1
|
Cui S, Chen C, Gu J, Mao B, Zhang H, Zhao J, Chen W. Tracing Lactobacillus plantarum within the intestinal tract of mice: green fluorescent protein-based fluorescent tagging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1758-1766. [PMID: 32892354 DOI: 10.1002/jsfa.10789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lactobacillus plantarum is an important probiotic with a variety of physiologic functions. Studies have focused on the effects of L. plantarum on host physiology and microbiota, but studies of the fate of strains after they enter the intestine are lacking. In this study, L. plantarum ST-III was genetically engineered to express green fluorescent protein (GFP). Mice were administered ST-III-GFP, and fluorescence imaging was used to study the distribution, location and quantity of strains within 8 h after entry into the intestine. RESULTS The results indicated that genetic modification did not affect the growth of ST-III, tolerance to simulated gastric juice and intestinal fluid or tolerance to antibiotics (with the exception of chloramphenicol). Fluorescence imaging and colony counting indicated that ST-III-GFP can be detected in the small intestine 5 min after oral gavage. After 30 min, nearly all ST-III-GFP was located in the small intestine. After 1.5 h, ST-III-GFP was detected in both the cecum and large intestine. After 4 and 8 h, ST-III-GFP was mainly concentrated in the cecum and large intestine. Compared to the initial amount ingested, the survival rate of ST-III-GFP within the intestine of mice was 10% after 8 h. In addition, a strong linear relationship was found between the fluorescence intensity and the viable count of ST-III-GFP. CONCLUSIONS The obtained data indicate that the amount of ST-III-GFP can be estimated by measuring the fluorescence intensity of this novel strain within the intestinal tract. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, PR China
| | - Cailing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| |
Collapse
|
2
|
Wang Y, Gu Y, Fang K, Mao K, Dou J, Fan H, Zhou C, Wang H. Lactobacillus acidophilus and Clostridium butyricum ameliorate colitis in murine by strengthening the gut barrier function and decreasing inflammatory factors. Benef Microbes 2018; 9:775-787. [PMID: 30014710 DOI: 10.3920/bm2017.0035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis is a type of chronic inflammation present in the intestines for which the aetiology is not yet clear. The current therapies for ulcerative colitis cannot be considered to be long-term management strategies due to their significant side effects. Therefore, it is essential to identify an alternative therapeutic strategy for ulcerative colitis. The present study focused on the evaluation of the anti-inflammatory activities of Lactobacillus acidophilus CGMCC 7282 and Clostridium butyricum CGMCC 7281. The roles of both single and combination of L. acidophilus CGMCC 7282 and C. butyricum CGMCC 7281 in ulcerative colitis were investigated in 2,4,6-trinitrobenzenesulfonic acid-induced acute colitis (Th1-type colitis) in Sprague-Dawley rats and oxazolone-induced chronic colitis (Th2-type colitis) in BALB/c mice. The in vivo studies showed that the administration of L. acidophilus CGMCC 7282, C. butyricum CGMCC 7281 and L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 could reduce the Th1-type colitis as well as the Th2-type colitis, and the combination of the two strains exhibited the most notable effects, as indicated by the reduced mortality rates, the suppressed disease activity indices, the improved body weights, the reduced colon weight/colon length and colon weight/body weight ratios, and the improved gross anatomic characteristics and histological features (ameliorations of neutrophil infiltration and ulceration in the colon). It was found that the alterations of the gut microbiome, the barrier function changing and the selected inflammation-related cytokines are observed in the ulcerative colitis rats/mice treated with L. acidophilus CGMCC 7282 and C. butyricum CGMCC 7281. The combination of L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 also exerted a stronger anti-inflammatory effect than either of the single strains alone in vitro. These findings provide evidence that the administration of L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 may be a promising therapy for ulcerative colitis.
