1
|
van Tol Amaral Guerra SM, Cordeiro Koppe de França L, Neto da Silva K, Scolari Grotto F, Glaser V. Copper dyshomeostasis and its relationship to AMPK activation, mitochondrial dynamics, and biogenesis of mitochondria: A systematic review of in vivo studies. J Trace Elem Med Biol 2024; 86:127549. [PMID: 39427561 DOI: 10.1016/j.jtemb.2024.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Copper dyshomeostasis can be related to an increase in copper levels, resulting in toxicity, or to a decrease in tissues levels, impairing cuproenzyme activities. Inside cells, copper can be found in the cytoplasm and inside organelles, and the main organelle that compartmentalizes copper is the mitochondrion. This organelle can form networks and may fuse or fission from this, determining the mitochondrial fusion and fission processes, respectively. Together with mitophagy (autophagy of mitochondria) and mitochondrial biogenesis, mitochondrial fusion and fission (denominated mitochondrial dynamics) determine the number of mitochondria in a cell. A master regulator of mitochondrial dynamics and biogenesis of new mitochondria is AMPK. Considering that both a decrease and an increase in copper levels can influence mitochondrial turnover, especially in diseases related to copper dyshomeostasis, the objective of this systematic review was to verify the current knowledge on the influence of copper homeostasis on AMPK activation, mitochondrial dynamics, and biogenesis of new mitochondria in vivo. METHODS PubMed (MEDLINE), Embase, and Web of Science databases were used to search for articles in the literature. Data about the effects of a decrease or an increase in copper levels on the expression of proteins involved in mitochondrial dynamics or biogenesis, and data about AMPK and p-AMPK levels were extracted. RESULTS Meta-analysis has demonstrated that high copper levels increase mitochondrial fission and inhibit mitochondrial fusion. Additionally, an increase in copper levels results in AMPK activation. Few studies have analyzed the effects of high copper levels on proteins related to mitochondrial biogenesis, as well as the impact of a decrease in this metal on mitochondrial dynamics and biogenesis, and on AMPK activation. CONCLUSIONS Despite the results gathered in this review, other studies are necessary to completely understand the role of copper in regulating AMPK activation, mitochondrial dynamics, and the biogenesis of new mitochondria, since the cell response to a copper dyshomeostasis could be different depending on the species and tissues analyzed.
Collapse
Affiliation(s)
| | | | - Katriane Neto da Silva
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Fabielly Scolari Grotto
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Viviane Glaser
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Curitibanos, SC, Brazil.
| |
Collapse
|
2
|
Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022; 14:nu14030700. [PMID: 35277059 PMCID: PMC8838622 DOI: 10.3390/nu14030700] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, iron mobilization, connective tissue crosslinking, antioxidant defense, melanin synthesis, blood clotting, and neuron peptide maturation. Increasing lines of evidence obtained from studies of cell culture, animals, and human genetics have demonstrated that dysregulation of copper metabolism causes heart disease, which is the leading cause of mortality in the US. Defects of copper homeostasis caused by perturbed regulation of copper chaperones or copper transporters or by copper deficiency resulted in various types of heart disease, including cardiac hypertrophy, heart failure, ischemic heart disease, and diabetes mellitus cardiomyopathy. This review aims to provide a timely summary of the effects of defective copper homeostasis on heart disease and discuss potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
3
|
