodological constrains, specifically the inconsistency of bat feeding, rather than to host specialization. Nevertheless, BL can be easily reared using human blood and artificial feeding systems.
Collapse
Affiliation(s)
- Markéta Sasínková
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Jana Křemenová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petr Chajma
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Christian Massino
- Applied Zoology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Oliver Otti
- Animal Population Ecology, Animal Ecology I, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Ondřej Balvín
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
| |
Collapse
|
3
|
Ye Z, Zhao C, Raborn RT, Lin M, Wei W, Hao Y, Lynch M. Genetic Diversity, Heteroplasmy, and Recombination in Mitochondrial Genomes of Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Mol Biol Evol 2022; 39:msac059. [PMID: 35325186 PMCID: PMC9004417 DOI: 10.1093/molbev/msac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Chaoxian Zhao
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - R. Taylor Raborn
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Man Lin
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wen Wei
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yue Hao
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Meza‐Lázaro RN, Peña‐Carrillo KI, Poteaux C, Lorenzi MC, Wetterer JK, Zaldívar‐Riverón A. Genome and cuticular hydrocarbon-based species delimitation shed light on potential drivers of speciation in a Neotropical ant species complex. Ecol Evol 2022; 12:e8704. [PMID: 35342602 PMCID: PMC8928884 DOI: 10.1002/ece3.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Geographic separation that leads to the evolution of reproductive isolation between populations generally is considered the most common form of speciation. However, speciation may also occur in the absence of geographic barriers due to phenotypic and genotypic factors such as chemical cue divergence, mating signal divergence, and mitonuclear conflict. Here, we performed an integrative study based on two genome-wide techniques (3RAD and ultraconserved elements) coupled with cuticular hydrocarbon (CHC) and mitochondrial (mt) DNA sequence data, to assess the species limits within the Ectatomma ruidum species complex, a widespread and conspicuous group of Neotropical ants for which heteroplasmy (i.e., presence of multiple mtDNA variants in an individual) has been recently discovered in some populations from southeast Mexico. Our analyses indicate the existence of at least five distinct species in this complex: two widely distributed across the Neotropics, and three that are restricted to southeast Mexico and that apparently have high levels of heteroplasmy. We found that species boundaries in the complex did not coincide with geographic barriers. We therefore consider possible roles of alternative drivers that may have promoted the observed patterns of speciation, including mitonuclear incompatibility, CHC differentiation, and colony structure. Our study highlights the importance of simultaneously assessing different sources of evidence to disentangle the species limits of taxa with complicated evolutionary histories.
Collapse
Affiliation(s)
- Rubi N. Meza‐Lázaro
- Colección Nacional de InsectosInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Kenzy I. Peña‐Carrillo
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
- INIFAPCampo Experimental General TeránGeneral TeránMexico
| | - Chantal Poteaux
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
| | - Maria Cristina Lorenzi
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
| | - James K. Wetterer
- Harriet L. Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Alejandro Zaldívar‐Riverón
- Colección Nacional de InsectosInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
5
|
Davies OK, Dorey JB, Stevens MI, Gardner MG, Bradford TM, Schwarz MP. Unparalleled mitochondrial heteroplasmy and Wolbachia co-infection in the non-model bee, Amphylaeus morosus. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100036. [PMID: 36003268 PMCID: PMC9387454 DOI: 10.1016/j.cris.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
Mitochondrial heteroplasmy is the occurrence of more than one type of mitochondrial DNA within a single individual. Although generally reported to occur in a small subset of individuals within a species, there are some instances of widespread heteroplasmy across entire populations. Amphylaeus morosus is an Australian native bee species in the diverse and cosmopolitan bee family Colletidae. This species has an extensive geographical range along the eastern Australian coast, from southern Queensland to western Victoria, covering approximately 2,000 km. Seventy individuals were collected from five localities across this geographical range and sequenced using Sanger sequencing for the mitochondrial cytochrome c oxidase subunit I (COI) gene. These data indicate that every individual had the same consistent heteroplasmic sites but no other nucleotide variation, suggesting two conserved and widespread heteroplasmic mitogenomes. Ion Torrent shotgun sequencing revealed that heteroplasmy occurred across multiple mitochondrial protein-coding genes and is unlikely explained by transposition of mitochondrial genes into the nuclear genome (NUMTs). DNA sequence data also demonstrated a consistent co-infection of Wolbachia across the A. morosus distribution with every individual infected with both bacterial strains. Our data are consistent with the presence of two mitogenomes within all individuals examined in this species and suggest a major divergence from standard patterns of mitochondrial inheritance. Because the host's mitogenome and the Wolbachia genome are genetically linked through maternal inheritance, we propose three possible hypotheses that could explain maintenance of the widespread and conserved co-occurring bacterial and mitochondrial genomes in this species.