Collapse
Affiliation(s)
- Y Wang
- 1 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Y Gu
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - K Fang
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - K Mao
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - J Dou
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - H Fan
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - C Zhou
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - H Wang
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| |
Collapse
|
3
|
Zhang H, Chen X, Braithwaite D, He Z. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells. PLoS One 2014; 9:e107460. [PMID: 25202990 PMCID: PMC4159341 DOI: 10.1371/journal.pone.0107460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022] Open
Abstract
Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.
Collapse
Affiliation(s)
- Husen Zhang
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Florida, United States of America
- * E-mail:
| | - Xi Chen
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Florida, United States of America
| | - Daniel Braithwaite
- Institute for Genomics and Systems Biology, Argonne National Laboratory, Chicago, Illinois, United States of America
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
4
|
Mozeš Š, Šefcíková Z, Bujnáková D, Racek L. Effect of antibiotic treatment on intestinal microbial and enzymatic development in postnatally overfed obese rats. Obesity (Silver Spring) 2013; 21:1635-42. [PMID: 23696224 DOI: 10.1002/oby.20221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 11/17/2012] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the effect of the microbiota-induced changes and early overfeeding after amoxicillin administration (a) in suckling pups via their dams up to 15 days of lactation and (b) in weaned pups on intestinal microbial/functional adaptability and obesity development in male Sprague-Dawley rats. DESIGN AND METHODS Postnatal nutrition was elicited by adjusting the number of pups in the nest to 4 (small litters [SLs]) and 10 (normal litters [NLs]), while from days 21 to 40, both groups were fed with a standard diet. The numbers of Bacteroides/Prevotella (BAC) and Lactobacillus/Enterococcus (LAB) in the jejunum and colon were determined by fluorescence in situ hybridization technique, and jejunal alkaline phosphatase (AP), α-glucosidase and aminopeptidase activity was assayed histochemically. RESULTS On day 40, the SL in comparison with NL animals displayed excess weight/fat gain accompanied by higher LAB and lower numbers of BAC, and with permanently higher AP activity. Moreover, these acquired changes continued in SL vs. NL rats and were not influenced by antibiotic treatment, which induced significant decrease in the quantity of LAB and BAC. CONCLUSIONS These findings highlight the role of early life overfeeding upon the gut microbial/functional ontogeny and allow to distinguish their potential involvement in later risk of obesity.
Collapse
Affiliation(s)
- Štefan Mozeš
- Department of Developmental Physiology, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic.
| | | | | | | |
Collapse
|
5
|
Abstract
Recognition of microorganisms by pattern-recognition receptors (PRRs) is the primary component of innate immunity that is responsible for the maintenance of host-microbial interactions in intestinal mucosa. Dysregulation in host-commensal interactions has been implicated as the central pathogenesis of inflammatory bowel disease (IBD), which predisposes to developing colorectal cancer. Recent animal studies have begun to outline some unique physiology and pathology involving each PRR signaling in the intestine. The major roles played by PRRs in the gut appear to be the regulation of the number and the composition of commensal bacteria, epithelial proliferation, and mucosal permeability in response to epithelial injury. In addition, PRR signaling in lamina propria immune cells may be involved in induction of inflammation in response to invasion of pathogens. Because some PRR-deficient mice have shown variable susceptibility to colitis, the outcome of intestinal inflammation may be modified depending on PRR signaling in epithelial cells, immune cells, and the composition of commensal flora. Through recent findings in animal models of IBD, this review will discuss how abnormal PRR signaling may contribute to the pathogenesis of inflammation and inflammation-associated tumorigenesis in the intestine.
