1
|
Wilson SM, Oba PM, Koziol SA, Applegate CC, Soto-Diaz K, Steelman AJ, Panasevich MR, Norton SA, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product-supplemented diet on circulating immune cells and oxidative stress markers of dogs. J Anim Sci 2022; 100:skac245. [PMID: 36044986 PMCID: PMC9433306 DOI: 10.1093/jas/skac245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 11/14/2022] Open
Abstract
Feeding Saccharomyces cerevisiae fermentation product (SCFP) has previously altered fecal microbiota, fecal metabolites, and immune function of adult dogs. The objective of this study was to investigate measures of skin and coat health, changes in circulating immune cell numbers and activity, antioxidant status, and oxidative stress marker concentrations of healthy adult dogs fed a SCFP-supplemented extruded diet. Sixteen adult English Pointer dogs (8 M, 8 F; mean age = 6.7 ± 2.1 yr; mean BW = 25.9 ± 4.5 kg) were used in a randomized crossover design study. All dogs were fed a control diet for 4 wk, then randomly assigned to either the control or SCFP-supplemented diet (0.13% of active SCFP) and fed to maintain BW for 10 wk. A 6-wk washout preceded the second 10-wk experimental period with dogs receiving opposite treatments. After baseline/washout and treatment phases, skin and coat were scored, and pre and postprandial blood samples were collected. Transepidermal water loss (TEWL), hydration status, and sebum concentrations were measured (back, inguinal, ear) using external probes. Oxidative stress and immune cell function were measured by ELISA, circulating immune cell percentages were analyzed by flow cytometry, and mRNA expression of oxidative stress genes was analyzed by RT-PCR. Change from baseline data was analyzed using the Mixed Models procedure of SAS 9.4. Sebum concentration changes tended to be higher (P < 0.10; inguinal, ear) in SCFP-fed dogs than in controls. TEWL change was lower (P < 0.05) on the back of controls, but lower (P = 0.054) on the ear of SCFP-fed dogs. Delayed-type hypersensitivity response was affected by diet and time post-inoculation. Other skin and coat measures and scores were not affected by diet. Changes in unstimulated lymphocytes and stimulated IFN-γ secreting T cells were lower (P < 0.05) in SCFP-fed dogs, while changes in stimulated T cells were lower (P < 0.05) in control-fed dogs. Upon stimulation, the percentage of cytotoxic T cells delta trended lower (P < 0.10) in SCFP-fed dogs. Change in serum superoxide dismutase concentrations was higher (P < 0.05) and change in catalase mRNA expression was lower (P < 0.05) in SCFP-fed dogs. All other measurements of immune cell populations, oxidative stress markers, and gene expression were unaffected by treatment. In conclusion, our data suggest that SCFP positively impacts indicators of skin and coat health of dogs, modulates immune responses, and enhances some antioxidant defense markers.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Samantha A Koziol
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine C Applegate
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katiria Soto-Diaz
- Neuroscience program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801,USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Yarlagadda K, Zachwieja AJ, de Flamingh A, Phungviwatnikul T, Rivera-Colón AG, Roseman C, Shackelford L, Swanson KS, Malhi RS. Geographically diverse canid sampling provides novel insights into pre-industrial microbiomes. Proc Biol Sci 2022; 289:20220052. [PMID: 35506233 PMCID: PMC9065982 DOI: 10.1098/rspb.2022.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Canine microbiome studies are often limited in the geographic and temporal scope of samples studied. This results in a paucity of data on the canine microbiome around the world, especially in contexts where dogs may not be pets or human associated. Here, we present the shotgun sequences of fecal microbiomes of pet dogs from South Africa, shelter and stray dogs from India, and stray village dogs in Laos. We additionally performed a dietary experiment with dogs housed in a veterinary medical school, attempting to replicate the diet of the sampled dogs from Laos. We analyse the taxonomic diversity in these populations and identify the underlying functional redundancy of these microbiomes. Our results show that diet alone is not sufficient to recapitulate the higher diversity seen in the microbiome of dogs from Laos. Comparisons to previous studies and ancient dog fecal microbiomes highlight the need for greater population diversity in studies of canine microbiomes, as modern analogues can provide better comparisons to ancient microbiomes. We identify trends in microbial diversity and industrialization in dogs that mirror results of human studies, suggesting future research can make use of these companion animals as substitutes for humans in studying the effects of industrialization on the microbiome.