Collapse
|
6
|
Allison TM, Radzvilavicius AL, Dowling DK. Selection for biparental inheritance of mitochondria under hybridization and mitonuclear fitness interactions. Proc Biol Sci 2021; 288:20211600. [PMID: 34875196 PMCID: PMC8651416 DOI: 10.1098/rspb.2021.1600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Uniparental inheritance (UPI) of mitochondria predominates over biparental inheritance (BPI) in most eukaryotes. However, examples of BPI of mitochondria, or paternal leakage, are becoming increasingly prevalent. Most reported cases of BPI occur in hybrids of distantly related sub-populations. It is thought that BPI in these cases is maladaptive; caused by a failure of female or zygotic autophagy machinery to recognize divergent male-mitochondrial DNA ‘tags’. Yet recent theory has put forward examples in which BPI can evolve under adaptive selection, and empirical studies across numerous metazoan taxa have demonstrated outbreeding depression in hybrids attributable to disruption of population-specific mitochondrial and nuclear genotypes (mitonuclear mismatch). Based on these developments, we hypothesize that BPI may be favoured by selection in hybridizing populations when fitness is shaped by mitonuclear interactions. We test this idea using a deterministic, simulation-based population genetic model and demonstrate that BPI is favoured over strict UPI under moderate levels of gene flow typical of hybridizing populations. Our model suggests that BPI may be stable, rather than a transient phenomenon, in hybridizing populations.
Collapse
Affiliation(s)
- Tom M Allison
- School of Biological Sciences, Monash University, Victoria, Australia
| | | | - Damian K Dowling
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
7
|
A New Mitochondrial Genome of Sogatella furcifera (Horváth) (Hemiptera: Delphacidae) and Mitogenome-Wide Investigation on Polymorphisms. INSECTS 2021; 12:insects12121066. [PMID: 34940154 PMCID: PMC8706918 DOI: 10.3390/insects12121066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 01/23/2023]
Abstract
Simple Summary We completed one mitogenome of white-backed planthopper (WBPH), Sogatella furcifera (Horváth), with finding heteroplasmy phenomenon confirmed by PCR reaction and Sanger sequencing method. This heteroplasmy was not observed in WBPHs (n = 24) collected from the fields, suggesting that it may be uncommon in fields. We also analyzed single nucleotide polymorphisms, insertion and deletions, and simple sequence repeats among three currently available WBPH mitogenomes of Korea and China, suggesting that identified intraspecific variations could be potential candidates for developing markers to distinguish geographical populations of WBPH including Korean and Chinese. Phylogenetic analysis of 32 mitogenomes of Delphacidae including the three WBPH mitogenomes suggested that Delphacinae seems to be monophyletic and Sogatella species including WBPH are clearly formed as one clade. Abstract White-backed planthopper (WBPH), Sogatella furcifera (Horváth), is one of the major sap-sucking rice pests in East Asia. We have determined a new complete mitochondrial genome of WBPH collected in the Korean peninsula using NGS technology. Its length and GC percentages are 16,613 bp and 23.8%, respectively. We observed one polymorphic site, a non-synonymous change, in the COX3 gene with confirmation heteroplasmy phenomenon within individuals of WBPH by PCR amplification and Sanger sequencing, the first report in this species. In addition, this heteroplasmy was not observed in wild WBPH populations, suggesting that it may be uncommon in fields. We analyzed single nucleotide polymorphisms, insertion, and deletions, and simple sequence repeats among the three WBPH mitogenomes from Korea and China and found diverse intraspecific variations, which could be potential candidates for developing markers to distinguish geographical populations. Phylogenetic analysis of 32 mitogenomes of Delphacidae including the three WBPH mitogenomes suggested that Delphacinae seems to be monophyletic and Sogatella species including WBPH are clearly formed as one clade. In the future, it is expected that complete mitogenomes of individuals of geographically dispersed WBPH populations will be used for further population genetic studies to understand the migration pathway of WBPH.