Collapse
|
6
|
Curno O, Reader T, McElligott AG, Behnke JM, Barnard CJ. Infection before pregnancy affects immunity and response to social challenge in the next generation. Philos Trans R Soc Lond B Biol Sci 2012; 366:3364-74. [PMID: 22042914 DOI: 10.1098/rstb.2011.0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Natural selection should favour parents that are able to adjust their offspring's life-history strategy and resource allocation in response to changing environmental and social conditions. Pathogens impose particularly strong and variable selective pressure on host life histories, and parental genes will benefit if offspring are appropriately primed to meet the immunological challenges ahead. Here, we investigated transgenerational immune priming by examining reproductive resource allocation by female mice in response to direct infection with Babesia microti prior to pregnancy. Female mice previously infected with B. microti gained more weight over pregnancy, and spent more time nursing their offspring. These offspring generated an accelerated response to B. microti as adults, clearing the infection sooner and losing less weight as a result of infection. They also showed an altered hormonal response to novel social environments, decreasing instead of increasing testosterone production upon social housing. These results suggest that a dominance-resistance trade-off can be mediated by cues from the previous generation. We suggest that strategic maternal investment in response to an infection leads to increased disease resistance in the following generation. Offspring from previously infected mothers downregulate investment in acquisition of social dominance, which in natural systems would reduce access to mating opportunities. In doing so, however, they avoid the reduced disease resistance associated with increased testosterone and dominance. The benefits of accelerated clearance of infection and reduced weight loss during infection may outweigh costs associated with reduced social dominance in an environment where the risk of disease is high.
Collapse
Affiliation(s)
- Olivia Curno
- School of Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
7
|
Patrone V, Ferrari S, Lizier M, Lucchini F, Minuti A, Tondelli B, Trevisi E, Rossi F, Callegari ML. Short-term modifications in the distal gut microbiota of weaning mice induced by a high-fat diet. Microbiology (Reading) 2012; 158:983-992. [DOI: 10.1099/mic.0.054247-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Vania Patrone
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Susanna Ferrari
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Michela Lizier
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Franco Lucchini
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Andrea Minuti
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Barbara Tondelli
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Erminio Trevisi
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Filippo Rossi
- Istituto di Scienze degli Alimenti e della Nutrizione, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Luisa Callegari
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| |
Collapse
|
8
|
Cronin M, Ventura M, Fitzgerald GF, van Sinderen D. Progress in genomics, metabolism and biotechnology of bifidobacteria. Int J Food Microbiol 2011; 149:4-18. [PMID: 21320731 DOI: 10.1016/j.ijfoodmicro.2011.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 12/16/2022]
Abstract
Members of the genus Bifidobacterium were first described over a century ago and were quickly associated with a healthy intestinal tract due to their numerical dominance in breast-fed babies as compared to bottle-fed infants. Health benefits elicited by bifidobacteria to its host, as supported by clinical trials, have led to their wide application as probiotic components of health-promoting foods, especially in fermented dairy products. However, the relative paucity of genetic tools available for bifidobacteria has impeded development of a comprehensive molecular understanding of this genus. In this review we present a summary of current knowledge on bifidobacterial metabolism, classification, physiology and genetics and outline the currently available methods for genetically accessing and manipulating the genus.
Collapse
Affiliation(s)
- Michelle Cronin
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jnr. Laboratory, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
9
|
Robinson CJ, Bohannan BJM, Young VB. From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 2010; 74:453-76. [PMID: 20805407 PMCID: PMC2937523 DOI: 10.1128/mmbr.00014-10] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the past several years, we have witnessed an increased interest in understanding the structure and function of the indigenous microbiota that inhabits the human body. It is hoped that this will yield novel insight into the role of these complex microbial communities in human health and disease. What is less appreciated is that this recent activity owes a great deal to the pioneering efforts of microbial ecologists who have been studying communities in non-host-associated environments. Interactions between environmental microbiologists and human microbiota researchers have already contributed to advances in our understanding of the human microbiome. We review the work that has led to these recent advances and illustrate some of the possible future directions for continued collaboration between these groups of researchers. We discuss how the application of ecological theory to the human-associated microbiota can lead us past descriptions of community structure and toward an understanding of the functions of the human microbiota. Such an approach may lead to a shift in the prevention and treatment of human diseases that involves conservation or restoration of the normal community structure and function of the host-associated microbiota.