Collapse
Affiliation(s)
- K Yarlagadda
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - A J Zachwieja
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota, USA
| | - A de Flamingh
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - T Phungviwatnikul
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - A G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - C Roseman
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - L Shackelford
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - K S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - R S Malhi
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA.,School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Marchegiani A, Fruganti A, Spaterna A, Dalle Vedove E, Bachetti B, Massimini M, Di Pierro F, Gavazza A, Cerquetella M. Impact of Nutritional Supplementation on Canine Dermatological Disorders. Vet Sci 2020; 7:E38. [PMID: 32260299 PMCID: PMC7355824 DOI: 10.3390/vetsci7020038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional supplements, also known as complementary feeds, are products administered with the aim of furnishing health benefits, regardless of nutritional needs. They have been used since ancient times in veterinary dermatology, and a number of studies have focused on investigating the health benefits of some ingredients found in commercially available complementary feed for dogs. The aim of this paper is to review the literature available on the use of nutritional supplementation for the management of canine skin diseases, critically appraising the clinical efficacy of such interventions and summarizing the current state of knowledge. This review highlights how these feeds can be considered useful in the management of dermatological disorders and outlines their beneficial effects in the prevention of dietary deficiencies and treatment of diseases, alone, or in addition to conventional pharmacological therapy. In recent years, nutritional supplements have found increasing potential application in veterinary medicine, and the scientific proofs of their beneficial effects are described in this review.
Collapse
Affiliation(s)
- Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.F.); (A.S.); (A.G.); (M.C.)
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.F.); (A.S.); (A.G.); (M.C.)
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.F.); (A.S.); (A.G.); (M.C.)
| | - Elena Dalle Vedove
- Research and Development Unit (NIL), C.I.A.M. srl, 63100 Ascoli Piceno, Italy; (E.D.V.); (B.B.); (M.M.)
| | - Benedetta Bachetti
- Research and Development Unit (NIL), C.I.A.M. srl, 63100 Ascoli Piceno, Italy; (E.D.V.); (B.B.); (M.M.)
| | - Marcella Massimini
- Research and Development Unit (NIL), C.I.A.M. srl, 63100 Ascoli Piceno, Italy; (E.D.V.); (B.B.); (M.M.)
| | | | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.F.); (A.S.); (A.G.); (M.C.)
| | - Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (A.F.); (A.S.); (A.G.); (M.C.)
| |
Collapse
|
4
|
Hasan MS, Feugang JM, Liao SF. A Nutrigenomics Approach Using RNA Sequencing Technology to Study Nutrient-Gene Interactions in Agricultural Animals. Curr Dev Nutr 2019; 3:nzz082. [PMID: 31414073 PMCID: PMC6686084 DOI: 10.1093/cdn/nzz082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022] Open
Abstract
Thorough understanding of animal gene expression driven by dietary nutrients can be regarded as a bottom line of advanced animal nutrition research. Nutrigenomics (including transcriptomics) studies the effects of dietary nutrients on cellular gene expression and, ultimately, phenotypic changes in living organisms. Transcriptomics can be applied to investigate animal tissue transcriptomes at a defined nutritional state, which can provide a holistic view of intracellular RNA expression. As a novel transcriptomics approach, RNA sequencing (RNA-Seq) technology can monitor all gene expressions simultaneously in response to dietary intervention. The principle and history of RNA-Seq are briefly reviewed, and its 3 principal steps are described in this article. Application of RNA-Seq in different areas of animal nutrition research is summarized. Lastly, the application of RNA-Seq in swine science and nutrition is also reviewed. In short, RNA-Seq holds significant potential to be employed for better understanding the nutrient-gene interactions in agricultural animals.
