1
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
2
|
Sajman J, Sherman E. High- and Super-Resolution Imaging of Cell-Cell Interfaces. Methods Mol Biol 2023; 2654:149-158. [PMID: 37106181 DOI: 10.1007/978-1-0716-3135-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Physical interfaces mediate interactions between multiple types of cells. Despite the importance of such interfaces to the cells' function, their high-resolution optical imaging has been typically limited due to poor alignment of the interfaces relative to the optical plane of imaging. Here, we present a simple and robust method to align cell-cell interfaces in parallel to the coverslip by adhering the interacting cells to two opposing coverslips and bringing them into contact in a controlled and stable fashion. We demonstrate aberration-free high-resolution imaging of interfaces between live T cells and antigen-presenting cells, known as immune synapses, as an outstanding example. Imaging methods may include multiple diffraction-limited and super-resolution microscopy techniques (e.g., bright-field, confocal, STED, and dSTORM). Thus, our simple and widely compatible approach allows imaging with high- and super-resolution the intricate structure and molecular organization within a variety of cell-cell interfaces.
Collapse
Affiliation(s)
- Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- Jerusalem College of technology, Jerusalem, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
3
|
Sajman J, Razvag Y, Schidorsky S, Kinrot S, Hermon K, Yakovian O, Sherman E. Adhering interacting cells to two opposing coverslips allows super-resolution imaging of cell-cell interfaces. Commun Biol 2021; 4:439. [PMID: 33795833 PMCID: PMC8016881 DOI: 10.1038/s42003-021-01960-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Cell-cell interfaces convey mechanical and chemical information in multicellular systems. Microscopy has revealed intricate structure of such interfaces, yet typically with limited resolution due to diffraction and unfavourable orthogonal orientation of the interface to the coverslip. We present a simple and robust way to align cell-cell interfaces in parallel to the coverslip by adhering the interacting cells to two opposing coverslips. We demonstrate high-quality diffraction-limited and super-resolution imaging of interfaces (immune-synapses) between fixed and live CD8+ T-cells and either antigen presenting cells or melanoma cells. Imaging methods include bright-field, confocal, STED, dSTORM, SOFI, SRRF and large-scale tiled images. The low background, lack of aberrations and enhanced spatial stability of our method relative to existing cell-trapping techniques allow use of these methods. We expect that the simplicity and wide-compatibility of our approach will allow its wide dissemination for super-resolving the intricate structure and molecular organization in a variety of cell-cell interfaces.
Collapse
Affiliation(s)
- Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Yair Razvag
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | | | - Seon Kinrot
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- Graduate Program in Biophysics, Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Kobi Hermon
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Oren Yakovian
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
4
|
Imaging of spine synapses using super-resolution microscopy. Anat Sci Int 2021; 96:343-358. [PMID: 33459976 DOI: 10.1007/s12565-021-00603-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Neuronal circuits in the neocortex and hippocampus are essential for higher brain functions such as motor learning and spatial memory. In the mammalian forebrain, most excitatory synapses of pyramidal neurons are formed on spines, which are tiny protrusions extending from the dendritic shaft. The spine contains specialized molecular machinery that regulates synaptic transmission and plasticity. Spine size correlates with the efficacy of synaptic transmission, and spine morphology affects signal transduction at the post-synaptic compartment. Plasticity-related changes in the structural and molecular organization of spine synapses are thought to underlie the cellular basis of learning and memory. Recent advances in super-resolution microscopy have revealed the molecular mechanisms of the nanoscale synaptic structures regulating synaptic transmission and plasticity in living neurons, which are difficult to investigate using electron microscopy alone. In this review, we summarize recent advances in super-resolution imaging of spine synapses and discuss the implications of nanoscale structures in the regulation of synaptic function, learning, and memory.