Collapse
Affiliation(s)
- Courtney J. Robinson
- Department of Internal Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403
| | - Brendan J. M. Bohannan
- Department of Internal Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403
| | - Vincent B. Young
- Department of Internal Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
10
|
Colonization of segmented filamentous bacteria and its interaction with the luminal IgA level in conventional mice. Anaerobe 2010; 16:543-6. [PMID: 20674754 DOI: 10.1016/j.anaerobe.2010.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/12/2010] [Accepted: 07/20/2010] [Indexed: 12/22/2022]
Abstract
Segmented filamentous bacteria (SFB) colonize in the ileum. They promote the development of intraepithelial lymphocytes and immunoglobulin A (IgA)-producing cells in the small intestine. In SFB-monoassociated mice, changes in SFB colonization of the small intestine were related to the level of IgA derived from maternal milk during the suckling period and self-produced in the small intestine after weaning. In this study, we investigated whether or not maternal and neonatal IgA influence the colonization of SFB in conventional mice from 18 to 105 days old. The pups were forcedly weaned at 20 days old. SFB could be detected in the distal small intestine after day 22, and their number rapidly reached a maximum on day 28. Thereafter, they gradually declined to one-fourth of the maximum level. The lowest concentrations of IgA in the small intestinal and cecal contents were detected on day 22. Thereafter, they increased as the age of the mice increased. The expression of the polymeric immunoglobulin receptor gene in the distal small intestine increased after weaning. These results suggested that the colonization of SFB in the pre-weaning and post-weaning periods might be prevented with IgA derived from maternal milk and self-produced IgA, respectively.
Collapse
|
11
|
Mwangi WN, Beal RK, Powers C, Wu X, Humphrey T, Watson M, Bailey M, Friedman A, Smith AL. Regional and global changes in TCRalphabeta T cell repertoires in the gut are dependent upon the complexity of the enteric microflora. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:406-417. [PMID: 19945480 DOI: 10.1016/j.dci.2009.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 05/28/2023]
Abstract
The repertoire of gut associated T cells is shaped by exposure to microbes, including the natural enteric microflora. Previous studies compared the repertoire of gut associated T cell populations in germ free (GF) and conventional mammals often focussing on intra-epithelial lymphocyte compartments. Using GF, conventional and monocolonised (gnotobiotic) chickens and chicken TCRbeta-repertoire analysis techniques, we determined the influence of microbial status on global and regional enteric TCRbeta repertoires. The gut of conventionally reared chickens exhibited non-Gaussian distributions of CDR3-lengths with some shared over-represented peaks in neighbouring gut segments. Sequence analysis revealed local clonal over-representation. Germ-free chickens exhibited a polyclonal, non-selected population of T cells in the spleen and in the gut. In contrast, gnotobiotic chickens exhibited a biased repertoire with shared clones evident throughout the gut. These data indicate the dramatic influence of enteric microflora complexity on the profile of TCRbeta repertoire in the gut at local and global levels.
Collapse
Affiliation(s)
- William N Mwangi
- Division of Immunology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.
Collapse
Affiliation(s)
- David A Hill
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, 19104-4539, USA
| | | |
Collapse
|
13
|
Young VB, Schmidt TM. Overview of the gastrointestinal microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 635:29-40. [PMID: 18841701 DOI: 10.1007/978-0-387-09550-9_3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The community of microbes that inhabits the mammalian intestinal tract exists in a symbiosis with their host. The structure of this community represents the combined effects of selection pressure on the part of the host and on the part of the microbes themselves. Through recent advances in the field of microbial ecology we are beginning to understand the forces that shape this complex community. We will review what is known about the interaction between the host and the indigenous microbial community. Following this discussion we will introduce methods that have been used to study the structure, function and dynamics of this community.