Collapse
Affiliation(s)
- M Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
5
|
Di Cerbo A, Morales-Medina JC, Palmieri B, Pezzuto F, Cocco R, Flores G, Iannitti T. Functional foods in pet nutrition: Focus on dogs and cats. Res Vet Sci 2017; 112:161-166. [DOI: 10.1016/j.rvsc.2017.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/28/2022]
|
6
|
Kerr KR, Forster G, Dowd SE, Ryan EP, Swanson KS. Effects of dietary cooked navy bean on the fecal microbiome of healthy companion dogs. PLoS One 2013; 8:e74998. [PMID: 24040374 PMCID: PMC3770567 DOI: 10.1371/journal.pone.0074998] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/08/2013] [Indexed: 01/14/2023] Open
Abstract
Background Cooked bean powders are a promising novel protein and fiber source for dogs, which have demonstrated potential to alter microbial composition and function for chronic disease control and prevention. This study aimed to determine the impact of cooked navy bean powder fed as a staple food ingredient on the fecal microbiome of healthy adult pet dogs. Methodology/Principal Findings Fecal samples from healthy dogs prior to dietary control and after 4 wk of dietary treatment with macro- and micronutrient matched diets containing either 0 or 25% cooked navy beans (n = 11 and n = 10, respectively) were analyzed by 454-pyrosequencing of the 16S rRNA gene. There were few differences between dogs fed the control and navy bean diets after 4 wk of treatment. These data indicate that there were no major effects of navy bean inclusion on microbial populations. However, significant differences due to dietary intervention onto both research diets were observed (i.e., microbial populations at baseline versus 4 wk of intervention with 0 or 25% navy bean diets). After 4 wk of dietary intervention on either control or navy bean diet, the Phylum Firmicutes was increased and the Phyla Actinobacteria and Fusobacteria were decreased compared to baseline. Conclusions No negative alterations of microbial populations occurred following cooked navy bean intake in dogs, indicating that bean powders may be a viable protein and fiber source for commercial pet foods. The highly variable microbial populations observed in these healthy adult pet dogs at baseline is one potential reason for the difficulty to detect alterations in microbial populations following dietary changes. Given the potential physiological benefits of bean intake in humans and dogs, further evaluation of the impacts of cooked navy bean intake on fecal microbial populations with higher power or more sensitive methods are warranted.
Collapse
Affiliation(s)
- Katherine R. Kerr
- Division of Nutritional Sciences and Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Genevieve Forster
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Scot E. Dowd
- MR DNA (Molecular Research LP), Shallowater, Texas, United States of America
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kelly S. Swanson
- Division of Nutritional Sciences and Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Effect of heat stress and feeding phosphorus levels on pig electron transport chain gene expression. Animal 2013; 7:1985-93. [DOI: 10.1017/s1751731113001535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Bartges J, Boynton B, Vogt AH, Krauter E, Lambrecht K, Svec R, Thompson S. AAHA canine life stage guidelines. J Am Anim Hosp Assoc 2012; 48:1-11. [PMID: 22234047 DOI: 10.5326/jaaha-ms-4009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Guidelines are offered to guide the veterinary practitioner in designing a comprehensive, individualized wellness plan for each stage of a dog's life. Life stages are defined by both age and breed characteristics for practical purposes. Each patient visit should use an individualized approach to patient handling, preventive care, and early disease detection. Environment, behavior, nutrition, parasite control, vaccinations, dental care, zoonotic disease control, safety, and reproductive health should be addressed.
