1
|
Liu Y, Ma D, Li Q, Liu L, Gao W, Xie Y, Wu C. High Levels of Erucic Acid Cause Lipid Deposition, Decreased Antioxidant and Immune Abilities via Inhibiting Lipid Catabolism and Increasing Lipogenesis in Black Carp ( Mylopharyngodon piceus). Animals (Basel) 2024; 14:2102. [PMID: 39061564 PMCID: PMC11273432 DOI: 10.3390/ani14142102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of dietary erucic acid (EA) on growth, lipid accumulation, antioxidant and immune abilities, and lipid metabolism in black carp fed six diets containing varying levels of EA (0.00%, 0.44%, 0.81%, 1.83%, 2.74%, and 3.49%), for 8 weeks. Results showed that fish fed the 3.49% EA diet exhibited lower weight gain, compared to those fed the 0.81% EA diet. In a dose-dependent manner, the serum triglycerides and total cholesterol were significantly elevated in the EA groups. The 1.83%, 2.74%, and 3.49% levels of EA increased alanine aminotransferase and aspartate aminotransferase activities, as well as decreased acid phosphatase and alkaline phosphatase values compared to the EA-deficient group. The hepatic catalase activity and transcriptional level were notably reduced, accompanied by increased hydrogen peroxide contents in the EA groups. Furthermore, dietary EA primarily increased the C22:1n-9 and C20:1n-9 levels, while decreasing the C18:0 and C18:1n-9 contents. In the EA groups, expressions of genes, including hsl, cpt1a, cpt1b, and ppara were downregulated, whereas the fas and gpat expressions were enhanced. Additionally, dietary EA elevated the mRNA level of il-1β and reduced the expression of il-10. Collectively, high levels of EA (2.74% and 3.49%) induced lipid accumulation, reduced antioxidative and immune abilities in black carp by inhibiting lipid catabolism and increasing lipogenesis. These findings provide valuable insights for optimizing the use of rapeseed oil rich in EA for black carp and other carnivorous fish species.
Collapse
Affiliation(s)
- Yan Liu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (D.M.); (Q.L.); (L.L.); (W.G.); (Y.X.)
| | | | | | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (D.M.); (Q.L.); (L.L.); (W.G.); (Y.X.)
| |
Collapse
|
2
|
Hundal BK, Lutfi E, Sigholt T, Rosenlund G, Liland NS, Glencross B, Sissener NH. A Piece of the Puzzle-Possible Mechanisms for Why Low Dietary EPA and DHA Cause Hepatic Lipid Accumulation in Atlantic Salmon ( Salmo salar). Metabolites 2022; 12:159. [PMID: 35208233 PMCID: PMC8877222 DOI: 10.3390/metabo12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
The present study aimed at elucidating the effects of graded levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the hepatic metabolic health of Atlantic salmon reared in sea cages. Diets containing 10, 13, 16 and 35 g/kg EPA + DHA (designated diets 1.0, 1.3, 1.6 and 3.5, respectively) were fed in triplicate through a full production cycle from an average starting weight of 275 g to slaughter size (~5 kg). Feeding low dietary EPA + DHA altered the hepatic energy metabolism, evidenced by reductions in tricarboxylic acid cycle intermediates originating from β-oxidation, which was compensated by elevated activity in alternative energy pathways (pentose phosphate pathway, branched chain amino acid catabolism and creatine metabolism). Increases in various acylcarnitines in the liver supported this and indicates issues with lipid metabolism (mitochondrial β-oxidation). Problems using lipids for energy in the lower EPA + DHA groups line up well with observed increases in liver lipids in these fish. It also aligns with the growth data, where fish fed the highest EPA + DHA grew better than the other groups. The study showed that diets 1.0 and 1.3 were insufficient for maintaining good liver metabolic health. However, diet 3.5 was significantly better than diet 1.6, indicating that diet 1.6 might also be suboptimal.
Collapse
Affiliation(s)
- Bjørg Kristine Hundal
- Department of Feed and Nutrition, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; (N.S.L.); (N.H.S.)
| | - Esmail Lutfi
- Department of Nutrition and Feed Technology, Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), P.O. Box 210, 1431 Ås, Norway;
| | | | - Grethe Rosenlund
- Skretting Aquaculture Research Centre, P.O. Box 48, 4001 Stavanger, Norway;
| | - Nina Sylvia Liland
- Department of Feed and Nutrition, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; (N.S.L.); (N.H.S.)
| | - Brett Glencross
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK;
| | - Nini Hedberg Sissener
- Department of Feed and Nutrition, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; (N.S.L.); (N.H.S.)
| |
Collapse
|
3
|
Fawole FJ, Labh SN, Hossain MS, Overturf K, Small BC, Welker TL, Hardy RW, Kumar V. Insect (black soldier fly larvae) oil as a potential substitute for fish or soy oil in the fish meal-based diet of juvenile rainbow trout ( Oncorhynchus mykiss). ACTA ACUST UNITED AC 2021; 7:1360-1370. [PMID: 34786509 PMCID: PMC8577097 DOI: 10.1016/j.aninu.2021.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Alternative sources of fish oil (FO) are one of the major problems in aquaculture; therefore, the goal of the present study was to examine insect (black soldier fly larvae) oil (BSLO) as a potential replacer of fish/soy oil in juvenile rainbow trout (initial average weight of 32 ± 0.15 g) feed. Four diets were formulated wherein FO (control diet) was completely replaced with either soybean oil (SO) or BSLO, and an additional BSLO-based diet supplemented with 1.5% bile acid (BSLO + BA) were fed to the fish for 10 weeks. Growth performance of the BSLO fed group was similar (P > 0.05) to that of the FO and SO fed groups, however, the fish fed BSLO + BA diet registered the lowest growth (P < 0.05). Oil sources did not (P > 0.05) affect the major nutrient content of whole-body, however, the fatty acid composition of the muscle and liver was influenced (P < 0.05), with the highest 14:0, 16:0, and total saturated fatty acid detected in BSLO or BSLO + BA fed trout compared to the others (P < 0.001). No significant differences were observed in eicosapentaenoic acid + docosahexaenoic acid (EPA + DHA) or total n-3 polyunsaturated fatty acid (PUFA) content in muscle among the groups, whereas, the highest EPA:DHA and n-3:n-6 ratios were detected in the FO group. Gene expression for fatty acid binding protein (fabp), fatty acid synthase (fas), and Δ5 desaturase in the liver was lower in FO (P < 0.05), while BSLO + BA registered the highest Δ6 expression (P = 0.006). Supplementation of BA in the BSLO diet increased superoxide dismutase (SOD) and catalase (CAT) activities compared to the other groups (P < 0.05). In conclusion, BSLO could serve as a substitute for FO and SO in rainbow trout diet without negatively impacting growth performance, whole-body composition and nutrient retention, and modulate the expression of fatty acid metabolism-related genes in rainbow trout.
Collapse
Affiliation(s)
- Femi J. Fawole
- Aquaculture Research Institute, Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, Hagerman, ID, USA
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Shyam N. Labh
- Aquaculture Research Institute, Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, Hagerman, ID, USA
| | - Md Sakhawat Hossain
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, Hagerman, ID, USA
- Department of Aquaculture, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ken Overturf
- United States Department of Agriculture, Agricultural Research Service, Hagerman Fish Culture Experiment Station, Hagerman, ID, USA
| | - Brian C. Small
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, Hagerman, ID, USA
| | - Thomas L. Welker
- United States Department of Agriculture, Agricultural Research Service, Hagerman Fish Culture Experiment Station, Hagerman, ID, USA
| | - Ronald W. Hardy
- Aquaculture Research Institute, Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Vikas Kumar
- Aquaculture Research Institute, Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, Hagerman, ID, USA
- Corresponding author.
| |
Collapse
|
4
|
Oleic and palmitic acids induce hepatic angiopoietin-like 4 expression predominantly via PPAR- γ in Larimichthys crocea. Br J Nutr 2021; 129:1657-1666. [PMID: 34556193 DOI: 10.1017/s000711452100386x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiopoietin-like 4 (ANGPTL4) is a potent regulator of TAG metabolism, but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In the current study, we explored the molecular characterisation of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by PPAR family (PPAR-α, β and γ), and expression of PPARγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA- or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signalling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.