Collapse
|
8
|
mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life (Basel) 2021; 11:life11070633. [PMID: 34209862 PMCID: PMC8307225 DOI: 10.3390/life11070633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual’s lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.
Collapse
|
9
|
Iannello M, Bettinazzi S, Breton S, Ghiselli F, Milani L. A Naturally Heteroplasmic Clam Provides Clues about the Effects of Genetic Bottleneck on Paternal mtDNA. Genome Biol Evol 2021; 13:6130822. [PMID: 33555290 PMCID: PMC7936021 DOI: 10.1093/gbe/evab022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies within an organism. Since these copies are not identical, a single individual carries a heterogeneous population of mtDNAs, a condition known as heteroplasmy. Several factors play a role in the dynamics of the within-organism mtDNA population: among them, genetic bottlenecks, selection, and strictly maternal inheritance are known to shape the levels of heteroplasmy across mtDNAs. In Metazoa, the only evolutionarily stable exception to the strictly maternal inheritance of mitochondria is the doubly uniparental inheritance (DUI), reported in 100+ bivalve species. In DUI species, there are two highly divergent mtDNA lineages, one inherited through oocyte mitochondria (F-type) and the other through sperm mitochondria (M-type). Having both parents contributing to the mtDNA pool of the progeny makes DUI a unique system to study the dynamics of mtDNA populations. Since, in bivalves, the spermatozoon has few mitochondria (4–5), M-type mtDNA faces a tight bottleneck during embryo segregation, one of the narrowest mitochondrial bottlenecks investigated so far. Here, we analyzed the F- and M-type mtDNA variability within individuals of the DUI species Ruditapes philippinarum and investigated for the first time the effects of such a narrow bottleneck affecting mtDNA populations. As a potential consequence of this narrow bottleneck, the M-type mtDNA shows a large variability in different tissues, a condition so pronounced that it leads to genotypes from different tissues of the same individual not to cluster together. We believe that such results may help understanding the effect of low population size on mtDNA bottleneck.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Stefano Bettinazzi
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
10
|
Kinkar L, Korhonen PK, Wang D, Zhu XQ, Chelomina GN, Wang T, Hall RS, Koehler AV, Harliwong I, Yang B, Fink JL, Young ND, Gasser RB. Marked mitochondrial genetic variation in individuals and populations of the carcinogenic liver fluke Clonorchis sinensis. PLoS Negl Trop Dis 2020; 14:e0008480. [PMID: 32813714 PMCID: PMC7437864 DOI: 10.1371/journal.pntd.0008480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023] Open
Abstract
Clonorchiasis is a neglected tropical disease caused by the Chinese liver fluke, Clonorchis sinensis, and is often associated with a malignant form of bile duct cancer (cholangiocarcinoma). Although some aspects of the epidemiology of clonorchiasis are understood, little is known about the genetics of C. sinensis populations. Here, we conducted a comprehensive genetic exploration of C. sinensis from endemic geographic regions using complete mitochondrial protein gene sets. Genomic DNA samples from C. sinensis individuals (n = 183) collected from cats and dogs in China (provinces of Guangdong, Guangxi, Hunan, Heilongjiang and Jilin) as well as from rats infected with metacercariae from cyprinid fish from the Russian Far East (Primorsky Krai region) were deep sequenced using the BGISEQ-500 platform. Informatic analyses of mitochondrial protein gene data sets revealed marked genetic variation within C. sinensis; significant variation was identified within and among individual worms from distinct geographical locations. No clear affiliation with a particular location or host species was evident, suggesting a high rate of dispersal of the parasite across endemic regions. The present work provides a foundation for future biological, epidemiological and ecological studies using mitochondrial protein gene data sets, which could aid in elucidating associations between particular C. sinensis genotypes/haplotypes and the pathogenesis or severity of clonorchiasis and its complications (including cholangiocarcinoma) in humans. Clonorchiasis is an important neglected tropical disease caused by the Chinese liver fluke, Clonorchis sinensis, which can induce malignant bile duct cancer (cholangiocarcinoma). Little precise information is available on the biology, epidemiology and population genetics of C. sinensis. For this reason, we explored here the genetic composition of C. sinensis populations in distinct endemic areas in China and Russia. Using a deep sequencing-informatic approach, we revealed marked mitochondrial genetic variation within and between individuals and populations of C. sinensis, with no particular affiliation with geographic or host origin. These molecular findings and the methodology established should underpin future genetic studies of C. sinensis causing human clonorchiasis and associated complications (cancer) as well as transmission patterns in endemic regions.