Collapse
Affiliation(s)
- Vincent B Young
- Department of Medicine, Division of Infectious Diseases, The University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
14
|
Cronin M, Sleator RD, Hill C, Fitzgerald GF, van Sinderen D. Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol 2008; 8:161. [PMID: 18816375 PMCID: PMC2564955 DOI: 10.1186/1471-2180-8-161] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/24/2008] [Indexed: 12/12/2022] Open
Abstract
Background Probiotics such as bifidobacteria have been shown to maintain a healthy intestinal microbial balance and help protect against infections. However, despite these benefits, bifidobacteria still remain poorly understood at the biochemical, physiological and especially the genetic level. Herein we describe, for the first time, the development of a non-invasive luciferase-based reporter system for real-time tracking of Bifidobacterium species in vivo. Results The reporter vector pLuxMC1 is based on the recently described theta-type plasmid pBC1 from B. catenatulatum [1] and the luxABCDE operon from pPL2lux [2]. Derivatives of pLuxMC1, harbouring a bifidobacterial promoter (pLuxMC2) as well as a synthetically derived promoter (pLuxMC3) [3] placed upstream of luxABCDE, were constructed and found to stably replicate in B. breve UCC2003. The subsequent analysis of these strains allowed us to assess the functionality of pLuxMC1 both in vitro and in vivo. Conclusion Our results demonstrate the potential of pLuxMC1 as a real-time, non-invasive reporter system for Bifidobacterium. It has also allowed us, for the first time, to track the colonisation potential and persistence of this probiotic species in real time. An interesting and significant outcome of the study is the identification of the caecum as a niche environment for B. breve UCC2003 within the mouse gastrointestinal tract (GI) tract.
Collapse
Affiliation(s)
- Michelle Cronin
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland.
| | | | | | | | | |
Collapse
|
15
|
Braun J, Wei B. Body traffic: ecology, genetics, and immunity in inflammatory bowel disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:401-29. [PMID: 18039105 DOI: 10.1146/annurev.pathol.1.110304.100128] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The abundant bacteria and other microbial residents of the human intestine play important roles in nutrient absorption, energy metabolism, and defense against microbial pathogens. The mutually beneficial relationship of host and commensal microbiota represents an ancient and major coevolution in composition and mutual regulation of the human mucosa and the resident microbial community. Inflammatory bowel disease (IBD) is a set of chronic, relapsing inflammatory intestinal diseases in which rules of normal host-microbial interaction have been violated. This review considers the components of this host-microbial mutualism and the ways in which it is undermined by pathogenic microbial traits and by host immune and epithelial functions that confer to them susceptibility in patients with IBD. Recent advances in understanding the genetics of IBD and the immunology of host-microbial interaction are opening new strategies for treatments that target host susceptibility, candidate microbial pathogens, and intestinal ecology.
Collapse
Affiliation(s)
- Jonathan Braun
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
16
|
Brando RJF, Miliwebsky E, Bentancor L, Deza N, Baschkier A, Ramos MV, Fernández GC, Meiss R, Rivas M, Palermo MS. Renal damage and death in weaned mice after oral infection with Shiga toxin 2-producing Escherichia coli strains. Clin Exp Immunol 2008; 153:297-306. [PMID: 18549440 PMCID: PMC2492904 DOI: 10.1111/j.1365-2249.2008.03698.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 infections are considered a public health problem in both developed and developing countries because of their increasing incidence and the severity of clinical presentation. Approximately 10% of infected patients develop complications such as haemolytic uraemic syndrome (HUS) characterized by acute renal failure, thrombocytopenia and haemolytic anaemia. The precise sequence of events leading to HUS is still understood incompletely. Because of the lack of a reproducible small animal model for EHEC infections, in vivo studies examining EHEC-host early interactions are limited and insufficient. The aim of this study was to characterize the weaned BALB/c mouse as a model of E. coli O157:H7 infection. In this paper we report that human Shiga toxin 2 (Stx2)-producing EHEC strains can adhere to the intestinal epithelium of weaned BALB/c mice, and produce local damage which leads to systemic disease and death in a percentage of infected mice. The lethality of the EHEC strain is closely age-dependent, and is related to the bacterial ability to colonize intestine and to produce Stx2. It can be concluded that the weaned BALB/c mouse can be used as a small animal model to study host early responses, and the role of bacterial pathogenic factors in the induction of systemic disease, thus providing a useful tool for the evaluation of therapeutic or vaccine approaches.