Collapse
|
5
|
Selvam C, Powell MD, Liland NS, Rosenlund G, Sissener NH. Impact of dietary level and ratio of n-6 and n-3 fatty acids on disease progression and mRNA expression of immune and inflammatory markers in Atlantic salmon ( Salmo salar) challenged with Paramoeba perurans. PeerJ 2021; 9:e12028. [PMID: 34540364 PMCID: PMC8415286 DOI: 10.7717/peerj.12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of the study was to investigate the influence of dietary level and ratio of n-6/n-3 fatty acids (FA) on growth, disease progression and expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) following challenge with Paramoeba perurans. Fish (80 g) were fed four different diets with different ratios of n-6/n-3 FA; at 1.3, 2.4 and 6.0 and one diet with ratio of 1.3 combined with a higher level of n-3 FA and n-6 FA. The diet with the n-6/n-3 FA ratio of 6.0 was included to ensure potential n-6 FA effects were revealed, while the three other diets were more commercially relevant n-6/n-3 FA ratios and levels. After a pre-feeding period of 3 months, fish from each diet regime were challenged with a standardized laboratory challenge using a clonal culture of P. perurans at the concentration of 1,000 cells L−1. The subsequent development of the disease was monitored (by gross gill score), and sampling conducted before challenge and at weekly sampling points for 5 weeks post-challenge. Challenge with P. perurans did not have a significant impact on the growth of the fish during the challenge period, but fish given the feed with the highest n-6/n-3 FA ratio had reduced growth compared to the other groups. Total gill score for all surfaces showed a significant increase with time, reaching a maximum at 21 days post-challenge and declined thereafter, irrespective of diet groups. Challenge with P. perurans influenced the mRNA expression of examined genes involved in immune and inflammatory response (TNF-α, iNOS, IL4-13b, GATA-3, IL-1β, p53, COX2 and PGE2-EP4), but diet did not influence the gene expression. In conclusion, an increase in dietary n-6/n-3 FA ratio influenced the growth of Atlantic salmon challenged with P. perurans; however, it did not alter the mRNA expression of immune genes or progression of the disease.
Collapse
Affiliation(s)
- Chandrasekar Selvam
- Institute of Marine Research, Bergen, Norway.,Central Marine Fisheries Research Institute, Kochi, India
| | - Mark D Powell
- Marineholmen RAS Lab AS & University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
6
|
Callet T, Dupont-Nivet M, Danion M, Burel C, Cluzeaud M, Surget A, Aguirre P, Kerneis T, Labbé L, Panserat S, Quillet E, Geurden I, Skiba-Cassy S, Médale F. Why Do Some Rainbow Trout Genotypes Grow Better With a Complete Plant-Based Diet? Transcriptomic and Physiological Analyses on Three Isogenic Lines. Front Physiol 2021; 12:732321. [PMID: 34539452 PMCID: PMC8440921 DOI: 10.3389/fphys.2021.732321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Within the context of a growing aquaculture production coupled with a plateau of the production in the main components of aquafeeds (fish oil and fishmeal), recent studies have typically focused on replacing these feedstuffs with terrestrial plant ingredients for cultured carnivorous aquatic species, such as rainbow trout (Oncorhynchus mykiss). Substitution rates without adverse effects have, however, reached their limit. One potential way forward would be to take advantage of the genetic variability that exists in the salmonid population. However, to date, little is known about the underlying molecular mechanisms responsible for this genetic variability. The aim of the present research was to understand why some genotypes are better able to utilize plant-based diets devoid of marine resources. In this regard, three isogenic lines of rainbow trout (R23h, AB1h, and A22h), with similar growth when fed marine resources-based diets and which differ greatly in their responses to a plant-based diet, were fed with either a complete plant-based diet (V diet) or a marine resources-based diet (M diet) since first-feeding. Fish traits and the hepatic transcriptome of these three genotypes were compared after 5 months of feeding. First, differences in the ability to grow with the V diet observed amongst genotypes was not due to higher feed intake, but instead due to differences in feed efficiency. The comparison of transcriptome profiles revealed 575 (R23h vs. AB1h), 1,770 (R23h vs. A22h), and 2,973 (AB1h vs. A22h) probes differentially expressed amongst the three genotypes when fed the V diet. Interestingly, R23h and AB1h fish, which were the least affected by the V diet, exhibited the highest growth. These results demonstrate that these fish were able to maintain a high level of energy production and protein synthesis. Moreover, these genotypes were also able to activate pathways linked to lipid and cholesterol metabolisms, such as the biosynthesis of long-chain polyunsaturated fatty acids. Finally, as previously, immunity seems to also play an important role in the ability of fish to use the V diet, and further studies are needed to understand the mechanisms by which immunity interacts with growth.
Collapse
Affiliation(s)
- Thérèse Callet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Morgane Danion
- ANSES, Ploufragan-Plouzané Laboratory, Ploufragan, France
| | - Christine Burel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Marianne Cluzeaud
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Pierre Aguirre
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Thierry Kerneis
- Pisciculture Expérimentale INRAE des Monts d'Arrée (PEIMA), Sizun, France
| | - Laurent Labbé
- Pisciculture Expérimentale INRAE des Monts d'Arrée (PEIMA), Sizun, France
| | - Stephane Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Edwige Quillet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Inge Geurden
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Françoise Médale
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
7
|
Osmond ATY, Arts MT, Hall JR, Rise ML, Bazinet RP, Armenta RE, Colombo SM. Schizochytrium sp. (T18) Oil as a Fish Oil Replacement in Diets for Juvenile Rainbow Trout ( Oncorhynchus mykiss): Effects on Growth Performance, Tissue Fatty Acid Content, and Lipid-Related Transcript Expression. Animals (Basel) 2021; 11:1185. [PMID: 33924273 PMCID: PMC8074903 DOI: 10.3390/ani11041185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we evaluated whether oil extracted from the marine microbe, Schizochytrium sp. (strain T18), with high levels of docosahexaenoic acid (DHA), could replace fish oil (FO) in diets for rainbow trout (Oncorhynchus mykiss). Three experimental diets were tested: (1) a control diet with fish oil (FO diet), (2) a microbial oil (MO) diet with a blend of camelina oil (CO) referred to as MO/CO diet, and (3) a MO diet (at a higher inclusion level). Rainbow trout (18.8 ± 2.9 g fish-1 initial weight ± SD) were fed for 8 weeks and evaluated for growth performance, fatty acid content and transcript expression of lipid-related genes in liver and muscle. There were no differences in growth performance measurements among treatments. In liver and muscle, eicosapentaenoic acid (EPA) was highest in trout fed the FO diet compared to the MO/CO and MO diets. Liver DHA was highest in trout fed the MO/CO diet compared to the FO and MO diets. Muscle DHA was highest in trout fed the MO and MO/CO diets compared to the FO diet. In trout fed the MO/CO diet, compared to the MO diet, fadsd6b was higher in both liver and muscle. In trout fed the FO or MO/CO diets, compared to the MO diet, cox1a was higher in both liver and muscle, cpt1b1a was higher in liver and cpt1a1a, cpt1a1b and cpt1a2a were higher in muscle. Schizochytrium sp. (T18) oil was an effective source of DHA for rainbow trout.
Collapse
Affiliation(s)
- Angelisa T. Y. Osmond
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Michael T. Arts
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Richard P. Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Roberto E. Armenta
- Mara Renewables Corporation, Dartmouth, NS B2Y 4T6, Canada;
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stefanie M. Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| |
Collapse
|
8
|
Katan T, Xue X, Caballero-Solares A, Taylor RG, Rise ML, Parrish CC. Influence of Dietary Long-Chain Polyunsaturated Fatty Acids and ω6 to ω3 Ratios on Head Kidney Lipid Composition and Expression of Fatty Acid and Eicosanoid Metabolism Genes in Atlantic Salmon ( Salmo salar). Front Mol Biosci 2020; 7:602587. [PMID: 33381522 PMCID: PMC7767880 DOI: 10.3389/fmolb.2020.602587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
The interaction of dietary eicosapentaenoic acid and docosahexaenoic acid (EPA+DHA) levels with omega-6 to omega-3 ratios (ω6:ω3), and their impact on head kidney lipid metabolism in farmed fish, are not fully elucidated. We investigated the influence of five plant-based diets (12-week exposure) with varying EPA+DHA levels (0.3, 1.0, or 1.4%) and ω6:ω3 (high ω6, high ω3, or balanced) on tissue lipid composition, and transcript expression of genes involved in fatty acid and eicosanoid metabolism in Atlantic salmon head kidney. Tissue fatty acid composition was reflective of the diet with respect to C18 PUFA and MUFA levels (% of total FA), and ω6:ω3 (0.5–1.5). Fish fed 0.3% EPA+DHA with high ω6 (0.3% EPA+DHA↑ω6) had the highest increase in proportions (1.7–2.3-fold) and in concentrations (1.4-1.8-fold) of arachidonic acid (ARA). EPA showed the greatest decrease in proportion and in concentration (by ~½) in the 0.3% EPA+DHA↑ω6 fed fish compared to the other treatments. However, no differences were observed in EPA proportions among salmon fed the high ω3 (0.3 and 1.0% EPA+DHA) and balanced (1.4% EPA+DHA) diets, and DHA proportions were similar among all treatments. Further, the transcript expression of elovl5a was lowest in the 0.3% EPA+DHA↑ω6 fed fish, and correlated positively with 20:3ω3, 20:4ω3 and EPA:ARA in the head kidney. This indicates that high dietary 18:3ω3 promoted the synthesis of ω3 LC-PUFA. Dietary EPA+DHA levels had a positive impact on elovl5a, fadsd5 and srebp1 expression, and these transcripts positively correlated with tissue ΣMUFA. This supported the hypothesis that LC-PUFA synthesis is positively influenced by tissue MUFA levels in Atlantic salmon. The expression of pparaa was higher in the 0.3% EPA+DHA↑ω6 compared to the 0.3% EPA+DHA↑ω3 fed fish. Finally, significant correlations between head kidney fatty acid composition and the expression of eicosanoid synthesis-related transcripts (i.e., 5loxa, 5loxb, cox1, cox2, ptges2, ptges3, and pgds) illustrated the constitutive relationships among fatty acids and eicosanoid metabolism in salmon.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
Yan XB, Dong XH, Tan BP, Zhang S, Chi SY, Liu HY, Yang YZ. Influence of different oil sources on growth, disease resistance, immune response and immune-related gene expression on the hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu), to Vibrio parahaemolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 99:310-321. [PMID: 32070783 DOI: 10.1016/j.fsi.2020.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the effects of feeding alternative dietary oils to hybrid grouper fish (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) on their growth, histological morphology of hepatocytes, disease resistance, immune response, and expression of immune-related genes. Seven experimental fish meal-based isonitrogenous and isolipidic diets were formulated containing 5% fish oil (FO; acting as controls) and various vegetable oils (VOs): corn oil (CO), sunflower oil (SO), tea oil (TO), olive oil (OO), rice oil (RO), and mixed oil (MO); comprising equal amounts of these oils). Each diet was fed to triplicate groups of 40 fish (initial mean body weight ± standard error = 15.09 ± 0.01 g) for eight weeks. The results show that 1) alternative dietary oils had no significant effects on weight gain rate, specific growth rate, protein efficiency ratio, and survival rate compared with controls (P > 0.05). The weight gain rate (WGR) and specific growth rate (SGR) of the SO group were lower than in the CO and OO groups. 2) These were no differences in morphological indexes among groups; except for the CO group, in which the condition factor and hepatosomatic index were lower than those in other groups. 3) Compared with controls, the whole-body moisture and crude protein contents in the VO groups were higher, while their crude lipid contents were lower. 4) The fatty acid contents in liver and muscle were affected by lipid type, and the contents of eicosapentaenoic acid and docosahexaenoic acid in liver and muscle in the VO groups were markedly lower than in controls. 5) Compared with control group, VO groups damaged the histological morphology of hepatocytes. 6) After a challenge with the Vibrio parahaemolyticus bacterium, there were no differences in mortality among groups. However, VO enhanced the activity of non-specific immune enzymes while down-regulating the expression of Nrf2 and inducing the expression of pro-inflammatory factors (IL1β, TNFα, TLR22, and MyD88) in the kidney. It can be concluded that dietary VO substitution does not affect the growth of fish but damaged the histological morphology of hepatocytes and induced the expression of pro-inflammatory factors in tissues. Finally, OO and CO were recommended as the appropriate lipid replacement for FO.