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daxi Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- BGI International, Shenzhen, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Galina N. Chelomina
- Department of Parasitology, Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ross S. Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V. Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
11
|
Wan Mohammad WNF, Soh LS, Wan Ismail WN, Veera Singham G. Infestation Pattern and Population Dynamics of the Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae) Based on Novel Microsatellites and mtDNA Markers. INSECTS 2020; 11:insects11080472. [PMID: 32722487 PMCID: PMC7469168 DOI: 10.3390/insects11080472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/03/2022]
Abstract
The tropical bed bug, Cimex hemipterus (F.), has now emerged as an important public health pest in the tropics. Despite its alarming infestation rate, the information on its population genetics remains scarce. Here, we described the infestation structure and population dynamics of C. hemipterus in the tropics, especially Malaysia and Singapore, based on eight novel microsatellites and two mtDNA markers, including cytochrome c oxidase I (COI) and 16S rRNA genes. Across populations, microsatellite data revealed high genetic diversity with significant genetic differentiation and restricted gene flow. Analysis within populations revealed evidence of a recent bottleneck. Nonetheless, elevated genetic diversity in nearly all populations suggests that the propagule in C. hemipterus populations were much diverse, distantly related (mean r = 0.373), and not significantly inbred (mean FIS = 0.24) than that observed in Cimex lectularius from previous studies. We observed seven mtDNA haplotypes across the 18 populations studied (Hd = 0.593) and several populations displayed more than one matrilineal descent. The two markers were generally congruent in suggesting a common, genetically diverse (especially at the nuclear region) source population with possibilities of multiple introductions for the bed bug populations in the present study.
Collapse
Affiliation(s)
- Wan Nur Fatanah Wan Mohammad
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia; (W.N.F.W.M.); (L.-S.S.)
| | - Li-Shen Soh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia; (W.N.F.W.M.); (L.-S.S.)
| | - Wan Nurainie Wan Ismail
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| | - G. Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia; (W.N.F.W.M.); (L.-S.S.)
- Correspondence:
| |
Collapse
|
12
|
Ricardo PC, Françoso E, Arias MC. Mitochondrial DNA intra-individual variation in a bumblebee species: A challenge for evolutionary studies and molecular identification. Mitochondrion 2020; 53:243-254. [PMID: 32569843 DOI: 10.1016/j.mito.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial DNA (mtDNA) regions have been widely used as molecular markers in evolutionary studies and species identification. However, the presence of heteroplasmy and NUMTs may represent obstacles. Heteroplasmy is a state where an organism has different mitochondrial haplotypes. NUMTs are nuclear pseudogenes originating from mtDNA sequences transferred to nuclear DNA. Evidences of heteroplasmy were already verified in the bumblebee Bombus morio in an earlier study. The present work investigated in more detail the presence of intra-individual haplotypes variation in this species. Heteroplasmy was detected in individuals from all the ten sampled locations, with an average of six heteroplasmic haplotypes per individual. In addition, some of these heteroplasmic haplotypes were shared among individuals from different locations, suggesting the existence of stable heteroplasmy in B. morio. These results demonstrated that heteroplasmy is likely to affect inferences based on mtDNA analysis, especially in phylogenetic, phylogeographic and population genetics studies. In addition, NUMTs were also detected. These sequences showed divergence of 2.7% to 12% in relation to the mitochondrial haplotypes. These levels of divergence could mislead conclusions in evolutionary studies and affect species identification through DNA barcoding.