Collapse
|
9
|
Gene expression profiles of colonic mucosa in healthy young adult and senior dogs. PLoS One 2010; 5:e12882. [PMID: 20877568 PMCID: PMC2943922 DOI: 10.1371/journal.pone.0012882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/11/2010] [Indexed: 01/06/2023] Open
Abstract
Background We have previously reported the effects of age and diet on nutrient digestibility, intestinal morphology, and large intestinal fermentation patterns in healthy young adult and senior dogs. However, a genome-wide molecular analysis of colonic mucosa as a function of age and diet has not yet been performed in dogs. Methodology/Principal Findings Colonic mucosa samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed one of two diets (animal protein-based vs. plant protein-based) for 12 months. Total RNA in colonic mucosa was extracted and hybridized to Affymetrix GeneChip® Canine Genome Arrays. Results indicated that the majority of gene expression changes were due to age (212 genes) rather than diet (66 genes). In particular, the colonic mucosa of senior dogs had increased expression of genes associated with cell proliferation, inflammation, stress response, and cellular metabolism, whereas the expression of genes associated with apoptosis and defensive mechanisms were decreased in senior vs. young adult dogs. No consistent diet-induced alterations in gene expression existed in both age groups, with the effects of diet being more pronounced in senior dogs than in young adult dogs. Conclusion Our results provide molecular insight pertaining to the aged canine colon and its predisposition to dysfunction and disease. Therefore, our data may aid in future research pertaining to age-associated gastrointestinal physiological changes and highlight potential targets for dietary intervention to limit their progression.
Collapse
|
10
|
Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs. Br J Nutr 2009; 103:1127-38. [PMID: 20003623 DOI: 10.1017/s000711450999300x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selective breeding of dogs has culminated in a large number of modern breeds distinctive in terms of size, shape and behaviour. Inadvertently, a range of breed-specific genetic disorders have become fixed in some pure-bred populations. Several inherited conditions confer chronic metabolic defects that are influenced strongly by diet, but it is likely that many less obvious breed-specific differences in physiology exist. Using Labrador retrievers and miniature Schnauzers maintained in a simulated domestic setting on a controlled diet, an experimental design was validated in relation to husbandry, sampling and sample processing for metabolomics. Metabolite fingerprints were generated from 'spot' urine samples using flow injection electrospray MS (FIE-MS). With class based on breed, urine chemical fingerprints were modelled using Random Forest (a supervised data classification technique), and metabolite features (m/z) explanatory of breed-specific differences were putatively annotated using the ARMeC database (http://www.armec.org). GC-MS profiling to confirm FIE-MS predictions indicated major breed-specific differences centred on the metabolism of diet-related polyphenols. Metabolism of further diet components, including potentially prebiotic oligosaccharides, animal-derived fats and glycerol, appeared significantly different between the two breeds. Analysis of the urinary metabolome of young male dogs representative of a wider range of breeds from animals maintained under domestic conditions on unknown diets provided preliminary evidence that many breeds may indeed have distinctive metabolic differences, with significant differences particularly apparent in comparisons between large and smaller breeds.
Collapse
|
11
|
McNamara JP. ASAS Centennial Paper: The future of teaching and research in companion animal biology in departments of animal sciences. J Anim Sci 2008; 87:447-54. [PMID: 18820150 DOI: 10.2527/jas.2008-1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Departments of animal sciences must be relevant to a society in which a small number of people can raise almost all the food animal products needed. The declining number of people involved in animal agriculture has decreased enrollment of students interested in food animals in many departments of animal science. However, several departments welcomed students from a diverse background and began research on animals other than food animals. In many states, the undergraduate enrollment is made up primarily of students interested only in companion animals. A benefit of this is that we have recruited new students into animal agriculture and they have gone on to excellent careers. We have a new challenge now: how to maintain and expand the efforts in teaching, research, and outreach of companion animal science. Departments wishing to expand in teaching have examples of successful courses and curricula from other departments. Some departments have expanded their teaching efforts across their own university to teach about pets to a wider audience than their own majors; other departments can follow. In research, a small number of faculty have been able to establish extramurally funded projects on pets, including horses. But it will be difficult for more than a handful of departments to have a serious research effort in dogs, cats, birds, fish, or exotic animals. Departments will have to make a concerted effort to invest in such endeavors; joint ventures with other universities and colleges of veterinary medicine (or medicine) will probably be required. Funding sources for "traditional" efforts in nutrition, reproduction, and physiology are small and inconsistent; however, with the progress of the equine, canine, and feline genome projects, there should be opportunities from federal funding sources aimed at using animal models for human health. In addition, efforts in animal behavior and welfare can be expanded, perhaps with some funding from private foundations or animal-supportive organizations.