Collapse
Affiliation(s)
- Xiao-Bo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Xiao-Hui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China.
| | - Bei-Ping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China.
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Shu-Yan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Hong-Yu Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Yuan-Zhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| |
Collapse
|
10
|
Kemski MM, Rappleye CA, Dabrowski K, Bruno RS, Wick M. Transcriptomic response to soybean meal-based diets as the first formulated feed in juvenile yellow perch (Perca flavescens). Sci Rep 2020; 10:3998. [PMID: 32132548 PMCID: PMC7055240 DOI: 10.1038/s41598-020-59691-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
With increasing levels of fish meal (FM) protein in aquafeeds being replaced with soybean meal (SBM) protein, understanding the molecular mechanisms involved in response to alternative diets has become a critical concern. Thus, the goal of this study was to examine transcriptional differences in the intestine of juvenile yellow perch through RNA-sequencing (RNA-seq), after their initial introduction to a formulated diet with 75% SBM protein inclusion for 61 days, compared to those fed a traditional FM-based diet. Transcriptomic analysis revealed a concise set of differentially expressed genes in juveniles fed the SBM-based diet, the majority of which were intrinsic to the cholesterol biosynthesis pathway. Analysis of total body lipid and cholesterol levels were also investigated, with no between-treatment differences detected. Results of this study demonstrate that in response to SBM-based diets, yellow perch juveniles up-regulate the cholesterol biosynthesis pathway in order to maintain homeostasis. These findings suggest that the upregulation of the cholesterol biosynthesis pathway may negatively impact fish growth due to its large energy expenditure, and future studies are warranted.
Collapse
Affiliation(s)
- Megan M Kemski
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Chad A Rappleye
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Konrad Dabrowski
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Macdonald Wick
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Dose-response relationship between dietary choline and lipid accumulation in pyloric enterocytes of Atlantic salmon ( Salmo salar L.) in seawater. Br J Nutr 2020; 123:1081-1093. [PMID: 32037990 DOI: 10.1017/s0007114520000434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Foamy, whitish appearance of the pyloric caeca, reflecting elevated lipid content, histologically visible as hypervacuolation, is frequently observed in Atlantic salmon fed high-plant diets. Lipid malabsorption syndrome (LMS) is suggested as term for the phenomenon. Earlier studies have shown that insufficient supply of phospholipids may cause similar symptoms. The objective of the present study was to strengthen knowledge on the role of choline, the key component of phosphatidylcholine, in development of LMS as well as finding the dietary required choline level in Atlantic salmon. A regression design was chosen to be able to estimate the dietary requirement level of choline, if found essential for the prevention of LMS. Atlantic salmon (456 g) were fed diets supplemented with 0, 392, 785, 1177, 1569, 1962, 2354, 2746 and 3139 mg/kg choline chloride. Fish fed the lowest-choline diet had pyloric caeca with whitish foamy surface, elevated relative weight, and the enterocytes were hypervacuolated. These characteristics diminished with increasing choline level and levelled off at levels of 2850, 3593 and 2310 mg/kg, respectively. The concomitant alterations in expression of genes related to phosphatidylcholine synthesis, cholesterol biosynthesis, lipid transport and storage confirmed the importance of choline in lipid turnover in the intestine and ability to prevent LMS. Based on the observations of the present study, the lowest level of choline which prevents LMS and intestinal lipid hypervacuolation in post-smolt Atlantic salmon is 3·4 g/kg. However, the optimal level most likely depends on the feed intake and dietary lipid level.
Collapse
|
12
|
Hansen AKG, Kortner TM, Krasnov A, Björkhem I, Penn M, Krogdahl Å. Choline supplementation prevents diet induced gut mucosa lipid accumulation in post-smolt Atlantic salmon (Salmo salar L.). BMC Vet Res 2020; 16:32. [PMID: 32005242 PMCID: PMC6995171 DOI: 10.1186/s12917-020-2252-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Various intestinal morphological alterations have been reported in cultured fish fed diets with high contents of plant ingredients. Since 2000, salmon farmers have reported symptoms indicating an intestinal problem, which we suggest calling lipid malabsorption syndrome (LMS), characterized by pale and foamy appearance of the enterocytes of the pyloric caeca, the result of lipid accumulation. The objective of the present study was to investigate if insufficient dietary choline may be a key component in development of the LMS. Results The results showed that Atlantic salmon (Salmo salar), average weight 362 g, fed a plant based diet for 79 days developed signs of LMS. In fish fed a similar diet supplemented with 0.4% choline chloride no signs of LMS were seen. The relative weight of the pyloric caeca was 40% lower, reflecting 65% less triacylglycerol content and histologically normal gut mucosa. Choline supplementation further increased specific fish growth by 18%. The concomitant alterations in intestinal gene expression related to phosphatidylcholine synthesis (chk and pcyt1a), cholesterol transport (abcg5 and npc1l1), lipid metabolism and transport (mgat2a and fabp2) and lipoprotein formation (apoA1 and apoAIV) confirmed the importance of choline in lipid turnover in the intestine and its ability to prevent LMS. Another important observation was the apparent correlation between plin2 expression and degree of enterocyte hyper-vacuolation observed in the current study, which suggests that plin2 may serve as a marker for intestinal lipid accumulation and steatosis in fish. Future research should be conducted to strengthen the knowledge of choline’s critical role in lipid transport, phospholipid synthesis and lipoprotein secretion to improve formulations of plant based diets for larger fish and to prevent LMS. Conclusions Choline prevents excessive lipid accumulation in the proximal intestine and is essential for Atlantic salmon in seawater.