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Elaine Françoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Muntaabski I, Russo RM, Liendo MC, Palacio MA, Cladera JL, Lanzavecchia SB, Scannapieco AC. Genetic variation and heteroplasmy of Varroa destructor inferred from ND4 mtDNA sequences. Parasitol Res 2020; 119:411-421. [PMID: 31915912 DOI: 10.1007/s00436-019-06591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 02/01/2023]
Abstract
Varroa destructor, a parasitic mite of the western honey bee, Apis mellifera L., is a serious threat to colonies and beekeeping worldwide. Population genetics studies of the mite have provided information on two mitochondrial haplotypes infecting honey bee colonies, named K and J (after Korea and Japan, respectively, where they were originally identified). On the American continent, the K haplotype is much more prevalent, with the J haplotype only detected in some areas of Brazil. The aims of the present study were to assess the genetic diversity of V. destructor populations in the major beekeeping region of Argentina and to evaluate the presence of heteroplasmy at the nucleotide level. Phoretic mites were collected from managed A. mellifera colonies in ten localities, and four mitochondrial DNA (mtDNA) regions (COXI, ND4, ND4L, and ND5) were analyzed. Based on cytochrome oxidase subunit I (COXI) sequencing, exclusively the K haplotype of V. destructor was detected. Furthermore, two sub-haplotypes (KArg-N1 and KArg-N2) were identified from a variation in ND4 sequences and the frequency of these sub-haplotypes was found to significantly correlate with geographical latitude. The occurrence of site heteroplasmy was also evident for this gene. Therefore, ND4 appears to be a sensitive marker for detecting genetic variability in mite populations. Site heteroplasmy emerges as a phenomenon that could be relatively frequent in V. destructor.
Collapse
Affiliation(s)
- Irina Muntaabski
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Romina M Russo
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - María C Liendo
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María A Palacio
- Unidad Integrada INTA - Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
| | - Jorge L Cladera
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Silvia B Lanzavecchia
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Alejandra C Scannapieco
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina. .,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Booth W. Evolution: Bedbugs Evolved before Their Assumed Ancestral Host. Curr Biol 2019; 29:R413-R415. [DOI: 10.1016/j.cub.2019.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Mastrantonio V, Latrofa MS, Porretta D, Lia RP, Parisi A, Iatta R, Dantas-Torres F, Otranto D, Urbanelli S. Paternal leakage and mtDNA heteroplasmy in Rhipicephalus spp. ticks. Sci Rep 2019; 9:1460. [PMID: 30728407 PMCID: PMC6365633 DOI: 10.1038/s41598-018-38001-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022] Open
Abstract
Paternal leakage of mitochondrial DNA (mtDNA) and heteroplasmy have been recently described in several animal species. In arthropods, by searching in the Scopus database, we found only 23 documented cases of paternal leakage. Therefore, although arthropods represent a large fraction of animal biodiversity, this phenomenon has been investigated only in a paucity of species in this phylum, thus preventing a reliable estimate of its frequency. Here, we investigated the occurrence of paternal leakage and mtDNA heteroplasmy in ticks belonging to one of the most significant tick species complexes, the so-called Rhipicephalus sanguineussensu lato. By developing a multiplex allele-specific PCR assay targeting a fragment of the 12S rRNA ribosomal region of the mtDNA, we showed the occurrence of paternal leakage and mtDNA heteroplasmy in R. sanguineuss.l. ticks originated from experimental crosses, as well as in individuals collected from the field. Our results add a new evidence of paternal leakage in arthropods and document for the first time this phenomenon in ticks. Furthermore, they suggest the importance of using allele-specific assays when searching for paternal leakage and/or heteroplasmy, as standard sequencing methods may fail to detect the rare mtDNA molecules.