Zhang L, Zheng XC, Huang YY, Ge YP, Sun M, Chen WL, Liu WB, Li XF. Carbonyl cyanide 3-chlorophenylhydrazone induced the imbalance of mitochondrial homeostasis in the liver of Megalobrama amblycephala: A dynamic study. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109003. [PMID: 33617998 DOI: 10.1016/j.cbpc.2021.109003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Carbonylcyanide-3-chlorophenylhydrazone (CCCP) is a protonophore, which causes uncoupling of proton gradient in the inner mitochondrial membrane, thus inhibiting the rate of ATP synthesis. However, this information is manly derived from mammals, while its effects on the mitochondrial homeostasis of aquatic animals are largely unknown. In this study, the mitochondrial homeostasis of a carp fish Megalobrama amblycephala was investigated systematically in a time-course manner by using CCCP. Fish was injected intraperitoneally with CCCP (1.8 mg/kg per body weight) and DMSO (control), respectively. The results showed that CCCP treatment induced hepatic mitochondrial oxidative stress, as was evidenced by the significantly increased MDA and PC contents coupled with the decreased SOD and MnSOD activities. Meanwhile, mitochondrial fission was up-regulated remarkably characterized by the increased transcriptions of Drp-1, Fis-1 and Mff. However, the opposite was true for mitochondrial fusion, as was indicative of the decreased transcriptions of Mfn-1, Mfn-2 and Opa-1. This consequently triggered mitophagy, as was supported by the accumulated mitochondrial autophagosomes and the increased protein levels of PINK1, Parkin, LC3-II and P62 accompanied by the increased LC3-II/LC3-I ratio. Mitochondrial biogenesis and function both decreased significantly addressed by the decreased activities of CS, SDH and complex I, IV and V, as well as the protein levels of PGC-1β coupled with the decreased transcriptions of TFAM, COX-1, COX-2 and ATP-6. Unlikely, DMSO treatment exerted little influence. Overall, CCCP treatment resulted in the imbalance of mitochondrial homeostasis in Megalobrama amblycephala by promoting mitochondrial oxidative stress, fission and mitophagy, but depressing mitochondrial fusion, biogenesis and function.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiao-Chuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Ya-Ping Ge
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Miao Sun
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wei-Liang Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China.
| |
Collapse
|
4
|
Medeiros DM. Perspectives on the Role and Relevance of Copper in Cardiac Disease. Biol Trace Elem Res 2017; 176:10-19. [PMID: 27444302 DOI: 10.1007/s12011-016-0807-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/07/2016] [Indexed: 01/24/2023]
Abstract
Cardiac hypertrophy as a result of dietary copper deficiency has been studied for 40 plus years and is the subject of this review. While connective tissue anomalies occur, a hallmark pathology is cardiac hypertrophy, increased mitochondrial biogenesis, with disruptive cristae, vacuolization of mitochondria, and deposition of lipid droplets. Electrocardiogram abnormalities have been demonstrated along with biochemical changes especially as it relates to the copper-containing enzyme cytochrome c oxidase. The master controller of mitochondrial biogenesis, PGC1-α expression and protein, along with other proteins and transcriptional factors that play a role are upregulated. Nitric oxide, vascular endothelial growth factor, and cytochrome c oxidase all may enhance the upregulation of mitochondrial biogenesis. Marginal copper intakes reveal similar pathologies in the absence of cardiac hypertrophy. Reversibility of the copper-deficient rat heart with a copper-replete diet has resulted in mixed results, depending on both the animal model used and temporal relationships. New information has revealed that copper supplementation may rescue cardiac hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Denis M Medeiros
- Division of Biochemistry and Molecular Biology, School of Graduate Studies, University of Missouri Kansas City, 300F Administrative Center, 5115 Oak Street, Kansas City, MO, 64110-2499, USA.
| |
Collapse
|
5
|
Getz J, Lin D, Medeiros DM. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency. Biol Trace Elem Res 2011; 143:368-77. [PMID: 20878365 DOI: 10.1007/s12011-010-8858-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 09/17/2010] [Indexed: 11/30/2022]
Abstract
Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.