Collapse
Affiliation(s)
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Ingemar Björkhem
- Department of Laboratory Medicine, Division for Clinical Chemistry, Karolinska University Hospital, Huddinge, Sweden
| | - Michael Penn
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.,Present Address: US Fish & Wildlife Service, Northeast Fishery Center, Lamar Fish Health Center, Lamar, PA, 16848, USA
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
13
|
Production of omega-3 fatty acid-enriched broiler chicken meat by the application of nanoencapsultsed flaxseed oil prepared via ultrasonication. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
14
|
Katan T, Caballero-Solares A, Taylor RG, Rise ML, Parrish CC. Effect of plant-based diets with varying ratios of ω6 to ω3 fatty acids on growth performance, tissue composition, fatty acid biosynthesis and lipid-related gene expression in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:290-304. [PMID: 31003197 DOI: 10.1016/j.cbd.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023]
Abstract
Little is known about how variation in omega-6 to omega-3 (ω6:ω3) fatty acid (FA) ratios affects lipid metabolism and eicosanoid synthesis in salmon, and the potential underlying molecular mechanisms. The current study examined the impact of five plant-based diets (12-week exposure) with varying ω6:ω3 (0.3-2.7) on the growth, tissue lipid composition (muscle and liver), and hepatic transcript expression of lipid metabolism and eicosanoid synthesis-related genes in Atlantic salmon. Growth performance and organ indices were not affected by dietary ω6:ω3. The liver and muscle FA composition was highly reflective of the diet (ω6:ω3 of 0.2-0.8 and 0.3-1.9, respectively) and suggested elongation and desaturation of the ω3 and ω6 precursors 18:3ω3 and 18:2ω6. Furthermore, proportions of ω6 and ω3 PUFA in both tissues showed significant positive correlations with dietary inclusion (% of diet) of soy and linseed oils, respectively. Compound-specific stable isotope analysis (CSIA) further demonstrated that liver long-chain polyunsaturated fatty acid (LC-PUFA) synthesis (specifically 20:5ω3 and 20:4ω6) was largely driven by dietary 18:3ω3 and 18:2ω6, even when 20:5ω3 and 22:6ω3 were supplied at levels above minimum requirements. In addition, significant positive and negative correlations were identified between the transcript expression of LC-PUFA synthesis-related genes and liver ω6 and ω3 LC-PUFA, respectively, further supporting FA biosynthesis. Liver ω3 LC-PUFA also correlated negatively with the eicosanoid synthesis-related transcripts pgds and cox1. This is the first study to use CSIA, hepatic transcriptome, and tissue lipid composition analyses concurrently to demonstrate the impact of plant-based diets with varying ω6:ω3 on farmed Atlantic salmon.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada.
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada.
| |
Collapse
|
15
|
Individual differences in EPA and DHA content of Atlantic salmon are associated with gene expression of key metabolic processes. Sci Rep 2019; 9:3889. [PMID: 30846825 PMCID: PMC6405848 DOI: 10.1038/s41598-019-40391-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to explore how individual differences in content of the omega-3 fatty acids EPA and DHA in skeletal muscle of slaughter-sized Atlantic salmon, are associated with expression of genes involved in key metabolic processes. All experimental fish were fed the same diet throughout life and fasted for 14 days prior to slaughter. Still, there were relatively large individual variations in EPA and DHA content of skeletal muscle. Higher DHA content was concurrent with increased expression of genes of the glycolytic pathway and the production of pyruvate and lactate, whereas EPA was associated with increased expression of pentose phosphate pathway and glycogen breakdown genes. Furthermore, EPA, but not DHA, was associated with expression of genes involved in insulin signaling. Expression of genes specific for skeletal muscle function were positively associated with both EPA and DHA. EPA and DHA were also associated with expression of genes related to eicosanoid and resolvin production. EPA was negatively associated with expression of genes involved in lipid catabolism. Thus, a possible reason why some individuals have a higher level of EPA in the skeletal muscle is that they deposit - rather than oxidize - EPA for energy.
Collapse
|
16
|
Liland NS, Pittman K, Whatmore P, Torstensen BE, Sissener NH. Fucosterol Causes Small Changes in Lipid Storage and Brassicasterol Affects some Markers of Lipid Metabolism in Atlantic Salmon Hepatocytes. Lipids 2018; 53:737-747. [DOI: 10.1002/lipd.12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Nina S. Liland
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Karin Pittman
- Department of Biology; University of Bergen, Thormøhlensgate 53B; 5020 Bergen Norway
| | - Paul Whatmore
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Bente E. Torstensen
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Nini H. Sissener
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| |
Collapse
|
17
|
Sissener NH. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. ACTA ACUST UNITED AC 2018. [PMID: 29514891 DOI: 10.1242/jeb.161521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
'Are we what we eat?' Yes and no. Although dietary fat affects body fat, there are many modifying mechanisms. In Atlantic salmon, there is a high level of retention of the n-3 fatty acid (FA) docosahexaenoic acid (DHA, 22:6n-3) relative to the dietary content, whereas saturated FAs never seem to increase above a specified level, which is probably an adaptation to low and fluctuating body temperature. Net production of eicosapentaenoic acid (EPA, 20:5n-3) and especially DHA occurs in salmon when dietary levels are low; however, this synthesis is not sufficient to maintain EPA and DHA at similar tissue levels to those of a traditional fish oil-fed farmed salmon. The commercial diets of farmed salmon have changed over the past 15 years towards a more plant-based diet owing to the limited availability of the marine ingredients fish meal and fish oil, resulting in decreased EPA and DHA and increased n-6 FAs. Salmon is part of the human diet, leading to the question 'Are we what the salmon eats?' Dietary intervention studies using salmon have shown positive effects on FA profiles and health biomarkers in humans; however, most of these studies used salmon that were fed high levels of marine ingredients. Only a few human intervention studies and mouse trials have explored the effects of the changing feed composition of farmed salmon. In conclusion, when evaluating feed ingredients for farmed fish, effects throughout the food chain on fish health, fillet composition and human health need to be considered.
Collapse
Affiliation(s)
- Nini H Sissener
- Fish Nutrition, Requirements and Welfare, Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
18
|
Ayisi CL, Yamei C, Zhao JL. Genes, transcription factors and enzymes involved in lipid metabolism in fin fish. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aggene.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary fish oil and associatedn-3 long-chain PUFA content. Br J Nutr 2017; 118:1010-1022. [DOI: 10.1017/s0007114517002975] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe replacement of fish oil (FO) with vegetable oil (VO) in feed formulations reduces the availability ofn-3 long-chain PUFA (LC-PUFA) to marine fish such as gilthead seabream. The aim of this study was to examine compositional and physiological responses to a dietary gradient ofn-3 LC-PUFA. Six iso-energetic and iso-nitrogenous diets (D1–D6) were fed to seabream, with the added oil being a blend of FO and VO to achieve a dietary gradient ofn-3 LC-PUFA. Fish were sampled after 4 months feeding, to determine biochemical composition, tissue fatty acid concentrations and lipid metabolic gene expression. The results indicated a disturbance to lipid metabolism, with fat in the liver increased and fat deposits in the viscera reduced. Tissue fatty acid profiles were altered towards the fatty acid compositions of the diets. There was evidence of endogenous modification of dietary PUFA in the liver which correlated with the expression of fatty acid desaturase 2 (fads2). Expression of sterol regulatory element binding protein 1 (srebp1), fads2and fatty acid synthase increased in the liver, whereas PPARα1 pathways appeared to be supressed by dietary VO in a concentration-dependent manner. The effects in lipogenic genes appear to become measurable in D1–D3, which agrees with the weight gain data suggesting that disturbances to energy metabolism and lipogenesis may be related to performance differences. These findings suggested that suppression ofβ-oxidation and stimulation ofsrebp1-mediated lipogenesis may play a role in contributing toward steatosis in fish fedn-3 LC-PUFA deficient diets.
Collapse
|
20
|
Li S, Vestergren AS, Wall H, Trattner S, Pickova J, Ivarsson E. Feeding steam-pelleted rapeseed affects expression of genes involved in hepatic lipid metabolism and fatty acid composition of chicken meat. Poult Sci 2017; 96:2965-2974. [DOI: 10.3382/ps/pex047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/25/2017] [Indexed: 11/20/2022] Open
|
21
|
Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii). PLoS One 2017; 12:e0176216. [PMID: 28430821 PMCID: PMC5400258 DOI: 10.1371/journal.pone.0176216] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022] Open
Abstract
An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics.
Collapse
|
22
|
Parental nutritional programming and a reminder during juvenile stage affect growth, lipid metabolism and utilisation in later developmental stages of a marine teleost, the gilthead sea bream (Sparus aurata). Br J Nutr 2017; 118:500-512. [DOI: 10.1017/s0007114517002434] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractNutrition during periconception and early development can modulate metabolic routes to prepare the offspring for adverse conditions through a process known as nutritional programming. In gilthead sea bream, replacement of fish oil (FO) with linseed oil (LO) in broodstock diets improves growth in the 4-month-old offspring challenged with low-FO and low-fishmeal (FM) diets for 1 month. The present study further investigated the effects of broodstock feeding on the same offspring when they were 16 months old and were challenged for a second time with the low-FM and low-FO diet for 2 months. The results showed that replacement of parental moderate-FO feeding with LO, combined with juvenile feeding at 4 months old with low-FM and low-FO diets, significantly (P<0·05) improved offspring growth and feed utilisation of low-FM/FO diets even when they were 16 months old: that is, when they were on the verge of their first reproductive season. Liver fatty acid composition was significantly affected by broodstock or reminder diets as well as by their interaction. Moreover, the reduction of long-chain PUFA and increase in α-linolenic acid and linoleic acid in broodstock diets lead to a significant down-regulation of hepatic lipoprotein lipase (P<0·001) and elongation of very long-chain fatty acids protein 6 (P<0·01). Besides, fatty acid desaturase 2 values were positively correlated to hepatic levels of 18 : 4n-3, 18 : 3n-6, 20 : 5n-3, 22 : 6n-3 and 22 : 5n-6. Thus, this study demonstrated the long-term nutritional programming of gilthead sea bream through broodstock feeding, the effect of feeding a ‘reminder’ diet during juvenile stages to improve utilisation of low-FM/FO diets and fish growth as well as the regulation of gene expression along the fish’s life-cycle.