Collapse
Affiliation(s)
| | | | - Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - Riccardo Paolo Lia
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Contrada S. Pietro Piturno, 70017 Putignano, Bari, Italy
| | - Roberta Iatta
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy
| | - Filipe Dantas-Torres
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy.,Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50740465, Recife, Pernambuco, Brazil
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy
| | - Sandra Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Kastally C, Mardulyn P. Widespread co-occurrence of two distantly related mitochondrial genomes in individuals of the leaf beetle Gonioctena intermedia. Biol Lett 2018; 13:rsbl.2017.0570. [PMID: 29118243 DOI: 10.1098/rsbl.2017.0570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial genome heteroplasmy-the presence of more than one genomic variant in individuals-is considered only occasional in animals, and most often involves molecules differing only by a few recent mutations. Thanks to new sequencing technologies, a large number of DNA fragments from a single individual can now be sequenced and visualized separately, allowing new insights into intra-individual mitochondrial genome variation. Here, we report evidence from both (i) massive parallel sequencing (MPS) of genomic extracts and (ii) Sanger sequencing of PCR products, for the widespread co-occurrence of two distantly related (greater than 1% nucleotide divergence, excluding the control region) mitochondrial genomes in individuals of a natural population of the leaf beetle Gonioctena intermedia Sanger sequencing of PCR products using universal primers previously failed to identify heteroplasmy in this population. Its occurrence was detected with MPS data and may have important implications for evolutionary studies. It suggests the need to re-evaluate, using MPS techniques, the proportion of animal species displaying heteroplasmy.
Collapse
Affiliation(s)
- Chedly Kastally
- Department of Evolutionary Biology and Ecology, Université Libre de Bruxelles, avenue Franklin D. Roosevelt 50, 1050 Brussels, Belgium
| | - Patrick Mardulyn
- Department of Evolutionary Biology and Ecology, Université Libre de Bruxelles, avenue Franklin D. Roosevelt 50, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Raupach MJ, Hannig K, Moriniére J, Hendrich L. A DNA barcode library for ground beetles of Germany: the genus Amara Bonelli, 1810 (Insecta, Coleoptera, Carabidae). Zookeys 2018; 759:57-80. [PMID: 29853775 PMCID: PMC5968077 DOI: 10.3897/zookeys.759.24129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023] Open
Abstract
The genus Amara Bonelli, 1810 is a very speciose and taxonomically difficult genus of the Carabidae. The identification of many of the species is accomplished with considerable difficulty, in particular for females and immature stages. In this study the effectiveness of DNA barcoding, the most popular method for molecular species identification, was examined to discriminate various species of this genus from Central Europe. DNA barcodes from 690 individuals and 47 species were analysed, including sequences from previous studies and more than 350 newly generated DNA barcodes. Our analysis revealed unique BINs for 38 species (81%). Interspecific K2P distances below 2.2% were found for three species pairs and one species trio, including haplotype sharing between Amara alpina/Amara torrida and Amara communis/Amara convexior/Amara makolskii. This study represents another step in generating an extensive reference library of DNA barcodes for carabids, highly valuable bioindicators for characterizing disturbances in various habitats.
Collapse
Affiliation(s)
- Michael J. Raupach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, 26111 Oldenburg, Germany
| | | | - Jérôme Moriniére
- Taxonomic coordinator – German Barcode of Life (GBOL), Bavarian State Collection of Zoology (SNSB – ZSM), Münchhausenstraße 21, 81247 München, Germany
| | - Lars Hendrich
- Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB – ZSM), Münchhausenstraße 21, 81247 München, Germany
| |
Collapse
|
18
|
Meza-Lázaro RN, Poteaux C, Bayona-Vásquez NJ, Branstetter MG, Zaldívar-Riverón A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1203-1214. [PMID: 29385929 DOI: 10.1080/24701394.2018.1431228] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We assembled mitogenomes from 21 ant workers assigned to four morphospecies (E. ruidum spp. 1-4) and putative hybrids of the Ectatomma ruidum complex (E. ruidum spp. 2x3), and to E. tuberculatum using NGS data. Mitogenomes from specimens of E. ruidum spp. 3, 4 and 2 × 3 had a high proportion of polymorphic sites. We investigated whether polymorphisms in mitogenomes are due to nuclear mt paralogues (numts) or due to the presence of more than one mitogenome within an individual (heteroplasmy). We did not find loss of function signals in polymorphic protein-coding genes, and observed strong evidence for purifying selection in two haplotype-phased genes, which indicate the presence of two functional mitochondrial genomes coexisting within individuals instead of numts. Heteroplasmy due to hybrid paternal leakage is not supported by phylogenetic analyses. Our results reveal the presence of a fast-evolving secondary mitochondrial lineage of uncertain origin in the E. ruidum complex.