Collapse
|
5
|
McDermott JE, Goldblatt D, Paradis S. Class 4 Semaphorins and Plexin-B receptors regulate GABAergic and glutamatergic synapse development in the mammalian hippocampus. Mol Cell Neurosci 2018; 92:50-66. [PMID: 29981480 PMCID: PMC6191356 DOI: 10.1016/j.mcn.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
To understand how proper circuit formation and function is established in the mammalian brain, it is necessary to define the genes and signaling pathways that instruct excitatory and inhibitory synapse development. We previously demonstrated that the ligand-receptor pair, Sema4D and Plexin-B1, regulates inhibitory synapse development on an unprecedentedly fast time-scale while having no effect on excitatory synapse development. Here, we report previously undescribed synaptogenic roles for Sema4A and Plexin-B2 and provide new insight into Sema4D and Plexin-B1 regulation of synapse development in rodent hippocampus. First, we show that Sema4a, Sema4d, Plxnb1, and Plxnb2 have distinct and overlapping expression patterns in neurons and glia in the developing hippocampus. Second, we describe a requirement for Plexin-B1 in both the presynaptic axon of inhibitory interneurons as well as the postsynaptic dendrites of excitatory neurons for Sema4D-dependent inhibitory synapse development. Third, we define a new synaptogenic activity for Sema4A in mediating inhibitory and excitatory synapse development. Specifically, we demonstrate that Sema4A signals through the same pathway as Sema4D, via the postsynaptic Plexin-B1 receptor, to promote inhibitory synapse development. However, Sema4A also signals through the Plexin-B2 receptor to promote excitatory synapse development. Our results shed new light on the molecular cues that promote the development of either inhibitory or excitatory synapses in the mammalian hippocampus.
Collapse
Affiliation(s)
| | - Dena Goldblatt
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
6
|
Ranft J, Almeida LG, Rodriguez PC, Triller A, Hakim V. An aggregation-removal model for the formation and size determination of post-synaptic scaffold domains. PLoS Comput Biol 2017; 13:e1005516. [PMID: 28437460 PMCID: PMC5421815 DOI: 10.1371/journal.pcbi.1005516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/08/2017] [Accepted: 04/11/2017] [Indexed: 11/30/2022] Open
Abstract
The formation and stability of synapses are key questions in neuroscience. Post-synaptic domains have been classically conceived as resulting from local insertion and turnover of proteins at the synapse. However, insertion is likely to occur outside the post-synaptic domains and advances in single-molecule imaging have shown that proteins diffuse in the plane of the membrane prior to their accumulation at synapses. We quantitatively investigated this scenario using computer simulations and mathematical analysis, taking for definiteness the specific case of inhibitory synapse components, i.e., the glycine receptor (GlyR) and the associated gephyrin scaffolding protein. The observed domain sizes of scaffold clusters can be explained by a dynamic balance between the aggregation of gephyrin proteins diffusing while bound to GlyR and their turnover at the neuron membrane. We also predict the existence of extrasynaptic clusters with a characteristic size distribution that significantly contribute to the size fluctuations of synaptic domains. New super-resolution data for gephyrin proteins established the existence of extrasynaptic clusters the sizes of which are consistent with the model predictions in a range of model parameters. At a general level, our results highlight aggregation with removal as a non-equilibrium phase separation which produces structures of tunable size. Synapses mediate information transmission between neurons and are the physical support of memory. It has been realized that synapses are dynamic biological structures. Neurotransmitter receptors diffuse in the neuron membrane and synaptic scaffolding proteins are constantly renewed. We propose a biophysical model that links these different measured quantities for inhibitory synapse components and show how they determine the size of postsynaptic domains. The model predicts that synaptic scaffolds also exist extrasynaptically and that they contribute to fluctuations of synaptic sizes. We confirm by super-resolution microscopy the existence of extrasynaptic scaffolds. Their measured size distribution agrees with the model predictions for specific parameters. The model should be helpful to better understand the dynamics of synapses and their possible levels of regulation.