Collapse
Affiliation(s)
- R J F Brando
- División Inmunología, Instituto de Investigationes Hematológicas, Academia Nacional de Medicina, Buernos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
de Moreno de LeBlanc A, Dogi CA, Galdeano CM, Carmuega E, Weill R, Perdigón G. Effect of the administration of a fermented milk containing Lactobacillus casei DN-114001 on intestinal microbiota and gut associated immune cells of nursing mice and after weaning until immune maturity. BMC Immunol 2008; 9:27. [PMID: 18554392 PMCID: PMC2459154 DOI: 10.1186/1471-2172-9-27] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 06/13/2008] [Indexed: 11/10/2022] Open
Abstract
Background Microbial colonization of the intestine after birth is an important step for the development of the gut immune system. The acquisition of passive immunity through breast-feeding may influence the pattern of bacterial colonization in the newborn. The aim of this work was to evaluate the effect of the administration of a probiotic fermented milk (PFM) containing yogurt starter cultures and the probiotic bacteria strain Lactobacillus casei DN-114001 to mothers during nursing or their offspring, on the intestinal bacterial population and on parameters of the gut immune system. Results Fifteen mice of each group were sacrificed at ages 12, 21, 28 and 45 days. Large intestines were taken for determination of intestinal microbiota, and small intestines for the study of secretory-IgA (S-IgA) in fluid and the study of IgA+ cells, macrophages, dendritic cells and goblet cells on tissue samples. The consumption of the PFM either by the mother during nursing or by the offspring after weaning modified the development of bifidobacteria population in the large intestine of the mice. These modifications were accompanied with a decrease of enterobacteria population. The administration of this PFM to the mothers improved their own immune system and this also affected their offspring. Offspring from mice that received PFM increased S-IgA in intestinal fluids, which mainly originated from their mother's immune system. A decrease in the number of macrophages, dendritic cells and IgA+ cells during the suckling period in offspring fed with PFM was observed; this could be related with the improvement of the immunity of the mothers, which passively protect their babies. At day 45, the mice reach maturity of their own immune system and the effects of the PFM was the stimulation of their mucosal immunity. Conclusion The present work shows the beneficial effect of the administration of a PFM not only to the mothers during the suckling period but also to their offspring after weaning and until adulthood. This effect positively improved the intestinal microbiota that are related with a modulation of the gut immune response, which was demonstrated with the stimulation of the IgA + cells, macrophages and dendritic cells.
Collapse
Affiliation(s)
- Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán (T4000ILC) Tucumán, Argentina.
| | | | | | | | | | | |
Collapse
|
18
|
Liévin-Le Moal V, Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006; 19:315-37. [PMID: 16614252 PMCID: PMC1471992 DOI: 10.1128/cmr.19.2.315-337.2006] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal tract is a complex ecosystem that combines resident microbiota and the cells of various phenotypes with complex metabolic activities that line the epithelial wall. The intestinal cells that make up the epithelium provide physical and chemical barriers that protect the host against the unwanted intrusion of microorganisms that hijack the cellular molecules and signaling pathways of the host and become pathogenic. Some of the organisms making up the intestinal microbiota also have microbicidal effects that contribute to the barrier against enteric pathogens. This review describes the two cell lineages present in the intestinal epithelium: the goblet cells and the Paneth cells, both of which play a pivotal role in the first line of enteric defense by producing mucus and antimicrobial peptides, respectively. We also analyze recent insights into the intestinal microbiota and the mechanisms by which some resident species act as a barrier to enteric pathogens. Moreover, this review examines whether the cells producing mucins or antimicrobial peptides and the resident microbiota act in partnership and whether they function individually and/or synergistically to provide the host with an effective front line of defense against harmful enteric pathogens.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Unité 756 INSERM, Faculté de Pharmacie Paris XI, Signalisation et Physiopathologie des Cellules Epithéliales, Institut National de la Santé et de la Recherche Médicale, F-92296 Chātenay-Malabry, France
| | | |
Collapse
|