Collapse
|
23
|
Xie D, Chen F, Lin S, You C, Wang S, Zhang Q, Monroig Ó, Tocher DR, Li Y. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:37-45. [DOI: 10.1016/j.cbpb.2016.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023]
|
24
|
Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles. Br J Nutr 2016; 116:19-34. [DOI: 10.1017/s000711451600163x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH–) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation ofFADS2transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition, plasma phospholipid and cholesterol concentrations, and LC-PUFA biosynthesis regulation. Interactions between dietary macronutrients induced modifications in tissue lipid and glycogen content.
Collapse
|
25
|
Does broodstock nutritional history affect the response of progeny to different first-feeding diets? A whole-body transcriptomic study of rainbow trout alevins. Br J Nutr 2016; 115:2079-92. [PMID: 27112276 DOI: 10.1017/s0007114516001252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The whole-body transcriptome of trout alevins was characterised to investigate the effects of long-term feeding of rainbow trout broodstock females a diet free of fishmeal and fish oil on the metabolic capacities of progeny. Effects were studied before first feeding and after 3 weeks of feeding diets containing different proportions of marine and plant ingredients. Feeding alevins plant-based diets resulted in lower fish body weight, irrespective of maternal nutritional history. No differences in whole-body lipids were found between treatments, and the tissue fatty acid profile strongly reflected that of the respective broodstock or first-feeding diets. We showed that the maternal diet history did not significantly affect expressions of any genes before the first feeding. Interestingly, we found an effect of maternal nutritional history on gene expression in alevins after 3 weeks of feeding. The major differences in the transcriptome of alevins from plant-based diet-fed females compared with those from commercial-fed females were as follows: (i) down-regulation of genes involved in muscle growth/contraction and (ii) up-regulation of genes involved in carbohydrate and energy metabolism related to the delay in growth/development observed with plant-based diets. Our findings also showed an effect of the first-feeding diets, irrespective of maternal nutritional history. Specifically, the introduction of plant ingredients resulted in the up-regulation of genes involved in amino acid/protein and cholesterol metabolism and in differences in the expressions of genes related to carbohydrate metabolism. Information gained through this study opens up avenues for further reduction of marine ingredients in trout diets, including the whole rearing cycle.
Collapse
|
26
|
Nutritional regulation of long-chain PUFA biosynthetic genes in rainbow trout (Oncorhynchus mykiss). Br J Nutr 2016; 115:1721-9. [DOI: 10.1017/s0007114516000830] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMost studies on dietary vegetable oil in rainbow trout (Oncorhynchus mykiss) have been conducted on a background of dietary EPA (20 : 5n-3) and DHA (22 : 6n-3) contained in the fishmeal used as a protein source in aquaculture feed. If dietary EPA and DHA repress their endogenous synthesis from α-linolenic acid (ALA, 18 : 3n-3), then the potential of ALA-containing vegetable oils to maintain tissue EPA and DHA has been underestimated. We examined the effect of individual dietary n-3 PUFA on the expression of the biosynthetic genes required for metabolism of ALA to DHA in rainbow trout. A total of 720 juvenile rainbow trout were allocated to twenty-four experimental tanks and assigned one of eight diets. The effect of dietary ALA, EPA or DHA, in isolation or in combination, on hepatic expression of fatty acyl desaturase (FADS)2a(Δ6), FADS2b(Δ5), elongation of very long-chain fatty acid (ELOVL)5 and ELOVL2 was examined after 3 weeks of dietary intervention. The effect of these diets on liver and muscle phospholipid PUFA composition was also examined. The expression levels of FADS2a(Δ6), ELOVL5 and ELOVL2 were highest when diets were high in ALA, with no added EPA or DHA. Under these conditions ALA was readily converted to tissue DHA. Dietary DHA had the largest and most consistent effect in down-regulating the gene expression of all four genes. The ELOVL5 expression was the least responsive of the four genes to dietary n-3 PUFA changes. These findings should be considered when optimising aquaculture feeds containing vegetable oils and/or fish oil or fishmeal to achieve maximum DHA synthesis.
Collapse
|
27
|
Betancor MB, Olsen RE, Solstorm D, Skulstad OF, Tocher DR. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:227-38. [PMID: 26732752 DOI: 10.1016/j.bbalip.2015.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
Abstract
The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n-3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n-3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n-3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid.
Collapse
Affiliation(s)
- M B Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - R E Olsen
- Institute of Marine Research, Matre 5984, Matredal, Norway; Norwegian University of Science and Technology, Department of Biology, 7491 Trondheim, Norway
| | - D Solstorm
- Institute of Marine Research, Matre 5984, Matredal, Norway
| | - O F Skulstad
- Institute of Marine Research, Matre 5984, Matredal, Norway
| | - D R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
28
|
Geay F, Mellery J, Tinti E, Douxfils J, Larondelle Y, Mandiki SNM, Kestemont P. Effects of dietary linseed oil on innate immune system of Eurasian perch and disease resistance after exposure to Aeromonas salmonicida achromogen. FISH & SHELLFISH IMMUNOLOGY 2015; 47:782-796. [PMID: 26497094 DOI: 10.1016/j.fsi.2015.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
This study was designated to investigate the effects of dietary fish oil (FO diet) replacement by linseed oil (LO diet) on regulation of immune response and disease resistance in Eurasian perch (Perca fluviatilis). A control diet containing fish oil (FO = cod liver oil) and characterized by high levels of n-3 high LC-PUFA (6% EPA, 7.5% of total fatty acids (FAs)) was compared to linseed oil diet (LO diet) composed of low LC-PUFA contents (1% EPA, 2.3% DHA of total FAs) but high C18 fatty acids levels. The experiment was conducted in quadruplicate groups of 80 fish each. After 10 weeks of feeding, the innate immune status was evaluated in various organs (liver, spleen, and head-kidney) (feeding condition). Two days later, a bacterial challenge was performed on fish from 2 rearing conditions: fish infected with Aeromonas salmonicida (bacteria condition) and fish injected with sterile medium but maintained in the same flow system that fish challenged with bacteria (sentinel condition). Three days after injection of bacteria, a significant decrease of lymphocyte, thrombocyte and basophil populations was observed while neutrophils were not affected. In addition, plasma lysozyme activity and reactive oxygen species production in kidney significantly increased in fish challenged with A. salmonicida while the plasma alternative complement pathway activity was not affected. Increase of plasma lysozyme activity as well as reactive oxygen species production in spleen and kidney of sentinel fish suggest that these immune defenses can also be activated, but at lower bacteria concentration than infected fish. No differences in leucocyte populations, plasma lysozyme and alternative complement pathway activities were observed between dietary treatments. Similarly, expression of genes related to eicosanoid synthesis in liver were not affected by the dietary oil source but were strongly stimulated in fish challenged with A. salmonicida. These findings demonstrated that the use of linseed oil does not deplete the innate immune system of Eurasian perch juveniles.
Collapse
Affiliation(s)
- F Geay
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - J Mellery
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud, 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - E Tinti
- Unité de Chimie Physique Théorique et Structurale, Université de Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - J Douxfils
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Y Larondelle
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud, 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - S N M Mandiki
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - P Kestemont
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium.
| |
Collapse
|
29
|
Liao K, Yan J, Mai K, Ai Q. Dietary Olive and Perilla Oils Affect Liver Mitochondrial DNA Methylation in Large Yellow Croakers. J Nutr 2015; 145:2479-85. [PMID: 26400965 DOI: 10.3945/jn.115.216481] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/25/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Substantial progress has been made in nutritional epigenetics, but little is known regarding whether mitochondrial DNA (mtDNA) methylation is involved in this process. OBJECTIVE The objective of this study was to determine whether dietary lipid sources [various fatty acids (FAs)] modify mtDNA methylation. METHODS A total of 600 large yellow croakers (Larimichthys crocea) with an average initial weight of 151 ± 4 g were fed 1 of 5 diets (3 replicate cages/treatment) containing either fish oil (FO) (control), palmitic acid, olive oil (OO), sunflower oil, or perilla oil (PO) as the dietary lipid source (12% dry weight of the diet) for 70 d. Pyrosequencing was used to determine the effects of dietary lipid sources (FAs) on mtDNA methylation. RESULTS Mitochondrial arginine transfer RNA and NAD(H) dehydrogenase 4L encoding region methylation in the liver was higher in the OO (9.5% ± 0.52%; P < 0.05) and PO (7.3% ± 0.33%; P < 0.05) groups than in the FO (5.9% ± 0.42%) group, whereas 12S ribosomal RNA (rRNA) methylation in the liver was lower in the OO group (2.7% ± 0.22%) than in the FO group (4.2% ± 0.73%) (P < 0.05). Additionally, fish fed the OO diet had lower liver mRNA levels of ND3 (P < 0.05), ND4L (P < 0.05), ND6 (P < 0.05), 12S rRNA (P < 0.05), and 16S rRNA (P < 0.05) than those fed the FO diet, whereas fish fed the PO diet had lower liver mRNA levels of 16S rRNA than those fed the FO diet (P < 0.05). Moreover, fish fed the OO (P < 0.05) or PO (P < 0.05) diet had lower liver mitochondrial complex I activity than did those fed the FO diet. CONCLUSIONS These findings provide the first evidence, to our knowledge, that dietary lipid sources influence mitochondrial function through mtDNA methylation in large yellow croakers.
