1
|
Updating the Insecticide Resistance Status of Aedes aegypti and Aedes albopictus in Asia: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7100306. [PMID: 36288047 PMCID: PMC9607256 DOI: 10.3390/tropicalmed7100306] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Aedes aegypti and Aedes albopictus are two important vectors of several important arboviruses, including the dengue, chikungunya, and Zika viruses. Insecticide application is an important approach to reduce vector abundance during Aedes spp.-borne outbreaks in the absence of effective vaccines and treatments. However, insecticide overuse can result in the development of resistance, and careful monitoring of resistance markers is required. Methods: This meta-analysis and systematic review explored the spatial and temporal patterns of insecticide resistance in Asia from 2000 to 2021. PubMed, Scopus, EbscoHost, and Embase were used to enhance the search capability. The random-effects model was applied for the 94 studies that met our inclusion criteria for qualitative synthesis and meta-analysis. Results: Four major insecticides were studied (malathion, dichlorodiphenyltrichloroethane, permethrin, and deltamethrin). Dichlorodiphenyltrichloroethane resistance rates were high in both Ae. aegypti and Ae. albopictus (68% and 64%, respectively). Conversely, malathion resistance was less prevalent in Ae. aegypti (3%), and deltamethrin resistance was less common in Ae. albopictus (2%). Ae. aegypti displayed consistently high resistance rates (35%) throughout the study period, whereas the rate of insecticide resistance in Ae. albopictus increased from 5% to 12%. The rates of the major kdr mutations F1534C, V1016G, and S989P were 29%, 26%, and 22%, respectively. Conclusions: Insecticide resistance in both Ae. aegypti and Ae. albopictus is widespread in Asia, although the rates vary by country. Continuous monitoring of the resistance markers and modification of the control strategies will be important for preventing unexpected outbreaks. This systematic review and meta-analysis provided up-to-date information on insecticide resistance in dengue-endemic countries in Asia.
Collapse
|
2
|
Rohaizat Hassan M, Atika Azit N, Mohd Fadzil S, Abd Ghani SR, Ahmad N, Mohammed Nawi A. Insecticide resistance of Dengue vectors in South East Asia: a systematic review. Afr Health Sci 2021; 21:1124-1140. [PMID: 35222575 PMCID: PMC8843301 DOI: 10.4314/ahs.v21i3.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The insecticides used widely has led to resistance in the vector and impose a challenge to vector control operation. OBJECTIVES This review aims to analyse the distribution of insecticide resistance of dengue vectors in South East Asia and to describe the mechanism of insecticide resistance. METHODS Literature search for articles published on 2015 to 2019 from PubMed, Scopus and ProQuest was performed. Total of 37 studies included in the final review from the initial 420 studies. RESULTS Pyrethroid resistance was concentrated on the west coast of Peninsular Malaysia and Northern Thailand and scattered at Java Island, Indonesia while organophosphate resistance was seen across the Java Island (Indonesia), West Sumatera and North Peninsular Malaysia. Organochlorine resistance was seen in Sabah, Malaysia and scattered distribution in Nusa Tenggara, Indonesia. V1016G, S989P, F1269C gene mutation in Aedes Aegypti were associated with Pyrethroid resistance in Singapore and Indonesia. In Malaysia, over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) Glutathione S-transferases, carboxylesterases commonly associated with pyrethroids resistance in Aedes Aegypti and CYP612 overexpressed in Aedes Albopictus. The genetic mutation in A302S in Aedes Albopictus was associated with organochlorine resistance in Malaysia. CONCLUSIONS Rotation of insecticide, integration with synergist and routine assessment of resistance profile are recommended strategies in insecticide resistance management.