Collapse
Affiliation(s)
- Jean Getz
- Department of Human Nutrition, Kansas State University, 213 Justin Hall, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
6
|
Medeiros DM. Assessing mitochondria biogenesis. Methods 2008; 46:288-94. [DOI: 10.1016/j.ymeth.2008.09.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 09/27/2008] [Accepted: 09/30/2008] [Indexed: 11/27/2022] Open
|
7
|
Medeiros DM, Jiang Y, Klaahsen D, Lin D. Mitochondrial and sarcoplasmic protein changes in hearts from copper-deficient rats: up-regulation of PGC-1alpha transcript and protein as a cause for mitochondrial biogenesis in copper deficiency. J Nutr Biochem 2008; 20:823-30. [PMID: 18993053 DOI: 10.1016/j.jnutbio.2008.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
Changes in mitochondrial and sarcoplasmic proteins using proteinomics and Western blotting in hearts from copper-deficient rats were explored in this study. Also, key enzymes that are involved in cardiac energy metabolism via glycolysis and fatty acid oxidation and related transcription factors were determined. Rats were fed one of two diets: a copper-adequate diet containing 6 mg Cu/kg diet or a diet with less than 1 mg Cu/kg diet for 5 weeks. Copper deficiency was confirmed by low liver copper levels, decreased hematocrit levels and cardiac hypertrophy. Proteinomic data revealed that of the more than 50 proteins identified from the mitochondrial fraction of heart tissue, six were significantly down-regulated and nine were up-regulated. The proteins that were decreased were beta enolase 3, carbonic anhydrase 2, aldose reductase 1, glutathione peroxidase, muscle creatine kinase and mitochondrial aconitase 2. The proteins that were up-regulated were isocitrate dehydrogenase, dihydrolipoamide dehydrogenase, transferrin, subunit d of ATP synthase, transthyretin, preproapolipoprotein A-1, GRP 75, alpha-B crystalline and heat shock protein alpha. Follow-up Western blots on rate-limiting enzymes in glycolysis (phosphofructose kinase), fatty acid oxidation (medium chain acyl dehydrogenase, peroxisome proliferator-actvator receptor-alpha or PPARalpha) and gluconeogenesis (phosphoenolpyruvate carboxykinase) did not reveal changes in metabolic enzymes. However, a significant increase in peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha protein, as well as the transcript, which increased 2.5-fold, was observed. It would appear that increased mitochondrial biogenesis known to occur in copper deficiency hearts is caused by an increased expression in the master regulator of mitochondrial biogenesis, PGC-1alpha.
Collapse
Affiliation(s)
- Denis M Medeiros
- Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | |
Collapse
|
8
|
Klaahsen D, Ricklefs K, Medeiros DM. Differential expression of genes involved with apoptosis, cell cycle, connective tissue proteins, fuel substrate utilization, inflammation and mitochondrial biogenesis in copper-deficient rat hearts: implication of a role for Nfkappab1. J Nutr Biochem 2007; 18:719-26. [PMID: 17418555 DOI: 10.1016/j.jnutbio.2006.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 11/22/2022]
Abstract
We hypothesized that the increase in mitochondrial proliferation in hearts from copper-deficient rats is due to an increase in expression of the transcriptional factor peroxisomal-like proliferating related coactivator 1alpha (Ppargc1a), which regulates transcriptional activity for many of the genes that encode for mitochondrial proteins. In addition to several transcriptional factors implicated in mitochondrial biogenesis, we also looked at a number of genes involved in cell cycle regulation and fuel substrate utilization. Long-Evans rats were placed on either a copper-adequate (n=4) or copper-deficient (n=4) diet 3 days post weaning and remained on the diet for 5 weeks; their copper deficiency status was confirmed using previously established assays. Custom oligo arrays spotted with genes pertinent to mitochondrial biogenesis were hybridized with cRNA probes synthesized from the collected heart tissue. Chemiluminescent array images from both groups were analyzed for gene spot intensities and differential gene expression. Our results did not demonstrate any significant increase in Ppargc1a or its implicated targets, as we had predicted. However, consistent with previous data, an up-regulation of genes that encode for collagen type 3, fibronectin and elastin were found. Interestingly, there was also a significant increase in the expression of the transcriptional factor nuclear factor kappaB1 (Nfkappab1) in the copper-deficient treatment animals, compared to the control group, and this was confirmed by real time quantitative polymerase chain reaction. The results of this study merit the further investigation of the role of reactive oxidative species with regard to Nfkappab1 in the copper deficient rat heart.