Collapse
Affiliation(s)
- Kai Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, and Key Laboratory of Mariculture, Education Ministry of China, Ocean University of China, Qingdao, China
| | - Jing Yan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, and Key Laboratory of Mariculture, Education Ministry of China, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, and Key Laboratory of Mariculture, Education Ministry of China, Ocean University of China, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, and Key Laboratory of Mariculture, Education Ministry of China, Ocean University of China, Qingdao, China
| |
Collapse
|
30
|
Geay F, Wenon D, Mellery J, Tinti E, Mandiki SNM, Tocher DR, Debier C, Larondelle Y, Kestemont P. Dietary Linseed Oil Reduces Growth While Differentially Impacting LC-PUFA Synthesis and Accretion into Tissues in Eurasian Perch (Perca fluviatilis). Lipids 2015; 50:1219-32. [PMID: 26439838 DOI: 10.1007/s11745-015-4079-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to evaluate the impact of replacing dietary fish oil (FO) with linseed oil (LO) on growth, fatty acid composition and regulation of lipid metabolism in Eurasian perch (Perca fluviatilis) juveniles. Fish (17.5 g initial body weight) were fed isoproteic and isoenergetic diets containing 116 g/kg of lipid for 10 weeks. Fish fed the LO diet displayed lower growth rates and lower levels of DHA in the liver and muscle than fish fed the FO diet, while mortality was not affected by dietary treatment. However, DHA content recorded in the liver and muscle of fish fed the LO diet remained relatively high, despite a weight gain of 134 % and a reduced dietary level of long-chain polyunsaturated fatty acids (LC-PUFA), suggesting endogenous LC-PUFA biosynthesis. This was supported by the higher amounts of pathway intermediates, including 18:4n-3, 20:3n-3, 20:4n-3, 18:3n-6 and 20:3n-6, recorded in the liver of fish fed the LO diet in comparison with those fed the FO diet. However, fads2 and elovl5 gene expression and FADS2 enzyme activity were comparable between the two groups. Similarly, the expression of genes involved in eicosanoid synthesis was not modulated by dietary LO. Thus, the present study demonstrated that in fish fed LO for 10 weeks, growth was reduced but DHA levels in tissues were largely maintained compared to fish fed FO, suggesting a physiologically relevant rate of endogenous LC-PUFA biosynthesis capacity.
Collapse
Affiliation(s)
- F Geay
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - D Wenon
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - J Mellery
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - E Tinti
- Unité de Chimie Physique Théorique et Structurale, Université de Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - D R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - C Debier
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - Y Larondelle
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - P Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
31
|
Atlantic salmon (Salmo salar) liver transcriptome response to diets containing Camelina sativa products. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 14:1-15. [PMID: 25681993 DOI: 10.1016/j.cbd.2015.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/13/2023]
Abstract
Due to increasing demand for fish oil (FO) and fish meal (FM) in aquafeeds, more sustainable alternatives such as plant-derived oils and proteins are needed. Camelina sativa products are viable feed ingredients given the high oil and crude protein content in the seed. Atlantic salmon were fed diets with complete or partial replacement of FO and/or FM with camelina oil (CO) and/or camelina meal (CM) in a 16-week trial [Control diet: FO; Test diets: 100% CO replacement of FO (100CO), or 100CO with solvent-extracted FM (100COSEFM), 10% CM (100CO10CM), or SEFM+10% CM (100COSEFM10CM)]. Diet composition, growth, and fatty acid analyses for this feeding trial were published previously. A 44K microarray experiment identified liver transcripts that responded to 100COSEFM10CM (associated with reduced growth) compared to controls, yielding 67 differentially expressed features (FDR<5%). Ten microarray-identified genes [cpt1, pcb, bar, igfbp-5b (2 paralogues), btg1, dnph1, lect-2, clra, klf9, and fadsd6a], and three additional genes involved in lipid metabolism [elovl2, elovl5 (2 paralogues), and fadsd5], were subjected to QPCR with liver templates from all 5 dietary treatments. Of the microarray-identified genes, only bar was not QPCR validated. Both igfbp-5b paralogues were significantly down-regulated, and fadsd6a was significantly up-regulated, in all 4 camelina-containing diet groups compared with controls. Multivariate statistics were used to correlate hepatic desaturase and elongase gene expression data with tissue fatty acid profiles, indicating the involvement of these genes in LC-PUFA biosynthesis. This nutrigenomic study provides molecular biomarkers for use in developing novel aquafeeds using camelina products.
Collapse
|
32
|
Coccia E, Varricchio E, Vito P, Turchini GM, Francis DS, Paolucci M. Fatty acid-specific alterations in leptin, PPARα, and CPT-1 gene expression in the rainbow trout. Lipids 2014; 49:1033-46. [PMID: 25108415 DOI: 10.1007/s11745-014-3939-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/15/2014] [Indexed: 12/17/2022]
Abstract
It is known that fatty acids (FA) regulate lipid metabolism by modulating the expression of numerous genes. In order to gain a better understanding of the effect of individual FA on lipid metabolism related genes in rainbow trout (Oncorhynchus mykiss), an in vitro time-course study was implemented where twelve individual FA (butyric 4:0; caprylic 8:0; palmitic (PAM) 16:0; stearic (STA) 18:0; palmitoleic16:1n-7; oleic 18:1n-9; 11-cis-eicosenoic 20:1n-9; linoleic (LNA) 18:2n-6; α-linolenic (ALA) 18:3n-3; eicosapentenoic (EPA) 20:5n-3; docosahexaenoic (DHA) 22:6n-3; arachidonic (ARA) 20:4n-6) were incubated in rainbow trout liver slices. The effect of FA administration over time was evaluated on the expression of leptin, PPARα and CPT-1 (lipid oxidative related genes). Leptin mRNA expression was down regulated by saturated fatty acids (SFA) and LNA, and was up regulated by monounsaturated fatty acids (MUFA) and long chain PUFA, whilst STA and ALA had no effect. PPARα and CPT-1mRNA expression were up regulated by SFA, MUFA, ALA, ARA and DHA; and down regulated by LNA and EPA. These results suggest that there are individual and specific FA induced modifications of leptin, PPARα and CPT-1 gene expression in rainbow trout, and it is envisaged that such results may provide highly valuable information for future practical applications in fish nutrition.
Collapse
Affiliation(s)
- Elena Coccia
- Department of Sciences and Technologies, Via Port'Arsa, 11, 82100, Benevento, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Hampel M, Bron JE, Taggart JB, Leaver MJ. The antidepressant drug carbamazepine induces differential transcriptome expression in the brain of Atlantic salmon, Salmo salar. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 151:114-123. [PMID: 24439755 DOI: 10.1016/j.aquatox.2013.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
Concerns are being expressed recently over possible environmental effects of human pharmaceuticals. Although the likelihood of acute toxicity is low, the continuous discharge of pharmaceuticals into the aquatic environment means that sublethal effects on non-target organisms need to be seriously considered. One-year-old Atlantic salmon parr were exposed to 7.85±0.13μgL(-1) of the antidepressant drug Carbamazepine (CBZ) for five days to investigate changes of mRNA expression in the brain by means of a custom 17k Atlantic salmon cDNA microarray. The selected concentration is similar to upper levels that can be found in hospital and sewage treatment plant effluents. After treatment, 373 features were differently expressed with 26 showing up- or down-regulation of ≥2-fold (p≤0.05). Among the mRNAs showing the highest change were the pituitary hormones encoding features somatolactin, prolactin and somatotropin, or growth hormone. Functional enrichment and network analyses of up- and down-regulated genes showed that CBZ induced a highly different gene expression profile in comparison to untreated organisms. CBZ induced expression of essential genes of the focal adhesion and extracellular matrix - receptor interaction pathways most likely through integrin alpha-6 (itga6) activation. Negative regulation of apoptotic process, extracellular matrix organization and heme biosynthesis were the most enriched biological process related GO-terms, with the simultaneous enrichment of collagen and extracellular region related cellular component GO-terms, and extracellular matrix structural constituent, hormone activity and chromatin binding molecular function related GO-terms. These results show that relatively low doses of CBZ may affect brain physiology in exposed salmon parr, targeting similar processes as in human, indicating a high degree of conservation of targets of CBZ action. However, and since the mRNAs showing most changes in expression are critical for adaptation to different stressors and life history transitions in Atlantic salmon, more research should be undertaken to assess CBZ effects to avoid impairment of normal development and maintenance of natural populations.