Collapse
Affiliation(s)
- Rubi N Meza-Lázaro
- a Colección Nacional de Insectos, Instituto de Biología , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| | - Chantal Poteaux
- b Laboratoire d'Ethologie Expérimentale et Comparée E.A. 4443 (LEEC), Université Paris 13, Sorbonne Paris Cité , Villetaneuse , France
| | | | - Michael G Branstetter
- d USDA-ARS Pollinating Insects Research Unit, Utah State University , Logan , UT , USA
| | - Alejandro Zaldívar-Riverón
- a Colección Nacional de Insectos, Instituto de Biología , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| |
Collapse
|
19
|
Gawande SJ, Anandhan S, Ingle AA, Jacobson A, Asokan R. Heteroplasmy due to coexistence of mtCOI haplotypes from different lineages of the Thrips tabaci cryptic species group. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:534-542. [PMID: 28137324 DOI: 10.1017/s0007485317000025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Heteroplasmy is the existence of multiple mitochondrial DNA haplotypes within the cell. Although the number of reports of heteroplasmy is increasing for arthropods, the occurrence, number of variants, and origins are not well studied. In this research, the occurrence of heteroplasmy was investigated in Thrips tabaci, a putative species complex whose lineages can be distinguished by their mitochondrial DNA haplotypes. The results from this study showed that heteroplasmy was due to the occurrence of mitochondrial cytochrome oxydase I (mtCOI) haplotypes from two different T. tabaci lineages. An assay using flow cytometry and quantitative real-time PCR was then used to quantify the per cell copy number of the two mtCOI haplotypes present in individuals exhibiting heteroplasmy from nine geographically distant populations in India. All of the T. tabaci individuals in this study were found to exhibit heteroplasmy, and in every individual the per cell copy number of mtCOI from lineage 3 comprised 75-98% of the haplotypes detected and was variable among individuals tested. There was no evidence to suggest that the presense of lineage-specific haplotypes was due to nuclear introgression; however, further studies are needed to investigate nuclear introgression and paternal leakage during rare interbreeding between individuals from lineages 2 and 3.
Collapse
Affiliation(s)
- S J Gawande
- ICAR-Directorate of Onion and Garlic Research,Rajgurunagar,Pune 410505,India
| | - S Anandhan
- ICAR-Directorate of Onion and Garlic Research,Rajgurunagar,Pune 410505,India
| | - A A Ingle
- ICAR-Directorate of Onion and Garlic Research,Rajgurunagar,Pune 410505,India
| | - Alana Jacobson
- Department of Entomology and Plant Pathology,Auburn University,Auburn,Alabama 36849,334-844-5011,USA
| | - R Asokan
- Division of Biotechnology,ICAR-Indian Institute of Horticultural Research,Hessarghatta Lake,Bangalore 560089,India
| |
Collapse
|
20
|
Gandolfi A, Crestanello B, Fagotti A, Simoncelli F, Chiesa S, Girardi M, Giovagnoli E, Marangoni C, Di Rosa I, Lucentini L. New Evidences of Mitochondrial DNA Heteroplasmy by Putative Paternal Leakage between the Rock Partridge (Alectoris graeca) and the Chukar Partridge (Alectoris chukar). PLoS One 2017; 12:e0170507. [PMID: 28114306 PMCID: PMC5256862 DOI: 10.1371/journal.pone.0170507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
The rock partridge, Alectoris graeca, is a polytypic species declining in Italy mostly due to anthropogenic causes, including the massive releases of the closely related allochthonous chukar partridge Alectoris chukar which produced the formation of hybrids. Molecular approaches are fundamental for the identification of evolutionary units in the perspective of conservation and management, and to correctly select individuals to be used in restocking campaigns. We analyzed a Cytochrome oxidase I (COI) fragment of contemporary and historical A. graeca and A. chukar samples, using duplicated analyses to confirm results and nuclear DNA microsatellites to exclude possible sample cross-contamination. In two contemporary specimens of A. graeca, collected from an anthropogenic hybrid zone, we found evidence of the presence of mtDNA heteroplasmy possibly associated to paternal leakage and suggesting hybridization with captive-bred exotic A. chukar. These results underline significant limitations in the reliability of mtDNA barcoding-based species identification and could have relevant evolutionary and ecological implications that should be accounted for when interpreting data aimed to support conservation actions.