Collapse
Affiliation(s)
- Jonas Ranft
- Laboratoire Physique Statistique, CNRS, Ecole Normale Supérieure, PSL Research University, Université Pierre et Marie Curie, Paris, France
| | - Leandro G. Almeida
- IBENS, Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, Paris, France
| | - Pamela C. Rodriguez
- IBENS, Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, Paris, France
| | - Antoine Triller
- IBENS, Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, Paris, France
- * E-mail: (AT); (VH)
| | - Vincent Hakim
- Laboratoire Physique Statistique, CNRS, Ecole Normale Supérieure, PSL Research University, Université Pierre et Marie Curie, Paris, France
- * E-mail: (AT); (VH)
| |
Collapse
|
7
|
OKABE S. Fluorescence imaging of synapse dynamics in normal circuit maturation and in developmental disorders. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:483-497. [PMID: 28769018 PMCID: PMC5713177 DOI: 10.2183/pjab.93.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
One of the most fundamental questions in neurobiology is how proper synaptic connections are established in the developing brain. Live-cell imaging of the synaptic structure and functional molecules can reveal the time course of synapse formation, molecular dynamics, and functional maturation. Using postsynaptic scaffolding proteins as a marker of synapse development, fluorescence time-lapse imaging revealed rapid formation of individual synapses that occurred within hours and their remodeling in culture preparations. In vivo two-photon excitation microscopy development enabled us to directly measure synapse turnover in living animals. In vivo synapse dynamics were suppressed in the adult rodent brain, but were maintained at a high level during the early postnatal period. This transition in synapse dynamics is biologically important and can be linked to the pathology of juvenile-onset psychiatric diseases. Indeed, the upregulation of synapse dynamics was observed in multiple mouse models of autism spectrum disorders. Fluorescence imaging of synapses provides new information regarding the physiology and pathology of neural circuit construction.
Collapse
Affiliation(s)
- Shigeo OKABE
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Effective Cellular Morphology Analysis for Differentiation Processes by a Fluorescent 1,3a,6a-Triazapentalene Derivative Probe in Live Cells. PLoS One 2016; 11:e0160625. [PMID: 27490470 PMCID: PMC4973928 DOI: 10.1371/journal.pone.0160625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/24/2016] [Indexed: 12/13/2022] Open
Abstract
Nuclear and cytoplasmic morphological changes provide important information about cell differentiation processes, cell functions, and signal responses. There is a strong desire to develop a rapid and simple method for visualizing cytoplasmic and nuclear morphology. Here, we developed a novel and rapid method for probing cellular morphological changes of live cell differentiation process by a fluorescent probe, TAP-4PH, a 1,3a,6a-triazapentalene derivative. TAP-4PH showed high fluorescence in cytoplasmic area, and visualized cytoplasmic and nuclear morphological changes of live cells during differentiation. We demonstrated that TAP-4PH visualized dendritic axon and spine formation in neuronal differentiation, and nuclear structural changes during neutrophilic differentiation. We also showed that the utility of TAP-4PH for visualization of cytoplasmic and nuclear morphologies of various type of live cells. Our visualizing method has no toxicity and no influence on the cellular differentiation and function. The cell morphology can be rapidly observed after addition of TAP-4PH and can continue to be observed in the presence of TAP-4PH in cell culture medium. Moreover, TAP-4PH can be easily removed after observation by washing for subsequent biological assay. Taken together, these results demonstrate that our visualization method is a powerful tool to probe differentiation processes before subsequent biological assay in live cells.
Collapse
|
9
|
New Hippocampal Neurons Mature Rapidly in Response to Ketamine But Are Not Required for Its Acute Antidepressant Effects on Neophagia in Rats. eNeuro 2016; 3:eN-NWR-0116-15. [PMID: 27066531 PMCID: PMC4819285 DOI: 10.1523/eneuro.0116-15.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/25/2022] Open
Abstract
Virtually all antidepressant agents increase the birth of granule neurons in the adult dentate gyrus in rodents, providing a key basis for the neurogenesis hypothesis of antidepressant action. The novel antidepressant ketamine, however, shows antidepressant activity in humans within hours, far too rapid for a mechanism involving neuronal birth. Ketamine could potentially act more rapidly by enhancing maturation of new neurons born weeks earlier. To test this possibility, we assessed the effects of S-ketamine (S-(+)-ketamine hydrochloride) injection on maturation, as well as birth and survival, of new dentate gyrus granule neurons in rats, using the immediate-early gene zif268, proliferating cell nuclear antigen, and BrdU, respectively. We show that S-ketamine has rapid effects on new neurons, increasing the proportion of functionally mature young granule neurons within 2 h. A single injection of S-ketamine also increased cell proliferation and functional maturation, and decreased depressive-like behavior, for at least 4 weeks in rats treated with long-term corticosterone administration (a depression model) and controls. However, the behavioral effects of S-ketamine on neophagia were unaffected by elimination of adult neurogenesis. Together, these results indicate that ketamine has surprisingly rapid and long-lasting effects on the recruitment of young neurons into hippocampal networks, but that ketamine has antidepressant-like effects that are independent of adult neurogenesis.