Collapse
Affiliation(s)
- M Hampel
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK.
| | - J E Bron
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - J B Taggart
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - M J Leaver
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| |
Collapse
|
34
|
Hixson SM, Parrish CC, Anderson DM. Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality. Food Chem 2014; 157:51-61. [PMID: 24679751 DOI: 10.1016/j.foodchem.2014.02.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/20/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
Camelina oil (CO) and meal (CM) are potential replacements of fish meal (FM) and oil (FO) in aquaculture feeds. CO is high in α-linolenic acid (18:3ω3, ALA) (30%), with an ω3/ω6 ratio >1. This study tested diets with 100% CO, solvent extracted FM (SEFM) and partially substituted FM with 10% CM, in a 16 week feeding trial with Atlantic salmon (initial weight 240 g fish(-1)). Final weight (529-691 g fish(-1)) was not affected by using 100% CO; however it was lower in groups fed SEFM and 10% CM diets. Total lipid in salmon flesh fed a diet with CO, SEFM and CM (22% ww(-1)) was significantly higher than FO flesh (14% ww(-1)). There was no difference in the sensory quality of salmon fillets that were fed either FO or 100% CO diets. This was the first study to use CO as a complete FO replacement in diets for farmed Atlantic salmon.
Collapse
Affiliation(s)
- Stefanie M Hixson
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Derek M Anderson
- Department of Plant and Animal Science, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
35
|
Limtipsuntorn U, Haga Y, Kondo H, Hirono I, Satoh S. Microarray analysis of hepatic gene expression in juvenile Japanese flounder Paralichthys olivaceus fed diets supplemented with fish or vegetable oils. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:88-102. [PMID: 24052493 DOI: 10.1007/s10126-013-9535-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/15/2013] [Indexed: 05/25/2023]
Abstract
Gene expression profiling was performed in Japanese flounder Paralichthys olivaceus fed diets supplemented with fish oil (FO), linseed oil (LO), or olive oil (OO) for 6 weeks. The LO and OO groups showed significantly retarded growth, lower feed intake, lower protein efficiency ratio, and lower hepatosomatic index (P < 0.05). Liver fatty acid composition reflected the dietary fatty acid composition. Microarray analysis revealed that dietary n - 3 highly unsaturated fatty acid (HUFA) deficiency affected 169 transcripts. In the LO group, 57 genes were up-regulated and 38 genes were down-regulated, whereas in the OO group nine genes were up-regulated and 87 genes were down-regulated. Analysis of the functional annotations suggested that dietary n - 3 HUFA affected genes involved in signal transduction (23.2 %), cellular processes (21.1 %), metabolism (including glucose, lipid, and nucleobase; 15.5 %), transport (11.3 %), regulation of transcription (10.5 %), and immune response (4.2 %). Several genes encoding serine/threonine kinases such as protein kinase C and calmodulin-dependent kinase and nuclear hormone receptors such as vitamin D receptor, retinoic acid receptor, and receptors for cytokines (bone morphogenic protein and transforming growth factor β) were affected. Among 169 transcripts, 22 genes were affected in both LO and OO groups. The present study identified several genes involved in n - 3 HUFA deficiency-sensitive pathways, which will be useful for selective breeding of flounder strains able to adapt to n - 3 HUFA deficiency.
Collapse
Affiliation(s)
- Ubonrat Limtipsuntorn
- Department of Marine Bioscience, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato 4-5-7, Tokyo, 108-8477, Japan
| | | | | | | | | |
Collapse
|
36
|
Changes in tissue lipid and fatty acid composition of farmed rainbow trout in response to dietary camelina oil as a replacement of fish oil. Lipids 2013; 49:97-111. [PMID: 24264359 DOI: 10.1007/s11745-013-3862-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
Camelina oil (CO) replaced 50 and 100 % of fish oil (FO) in diets for farmed rainbow trout (initial weight 44 ± 3 g fish(-1)). The oilseed is particularly unique due to its high lipid content (40 %) and high amount of 18:3n-3 (α-linolenic acid, ALA) (30 %). Replacing 100 % of fish oil with camelina oil did not negatively affect growth of rainbow trout after a 12-week feeding trial (FO = 168 ± 32 g fish(-1); CO = 184 ± 35 g fish(-1)). Lipid and fatty acid profiles of muscle, viscera and skin were significantly affected by the addition of CO after 12 weeks of feeding. However, final 22:6n-3 [docosahexaenoic acid (DHA)] and 20:5n-3 [eicosapentaenoic acid (EPA)] amounts (563 mg) in a 75 g fillet (1 serving) were enough to satisfy daily DHA and EPA requirements (250 mg) set by the World Health Organization. Other health benefits include lower SFA and higher MUFA in filets fed CO versus FO. Compound-specific stable isotope analysis (CSIA) confirmed that the δ(13)C isotopic signature of DHA in CO fed trout shifted significantly compared to DHA in FO fed trout. The shift in DHA δ(13)C indicates mixing of a terrestrial isotopic signature compared to the isotopic signature of DHA in fish oil-fed tissue. These results suggest that ~27 % of DHA was synthesized from the terrestrial and isotopically lighter ALA in the CO diet rather than incorporation of DHA from fish meal in the CO diet. This was the first study to use CSIA in a feeding experiment to demonstrate synthesis of DHA in fish.
Collapse
|
37
|
Kortner TM, Gu J, Krogdahl Å, Bakke AM. Transcriptional regulation of cholesterol and bile acid metabolism after dietary soyabean meal treatment in Atlantic salmon (Salmo salar L.). Br J Nutr 2013; 109:593-604. [PMID: 22647297 DOI: 10.1017/s0007114512002024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inclusion of plant protein sources such as soyabean meal (SBM) in aquafeeds is associated with decreased lipid digestibility, reduced bile acid levels and hypocholesterolaemia. The mechanism for these metabolic abnormalities is unknown. The present study aimed at gaining further insight into how cholesterol and bile acid metabolism is modulated by SBM feeding by quantifying a number of mRNA species corresponding to key proteins involved in cholesterol and bile acid metabolism using quantitative real-time PCR. A 21 d feeding trial with sequential sampling at ten time points following initiation of 20% SBM exposure was conducted on Atlantic salmon. A histological evaluation confirmed distal intestinal enteritis after 5 d of dietary exposure to the SBM, whereas diminished glycogen/lipid deposition was the only relevant finding observed in the liver. SBM inclusion resulted in reduced body pools of cholesterol and bile acids. Hepatic gene expression profiles revealed up-regulation of genes encoding rate-limiting enzymes in cholesterol (3-hydroxy-3-methyl-glutaryl-CoA reductase; HMGCR) and bile acid (cytochrome P4507A1 (CYP7A1)) biosynthesis, as well as up-regulation of their associated transcription factors (sterol regulatory element binding proteins 1 and 2, liver X receptor, farnesoid X receptor and PPAR isoforms). Hepatic gene expressions of cholesterol (ATP binding cassette G5 (ABCG5)) and bile acid (ATP binding cassette B11 (ABCB11)) transporters were, by and large, not influenced by the SBM, but distal intestinal expression patterns of ABCG5 and apical Na-dependent bile acid transporter indicated impaired cholesterol and bile acid reabsorption. In conclusion, hepatic gene expression profiles indicated that the capacity for cholesterol and bile acid synthesis was up-regulated, whereas the indicated impaired cholesterol and bile acid reabsorption probably occurred as a direct result of distal intestinal inflammation.
Collapse
Affiliation(s)
- Trond M Kortner
- Department of Basic Sciences and Aquatic Medicine, Aquaculture Protein Centre (a CoE), Norwegian School of Veterinary Science, PO Box 8146 Dep, NO-0033 Oslo, Norway
| | - Jinni Gu
- Department of Basic Sciences and Aquatic Medicine, Aquaculture Protein Centre (a CoE), Norwegian School of Veterinary Science, PO Box 8146 Dep, NO-0033 Oslo, Norway
| | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, Aquaculture Protein Centre (a CoE), Norwegian School of Veterinary Science, PO Box 8146 Dep, NO-0033 Oslo, Norway
| | - Anne Marie Bakke
- Department of Basic Sciences and Aquatic Medicine, Aquaculture Protein Centre (a CoE), Norwegian School of Veterinary Science, PO Box 8146 Dep, NO-0033 Oslo, Norway
| |
Collapse
|
38
|
Reduced lipid intake leads to changes in digestive enzymes in the intestine but has minor effects on key enzymes of hepatic intermediary metabolism in rainbow trout ( Oncorhynchus mykiss). Animal 2012; 1:1272-82. [PMID: 22444883 DOI: 10.1017/s1751731107000596] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For sustainable aquaculture, the removal of marine resource ingredients in fish diets is an important objective. While most studies focus on the replacement of fish oil by vegetable oil, little is known on the nutritional effects of presence (which corresponds to the control diet) or absence of dietary fish oil. We studied fatty acid composition of brush-border membranes and digestive enzyme activities of the intestine and measured the expression and activities of several enzymes involved in the hepatic intermediary metabolism of rainbow trout (Oncorhynchus mykiss) fed for 7 weeks with or without fish oil. The diets were pair-fed to ensure that fish fed either diet had comparable carbohydrate and protein intakes. Absence of fish oil significantly reduced growth rate, protein efficiency and plasma lipid components. Activities of intestinal digestive enzymes were significantly decreased in the anterior intestine in fish fed without fish oil. In liver, dietary fish oil removal did not affect the transcript levels or activities of the main enzymes involved in lipogenesis (fatty acid synthase) and fatty acid β-oxidation (3-hydroxyacyl-CoA dehydrogenase), glycolysis or amino acid oxidation. It lowered the expression of the genes coding for gluconeogenic enzymes (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase), but their enzyme activities were not affected. The activities, but not gene expression of lipogenic enzymes, involved in NADPH and malonyl-CoA formation were also modified after fish oil removal as reflected by higher activities of isocitrate dehydrogenase/glucose-6-phosphate dehydrogenase and acetyl-CoA carboxylase enzymes. Overall, our results indicate that the intestinal digestive capacity was strongly modified by dietary fish oil removal, while hepatic intermediary metabolism was only marginally affected, in fed rainbow trout.