Collapse
Affiliation(s)
- J P McNamara
- President's Teaching Academy, Department of Animal Sciences, 233 Clark Hall, PO Box 646351, Washington State University, Pullman 99164-6351, USA.
| |
Collapse
|
12
|
Abstract
Nutrigenomics examines nutrient-gene interactions on a genome-wide scale. Increased dietary fat or higher non-esterified fatty acids (NEFA) from starvation-induced mobilisation may enhance hepatic oxidation and decrease esterification of fatty acids by reducing the expression of the fatty acid synthase gene. The key factors are the peroxisome proliferator-activated receptors (PPARs). Dietary carbohydrates--both independently and through insulin effect--influence the transcription of the fatty acid synthase gene. Oleic acid or n-3 fatty acids downregulate the expression of leptin, fatty acid synthase and lipoprotein lipase in retroperitoneal adipose tissue. Protein-rich diets entail a shortage of mRNA necessary for expression of the fatty acid synthase gene in the adipocytes. Conjugated linoleic acids (CLAs) are activators of PPAR and also induce apoptosis in adipocytes. Altered rumen microflora produces CLAs that are efficient inhibitors of milk fat synthesis in the mammary gland ('biohydrogenation theory'). Oral zinc or cadmium application enhances transcription rate in the metallothionein gene. Supplemental CLA in pig diets was found to decrease feed intake and body fat by activating PPARgamma-responsive genes in the adipose tissue. To prevent obesity and type II diabetes, the direct modulation of gene expression by nutrients is also possible. Nutrigenomics may help in the early diagnosis of genetically determined metabolic disorders and in designing individualised diets for companion animals.
Collapse
Affiliation(s)
- S Gy Fekete
- Institute of Animal Breeding, Nutrition and Laboratory Animal Science, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, P.O. Box 2, Hungary.
| | | |
Collapse
|
13
|
|
14
|
Tecirlioglu RT, Trounson AO. Embryonic stem cells in companion animals (horses, dogs and cats): present status and future prospects. Reprod Fertil Dev 2007; 19:740-7. [PMID: 17714628 DOI: 10.1071/rd07039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 06/04/2007] [Indexed: 11/23/2022] Open
Abstract
Reproductive technologies have made impressive advances since the 1950s owing to the development of new and innovative technologies. Most of these advances were driven largely by commercial opportunities and the potential improvement of farm livestock production and human health. Companion animals live long and healthy lives and the greatest expense for pet owners are services related to veterinary care and healthcare products. The recent development of embryonic stem cell and nuclear transfer technology in primates and mice has enabled the production of individual specific embryonic stem cell lines in a number of species for potential cell-replacement therapy. Stem cell technology is a fast-developing area in companion animals because many of the diseases and musculoskeletal injuries of cats, dogs and horses are similar to those in humans. Nuclear transfer-derived stem cells may also be selected and directed into differentiation pathways leading to the production of specific cell types, tissues and, eventually, even organs for research and transplantaton. Furthermore, investigations into the treatment of inherited or acquired pathologies have been performed mainly in mice. However, mouse models do not always faithfully represent the human disease. Naturally occurring diseases in companion animals can be more ideal as disease models of human genetic and acquired diseases and could help to define the potential therapeutic efficiency and safety of stem cell therapies. In the present review, we focus on the economic implications of companion animals in society, as well as recent biotechnological progress that has been made in horse, dog and cat embryonic stem cell derivation.
Collapse
Affiliation(s)
- R Tayfur Tecirlioglu
- Monash Immunology and Stem Cell Laboratories, Monash Science Technology Research and Innovation Precinct, Monash University, Clayton, Vic. 3800, Australia.
| | | |
Collapse
|
15
|
|