Collapse
|
10
|
Tanaka S, Isshiki M, Kuriu T, Tabuchi K, Takumi T, Okabe S. C2-P-05In vivo two-photon imaging of synapse dynamics in mouse models of autism. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Iida T, Tanaka S, Okabe S. C4-P-09Three-dimensional analysis of microglia and synapses with large-volume optical reconstruction. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Iwasaki H, Okabe S. C6-O-01Three-dimensional reconstruction of neural tissue from serial sections collected by ATUM. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Kashiwagi Y, Okabe S. C2-P-06Roles of ACF7, a large linker protein interacting with both microtubules and F-actin, in the postsynapse development. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
PDZ interaction of Vangl2 links PSD-95 and Prickle2 but plays only a limited role in the synaptic localisation of Vangl2. Sci Rep 2015; 5:12916. [PMID: 26257100 PMCID: PMC4530445 DOI: 10.1038/srep12916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/14/2015] [Indexed: 02/02/2023] Open
Abstract
Postsynaptic density-95/Discs large/Zonula occludens-1 (PDZ) domain-mediated protein interactions play pivotal roles in various molecular biological events, including protein localisation, assembly, and signal transduction. Although the vertebrate regulator of planar cell polarity Van Gogh-like 2 (Vangl2) was recently described as a postsynaptic molecule with a PDZ-binding motif, the role of its PDZ interaction at the synapse is unknown. In this report, we demonstrate that the PDZ interaction was dispensable for the normal cluster formation of Vangl2 and not absolutely required for the synapse-associated localisation of Vangl2 in cultured hippocampal neurons. We further showed that the synaptic localisation of Vangl2 was categorised into two types: overlapping co-localisation with postsynaptic density (PSD)-95 or highly correlated but complementary pattern of association with PSD-95. Only the former was significantly sensitive to deletion of the PDZ-binding motif. In addition, the PDZ interaction enhanced the protein interactions between PSD-95 and Prickle2, which is another planar cell polarity factor that is localised at the postsynaptic density. Taken together with our recent report that the density of PSD-95 clusters was reduced in Vangl2-silenced neurons, these results suggest that Vangl2 determines the complex formation and clustering of postsynaptic molecules for synaptogenesis in mammalian brains.
Collapse
|
15
|
Satoh K, Takanami K, Murata K, Kawata M, Sakamoto T, Sakamoto H. Effective synaptome analysis of itch-mediating neurons in the spinal cord: A novel immunohistochemical methodology using high-voltage electron microscopy. Neurosci Lett 2015; 599:86-91. [PMID: 26007703 DOI: 10.1016/j.neulet.2015.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
Transmission electron microscopy (TEM) is used for three-dimensional (3-D) analysis of synaptic connections in neuroscience research. However, 3-D reconstruction of the synapses using serial ultrathin sections is a powerful but tedious approach requiring advanced technical skills. High-voltage electron microscopy (HVEM) allows examination of thicker sections of biological specimens due to the increased penetration of the more accelerated electrons, which is useful to analyze the 3-D structure of biological specimens. However, it is still difficult to visualize the neural networks and synaptic connections in 3-D using HVEM because of insufficient and non uniform heavy metal staining in the membranous structures in semi-thin sections. Here, we present the successful chemical 3-D neuroanatomy of the rat spinal dorsal horn at the ultrastructural level as a first step for effective synaptome analysis by applying a high-contrast en bloc staining method to immune-HVEM tomography. Our new approach made it possible to examine many itch-mediating synaptic connections and neural networks in the spinal cord simultaneously using HVEM tomography. This novel 3-D electron microscopy is very useful for the analysis of synaptic structure and the chemical neuroanatomy at the 3-D ultrastructural level.