Collapse
|
3
|
Gan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, Ahmad RB. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors 2021; 14:315. [PMID: 34112220 PMCID: PMC8194039 DOI: 10.1186/s13071-021-04785-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mosquito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and improving public health. This review also provides improved insights into the specific use of insecticides for effective control of mosquitoes in these dengue endemic countries. ![]()
Collapse
Affiliation(s)
- Soon Jian Gan
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Yong Qi Leong
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Siew Tung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Shew Fung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia. .,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Joon Wah Mak
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rohani Binti Ahmad
- Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Ruggerio CA, Querejeta GA, Conicelli KB, Lombardo RJ. Integration of municipal state, society and university efforts for sanitary risk prevention associated with Aedes aegypti mosquito in the metropolitan area of Buenos Aires, Argentina. Trop Med Int Health 2021; 26:789-799. [PMID: 33813766 DOI: 10.1111/tmi.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sanitary problem of Aedes aegypti mosquito acquires relevance around the world because it is the vector of dengue, zika, chikungunya and yellow fever. The vector is adapting to southern regions faster, and the propagation of these diseases in urban areas is a complex problem for society. We aimed to contribute to the risk prevention of disease transmission in the Metropolitan Area of Buenos Aires, through monitoring Aedes aegypti population levels and developing education campaigns with government agencies and society participation. Monitoring activities aimed to diagnose the presence of the vector and its ecology behaviour, and to generate education and prevention politics to avoid its propagation. The results show that (1) the mosquito is in the territory and it is spreading, (2) prevention activities of the municipalities are insufficient to generate an effective sanitary response and (3) it is necessary to improve the education programmes to the population about the life cycle of the vector. The integration of university, government and society improved the work of the team because it combined knowledge about vector ecology, diseases and territory characteristics.
Collapse
Affiliation(s)
- Carlos Alberto Ruggerio
- Área de Ecología, Instituto del Conurbano, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina.,Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, México
| | - Giselle Andrea Querejeta
- Área de Ecología, Instituto del Conurbano, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
| | - Katherine Belen Conicelli
- Área de Ecología, Instituto del Conurbano, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
| | - Rubén Jorge Lombardo
- Área de Ecología, Instituto del Conurbano, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
| |
Collapse
|
5
|
Hamid PH, Ninditya VI, Ghiffari A, Taubert A, Hermosilla C. The V1016G mutation of the voltage-gated sodium channel (VGSC) gene contributes to the insecticide resistance of Aedes aegypti from Makassar, Indonesia. Parasitol Res 2020; 119:2075-2083. [PMID: 32458116 DOI: 10.1007/s00436-020-06720-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
Aedes aegypti represents one of the main vectors of at least five relevant arthropod-borne viral infections in humans (i.e., Rift Valley fever, Dengue fever, Zika, chikungunya, and yellow fever) worldwide. Ae. aegypti control strategies are mostly based on using chemical insecticides (i.e., organophosphates, pyrethroids, carbamates, and organochlorines) and reducing larval sources. Furthermore, monitoring the growth activity and mapping the geographical distribution of insecticide resistance are mandatory, as recommended by the WHO. Accordingly, we conducted a study on the possible mechanism by which Ae. aegypti develops resistance to several frequently used chemical insecticides (i.e., λ-cyhalothrin, bendiocarb, cyfluthrin, deltamethrin, malathion, and permethrin) in the city of Makassar, Sulawesi, Indonesia. The results showed the progression of resistance toward the examined insecticides in Ae. aegypti populations in Makassar. The mortality rate of Ae. aegypti was less than 90%, with the highest resistance recorded against 0.75% permethrin. The molecular evaluation of the voltage-gated sodium channel gene (VGSC) showed a significant correlation of the V1016G gene mutation in the tested 0.75% permethrin-resistant Ae. aegypti phenotypes. Nevertheless, the F1534C point mutation in the VGSC gene of Ae. aegypti did not show a significant correlation with the phenotype exhibiting insecticide resistance to 0.75% permethrin. These results indicate that Ae. aegypti mosquitoes in Makassar City have developed resistance against the frequently used insecticide permethrin, which might spread to less-populated regions of Sulawesi. Therefore, we call for further entomological monitoring of insecticide resistance not only on Sulawesi but also on other closely located islands of the Indonesian archipelago to delay the spread of Ae. aegypti insecticide resistance.
Collapse
Affiliation(s)
- P H Hamid
- Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2, Karangmalang, Yogyakarta, Indonesia.
| | - V I Ninditya
- Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2, Karangmalang, Yogyakarta, Indonesia
| | - A Ghiffari
- Faculty of Medicine, Universitas Muhammadiyah Palembang, Palembang, Indonesia
| | - A Taubert
- Institute of Parasitology, Biomedical Research Centre Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81,, 35392, Giessen, Germany
| | - C Hermosilla
- Institute of Parasitology, Biomedical Research Centre Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81,, 35392, Giessen, Germany
| |
Collapse
|