Collapse
Affiliation(s)
- Darcey Klaahsen
- Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
9
|
Zeng H, Saari JT, Johnson WT. Copper deficiency decreases complex IV but not complex I, II, III, or V in the mitochondrial respiratory chain in rat heart. J Nutr 2007; 137:14-8. [PMID: 17182794 DOI: 10.1093/jn/137.1.14] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been documented that dietary copper (Cu) deficiency impairs mitochondrial respiratory function, which is catalyzed by 5 membrane-bound multiple protein complexes. However, there are few reports on the simultaneous analysis of Cu effect on the subunit protein expression on all 5 protein complexes. The present study was undertaken to determine the effect of Cu deficiency on each mitochondrial respiratory complex's protein expression in rat heart tissue with western-blot analysis. Male Sprague-Dawley rats were fed diets that were either Cu adequate (6.0 microg Cu/g diet, n = 5) or Cu deficient (0.3 microg Cu/g diet, n = 5) for 5 wk. The monoclonal antibody-based western-blot analysis suggested that the protein levels of 39-kDa and 30-kDa subunits in complex I; 70-kDa and 30-kDa subunits in complex II; core I and core II subunits in complex III; and alpha and beta subunits of F1 complex in complex V in both high-salt buffer (HSB) and low-salt buffer (LSB) protein fractions from heart tissue of Cu-deficient rats did not differ from those of Cu-adequate rats. However, the protein level of cytochrome c oxidase (CCO) subunit (COX) I, COX Vb, and COX VIb subunits in complex IV (CCO) in both HSB and LSB protein fractions from heart tissue of Cu-deficient rats was lower than those of Cu-adequate rats. Collectively, these data demonstrate that Cu deficiency decreases each tested subunit protein expression of complex IV but not those of complex I, II, III, and V in mitochondrial respiratory complexes.
Collapse
Affiliation(s)
- Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota 58202-9034, USA.
| | | | | |
Collapse
|
10
|
Otsu K, Ikeda Y, Fujii J. Accumulation of manganese superoxide dismutase under metal-depleted conditions: proposed role for zinc ions in cellular redox balance. Biochem J 2004; 377:241-8. [PMID: 14531733 PMCID: PMC1223854 DOI: 10.1042/bj20030935] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/06/2003] [Accepted: 10/07/2003] [Indexed: 11/17/2022]
Abstract
A diet low in copper results in increased levels of MnSOD (manganese superoxide dismutase), a critical antioxidative enzyme conferring protection against oxidative stress, in rat liver mitochondria. The mechanism for this was investigated using cultured HepG2 cells, a human hepatocellular carcinoma-derived line. MnSOD activity increased 5-7-fold during incubation in a medium supplemented with metal-depleted fetal bovine serum, with a corresponding elevation of its mRNA levels. Metal depletion also decreased CuZnSOD and glutathione peroxidase levels to approx. 70-80% of baseline. When zinc ions were added to the medium at micromolar levels, MnSOD accumulation was suppressed; however, copper ions had essentially no effect on MnSOD expression. Since the intracellular redox status was shifted to a more oxidized state by metal depletion, we examined the DNA-binding activity of NF-kappaB (nuclear factor-kappaB), an oxidative stress-sensitive transactivating factor that plays a primary role in MnSOD induction. A gel shift assay indicated that the DNA-binding activity of NF-kappaB was increased in cells maintained in metal-depleted culture, suggesting the involvement of the transactivating function of NF-kappaB in this induction. This was further supported by the observation that curcumin suppressed both the DNA-binding activity of NF-kappaB and the induction of MnSOD mRNA in cells cultivated under metal-depleted conditions. These results suggest that the level of zinc, rather than copper, is a critical regulatory factor in MnSOD expression. It is possible that a deficiency of zinc in the low-copper diet may be primarily involved in MnSOD induction.