Collapse
Affiliation(s)
- Keita Satoh
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Keiko Takanami
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan.
| |
Collapse
|
16
|
Chaudhury A. Molecular handoffs in nitrergic neurotransmission. Front Med (Lausanne) 2014; 1:8. [PMID: 25705621 PMCID: PMC4335390 DOI: 10.3389/fmed.2014.00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/27/2014] [Indexed: 12/26/2022] Open
Abstract
Postsynaptic density (PSD) proteins in excitatory synapses are relatively immobile components, while there is a structured organization of mobile scaffolding proteins lying beneath the PSDs. For example, shank proteins are located further away from the membrane in the cytosolic faces of the PSDs, facing the actin cytoskeleton. The rationale of this organization may be related to important roles of these proteins as “exchange hubs” for the signaling proteins for their migration from the subcortical cytosol to the membrane. Notably, PSD95 have also been demonstrated in prejunctional nerve terminals of nitrergic neuronal varicosities traversing the gastrointestinal smooth muscles. It has been recently reported that motor proteins like myosin Va play important role in transcytosis of nNOS. In this review, the hypothesis is forwarded that nNOS delivered to subcortical cytoskeleton requires interactions with scaffolding proteins prior to docking at the membrane. This may involve significant role of “shank,” named for SRC-homology (SH3) and multiple ankyrin repeat domains, in nitric oxide synthesis. Dynein light chain LC8–nNOS from acto-myosin Va is possibly exchanged with shank, which thereafter facilitates transposition of nNOS for binding with palmitoyl-PSD95 at the nerve terminal membrane. Shank knockout mice, which present with features of autism spectrum disorders, may help delineate the role of shank in enteric nitrergic neuromuscular transmission. Deletion of shank3 in humans is a monogenic cause of autism called Phelan–McDermid syndrome. One fourth of these patients present with cyclical vomiting, which may be explained by junctionopathy resulting from shank deficit in enteric nitrergic nerve terminals.
Collapse
Affiliation(s)
- Arun Chaudhury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School and VA Boston Healthcare System , Boston, MA , USA
| |
Collapse
|
17
|
Hirano M, Yoshii K, Sakai M, Hasebe R, Ichii O, Kariwa H. Tick-borne flaviviruses alter membrane structure and replicate in dendrites of primary mouse neuronal cultures. J Gen Virol 2014; 95:849-861. [PMID: 24394700 DOI: 10.1099/vir.0.061432-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, detailed mechanisms of viral replication in the brain and features of viral pathogenesis remain poorly understood. We carried out a comparative analysis of replication of neurotropic flaviviruses: West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus (TBEV), in primary cultures of mouse brain neurons. All the flaviviruses multiplied well in primary neuronal cultures from the hippocampus, cerebral cortex and cerebellum. The distribution of viral-specific antigen in the neurons varied: TBEV infection induced accumulation of viral antigen in the neuronal dendrites to a greater extent than infection with other viruses. Viral structural proteins, non-structural proteins and dsRNA were detected in regions in which viral antigens accumulated in dendrites after TBEV replication. Replication of a TBEV replicon after infection with virus-like particles of TBEV also induced antigen accumulation, indicating that accumulated viral antigen was the result of viral RNA replication. Furthermore, electron microscopy confirmed that TBEV replication induced characteristic ultrastructural membrane alterations in the neurites: newly formed laminal membrane structures containing virion-like structures. This is the first report describing viral replication in and ultrastructural alterations of neuronal dendrites, which may cause neuronal dysfunction. These findings encourage further work aimed at understanding the molecular mechanisms of viral replication in the brain and the pathogenicity of neurotropic flaviviruses.
Collapse
Affiliation(s)
- Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Dai X, Iwasaki H, Watanabe M, Okabe S. Dlx1 transcription factor regulates dendritic growth and postsynaptic differentiation through inhibition of neuropilin-2 and PAK3 expression. Eur J Neurosci 2013; 39:531-47. [DOI: 10.1111/ejn.12413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojing Dai
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Hirohide Iwasaki
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Masahiko Watanabe
- Department of Anatomy; Hokkaido University School of Medicine; Sapporo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| |
Collapse
|
19
|
Isshiki M, Okabe S. Evaluation of cranial window types forin vivotwo-photon imaging of brain microstructures. Microscopy (Oxf) 2013; 63:53-63. [DOI: 10.1093/jmicro/dft043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|