Collapse
Affiliation(s)
- Andrea Gandolfi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Trento, Italy
| | - Barbara Crestanello
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Trento, Italy
| | - Anna Fagotti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Francesca Simoncelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Stefania Chiesa
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Matteo Girardi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Trento, Italy
| | - Eleonora Giovagnoli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | | | - Ines Di Rosa
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Livia Lucentini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
21
|
Balvín O, Bartonička T, Pilařová K, DeVries Z, Schal C. Discrimination between lineage-specific shelters by bat- and human-associated bed bugs does not constitute a stable reproductive barrier. Parasitol Res 2016; 116:237-242. [PMID: 27830371 DOI: 10.1007/s00436-016-5284-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
The common bed bug Cimex lectularius, has been recently shown to constitute two host races, which are likely in the course of incipient speciation. The human-associated lineage splits from the ancestral bat-associated species deep in the history of modern humans, likely even prior to the Neolithic Period and establishment of the first permanent human settlements. Hybridization experiments between these two lineages show that post-mating reproductive barriers are incomplete due to local variation. As mating takes place in off-host refugia marked by aggregation semiochemicals, the present investigation tested the hypothesis that bed bugs use these semiochemicals to differentiate between refugia marked by bat- and human-associated bed bugs; this would constitute a pre-copulation isolation mechanism. The preference for lineage-specific odors was tested using artificial shelters conditioned by a group of either male or female bed bugs. Adult males were assayed individually in four-choice assays that included two clean unconditioned control shelters. In most assays, bed bugs preferred to rest in conditioned shelters, with no apparent fidelity to shelters conditioned by their specific lineage. However, 51 % of the bat-associated males preferred unconditioned shelters over female-conditioned shelters of either lineage. Thus, bed bugs show no preferences for lineage-specific shelters, strongly suggesting that semiochemicals associated with shelters alone do not function in reproductive isolation.
Collapse
Affiliation(s)
- Ondřej Balvín
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic.
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Kateřina Pilařová
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Zachary DeVries
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
22
|
Kolokotronis SO, Foox J, Rosenfeld JA, Brugler MR, Reeves D, Benoit JB, Booth W, Robison G, Steffen M, Sakas Z, Palli SR, Schal C, Richards S, Narechania A, Baker RH, Sorkin LN, Amato G, Mason CE, Siddall ME, DeSalle R. The mitogenome of the bed bug Cimex lectularius (Hemiptera: Cimicidae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:425-427. [PMID: 27617305 PMCID: PMC5012718 DOI: 10.1080/23802359.2016.1180268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the extraction of a bed bug mitogenome from high-throughput sequencing projects originally focused on the nuclear genome of Cimex lectularius. The assembled mitogenome has a similar AT nucleotide composition bias found in other insects. Phylogenetic analysis of all protein-coding genes indicates that C. lectularius is clearly a member of a paraphyletic Cimicomorpha clade within the Order Hemiptera.
Collapse
Affiliation(s)
- Sergios-Orestis Kolokotronis
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.,Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Jonathan Foox
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Jeffrey A Rosenfeld
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Mercer R Brugler
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.,Biological Sciences Department, NYC College of Technology, City University of New York, Brooklyn, NY, USA
| | - Darryl Reeves
- Department of Physiology and Biophysics and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Warren Booth
- Department of Biological Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Grant Robison
- Department of Biological Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Michael Steffen
- Department of Biological Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Zoe Sakas
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Coby Schal
- Department of Entomology and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Richard H Baker
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Louis N Sorkin
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - George Amato
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Mark E Siddall
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|