Collapse
Affiliation(s)
- Kaoru Otsu
- Department of Biochemistry, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | | | | |
Collapse
|
11
|
Itoi S, Kinoshita S, Kikuchi K, Watabe S. Changes of carp FoF1-ATPase in association with temperature acclimation. Am J Physiol Regul Integr Comp Physiol 2003; 284:R153-63. [PMID: 12388464 DOI: 10.1152/ajpregu.00182.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we have shown, using two-dimensional electrophoresis, that mitochondrial ATP synthase (F(o)F(1)-ATPase) beta-subunit is the 55-kDa protein increased in cold-acclimated carp Cyprinus carpio (Kikuchi K, Itoi S, and Watabe S. Fisheries Sci 65: 629-636, 1999). To clarify the coordinate expression in various subunits of carp F(o)F(1)-ATPase with temperature acclimation, we examined the differences in mRNA levels of mitochondrial proteins encoded by both nuclear and mitochondrial genes in fast muscle of carp acclimated to 10 and 30 degrees C. The mRNA levels of nuclear genes per unit weight of total RNA were nearly twofold higher in the 10 degrees C- than 30 degrees C-acclimated carp. However, the transcripts of mitochondrial genes for the 10 degrees C-acclimated carp in terms of the same comparing unit were six to seven times as much as those for the 30 degrees C-acclimated carp. The F(o)F(1)-ATPase activities measured at 10, 25, and 30 degrees C were nearly twofold higher for the cold-acclimated fish than their warm-acclimated counterparts. Such quantitative and qualitative changes in carp F(o)F(1)-ATPase may contribute to extra ATP production required to compensate for energy balance at suboptimal temperatures.
Collapse
Affiliation(s)
- Shiro Itoi
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113 - 8657, Japan
| | | | | | | |
Collapse
|
12
|
Chen X, Jennings DB, Medeiros DM. Impaired cardiac mitochondrial membrane potential and respiration in copper-deficient rats. J Bioenerg Biomembr 2002; 34:397-406. [PMID: 12539967 DOI: 10.1023/a:1021258204921] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cardiac mitochondrial respiration, ATP synthase activity, and membrane potential and intactness were evaluated in copper-deficient rats. In the presence of NADH, both copper-deficient and copper-adequate mitochondria had very low oxygen consumption rates, indicating membrane intactness. However copper-deficient mitochondria had significantly lower oxygen consumption rates with NADH than did copper-adequate mitochondria. Copper-deficient mitochondria had significantly lower membrane potential than did copper-adequate mitochondria using fluorescent dyes. Copper-deficient mitochondria had significantly lower state 3 oxygen consumption rates and were less sensitive to inhibition by oligomycin, an ATP synthase inhibitor. Copper-deficient and copper-adequate mitochondria responded similiarly to CCCP. No difference was observed in mitochondrial ATPase activity between copper-deficient and copper-adequate rats using submitochondrial particles. We conclude that cardiac mitochondrial respiration is compromised in copper-deficient rats, and may be related to an altered ATP synthase complex and/or a decreased mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xiulian Chen
- Department of Human Nutrition, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
13
|
Medeiros DM, Jennings D. Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. J Bioenerg Biomembr 2002; 34:389-95. [PMID: 12539966 DOI: 10.1023/a:1021206220851] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Animals that are copper deficient have cardiac hypertrophy where there is a dramatic increase in mitochondria. Mitochondrial biogenesis is enhanced in this model and there is an upregulation of mitochondrial transcription factor A (mtTFA) and nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2). While the cuproenzyme, cytochrome c oxidase (CCO), is an attractive candidate to explain the connection between cardiac hypertrophy in copper deficiency and subsequent mitochondrial biogenesis, studies have revealed that ATP synthase may be impacted by copper depletion. NRF-1 and NRF-2 can bind to some of the subunits of both CCO and ATP synthase to regulate gene expression. Furthermore, oxidative phosphorylation appears to occur unaltered in the copper-deficient state. Copper-deficient mitochondria appear to be less sensitive to the inhibitory effect of oligomycin compared to controls. Decreases in the delta subunit protein and beta mRNA transcript have been reported for ATP synthase as a function of copper deficiency. The limited data available suggest that copper, either indirectly or directly, alters ATP synthase function.
Collapse
Affiliation(s)
- Denis M Medeiros
- Department of Human Nutrition, Kansas State University, 213 Justin Hall, Manhattan, Kansas 66506, USA.
| | | |
Collapse
|