Collapse
|
39
|
Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics 2012; 13:470. [PMID: 22967181 PMCID: PMC3444936 DOI: 10.1186/1471-2164-13-470] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022] Open
Abstract
Background Studies conducted with gilthead sea bream (Sparus aurata L.) have determined the maximum dietary replacement of fish meal and oil without compromising growth or product quality. The present study aimed to analyze the effect of the nutritional background on fish health and fish fed plant protein-based diets with fish oil (FO diet) or a blend of vegetable oils (66VO diet) were exposed for 102 days to the intestinal myxosporean parasite Enteromyxum leei, and the intestine transcriptome was analyzed with a customized oligo-microarray of 7,500 annotated genes. Results Infection prevalence was high and similar in the two diet groups, but the outcome of the disease was more pronounced in fish fed the 66VO diet. No differences were found in the transcriptome of both diet control groups, whereas the number of differentially expressed genes in infected groups was considerable. K-means clustering of these differentially expressed genes identified four expression patterns that reflected the progression of the disease with the magnitude of the fold-change being higher in infected 66VO fish. A positive correlation was found between the time of infection and the magnitude of the transcriptional change within the 66VO group, being higher in early infected animals. Within this diet group, a strong up-regulation of many components of the immune specific response was evidenced, whereas other genes related to complement response and xenobiotic metabolism were down-regulated. Conclusions The high replacement of fish oil by vegetable oils in practical fish feeds did not modify the intestine transcriptome of gilthead sea bream, but important changes were apparent when fish were exposed to the myxosporean E. leei. The detected changes were mostly a consequence rather than a cause of the different disease progression in the two diet groups. Hence, the developed microarray constitutes an excellent diagnostic tool to address changes associated with the action of intestinal pathogens, but lacks a prognostic value to predict in advance the different susceptibility of growing fish to the current pathogen.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, 12595, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar). BMC Genomics 2012; 13:448. [PMID: 22943471 PMCID: PMC3460786 DOI: 10.1186/1471-2164-13-448] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 08/24/2012] [Indexed: 02/06/2023] Open
Abstract
Background Expansion of aquaculture requires alternative feeds and breeding strategies to reduce dependency on fish oil (FO) and better utilization of dietary vegetable oil (VO). Despite the central role of intestine in maintaining body homeostasis and health, its molecular response to replacement of dietary FO by VO has been little investigated. This study employed transcriptomic and proteomic analyses to study effects of dietary VO in two family groups of Atlantic salmon selected for flesh lipid content, 'Lean' or 'Fat'. Results Metabolism, particularly of lipid and energy, was the functional category most affected by diet. Important effects were also measured in ribosomal proteins and signalling. The long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis pathway, assessed by fatty acid composition and gene expression, was influenced by genotype. Intestinal tissue contents of docosahexaenoic acid were equivalent in Lean salmon fed either a FO or VO diet and expression of LC-PUFA biosynthesis genes was up-regulated in VO-fed fish in Fat salmon. Dietary VO increased lipogenesis in Lean fish, assessed by expression of FAS, while no effect was observed on β-oxidation although transcripts of the mitochondrial respiratory chain were down-regulated, suggesting less active energetic metabolism in fish fed VO. In contrast, dietary VO up-regulated genes and proteins involved in detoxification, antioxidant defence and apoptosis, which could be associated with higher levels of polycyclic aromatic hydrocarbons in this diet. Regarding genotype, the following pathways were identified as being differentially affected: proteasomal proteolysis, response to oxidative and cellular stress (xenobiotic and oxidant metabolism and heat shock proteins), apoptosis and structural proteins particularly associated with tissue contractile properties. Genotype effects were accentuated by dietary VO. Conclusions Intestinal metabolism was affected by diet and genotype. Lean fish may have higher responsiveness to low dietary n-3 LC-PUFA, up-regulating the biosynthetic pathway when fed dietary VO. As global aquaculture searches for alternative oils for feeds, this study alerts to the potential of VO introducing contaminants and demonstrates the detoxifying role of intestine. Finally, data indicate genotype-specific responses in the intestinal transcriptome and proteome to dietary VO, including possibly structural properties of the intestinal layer and defence against cellular stress, with Lean fish being more susceptible to diet-induced oxidative stress.
Collapse
|
41
|
Reardon HT, Park WJ, Zhang J, Lawrence P, Kothapalli KSD, Brenna JT. The polypyrimidine tract binding protein regulates desaturase alternative splicing and PUFA composition. J Lipid Res 2011; 52:2279-2286. [PMID: 21980057 DOI: 10.1194/jlr.m019653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Δ6 desaturase, encoded by FADS2, plays a crucial role in omega-3 and omega-6 fatty acid synthesis. These fatty acids are essential components of the central nervous system, and they act as precursors for eicosanoid signaling molecules and as direct modulators of gene expression. The polypyrimidine tract binding protein (PTB or hnRNP I) is a splicing factor that regulates alternative pre-mRNA splicing. Here, PTB is shown to bind an exonic splicing silencer element and repress alternative splicing of FADS2 into FADS2 AT1. PTB and FADS2AT1 were inversely correlated in neonatal baboon tissues, implicating PTB as a major regulator of tissue-specific FADS2 splicing. In HepG2 cells, PTB knockdown modulated alternative splicing of FADS2, as well as FADS3, a putative desaturase of unknown function. Omega-3 fatty acids decreased by nearly one half relative to omega-6 fatty acids in PTB knockdown cells compared with controls, with a particularly strong decrease in eicosapentaenoic acid (EPA) concentration and its ratio to arachidonic acid (ARA). This is a rare demonstration of a mechanism specifically altering the cellular omega-3 to omega-6 fatty acid ratio without any change in diet/media. These findings reveal a novel role for PTB, regulating availability of membrane components and eicosanoid precursors for cell signaling.
Collapse
Affiliation(s)
- Holly T Reardon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Woo Jung Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Jimmy Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
42
|
Morais S, Pratoomyot J, Taggart JB, Bron JE, Guy DR, Bell JG, Tocher DR. Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis. BMC Genomics 2011; 12:255. [PMID: 21599965 PMCID: PMC3113789 DOI: 10.1186/1471-2164-12-255] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/20/2011] [Indexed: 01/05/2023] Open
Abstract
Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. Results A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. Conclusions This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
Collapse
Affiliation(s)
- Sofia Morais
- Institute of Aquaculture, University of Stirling, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Are apparent negative effects of feeding GM MON810 maize to Atlantic salmon, Salmo salar, caused by confounding factors? Br J Nutr 2011; 106:42-56. [PMID: 21418706 DOI: 10.1017/s0007114510005726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was conducted to follow up on apparent differences in growth, relative organ sizes, cellular stress and immune function in Atlantic salmon fed feed containing GM Bacillus thuringiensis maize compared with feed containing the non-modified parental maize line. Gene expression profiling on the distal intestinal segment and liver was performed by microarray, and selected genes were followed up by quantitative PCR (qPCR). In the liver, qPCR revealed some differentially regulated genes, including up-regulation of gelsolin precursor, down-regulation of ferritin heavy subunit and a tendency towards down-regulation of metallothionein (MT)-B. This, combined with the up-regulation of anti-apoptotic protein NR13 and similar tendencies for ferritin heavy chain and MT-A and -B in the distal intestine, suggests changes in cellular stress/antioxidant status. This corresponds well with and strengthens previous findings in these fish. To exclude possible confounding factors, the maize ingredients were analysed for mycotoxins and metabolites. The GM maize contained 90 μg/kg of deoxynivalenol (DON), while the non-GM maize was below the detection limit. Differences were also observed in the metabolite profiles of the two maize varieties, some of which seemed connected to the mycotoxin level. The effects on salmon observed in the present and previous studies correspond relatively well with the effects of DON as reported in the literature for other production animals, but knowledge regarding effects and harmful dose levels in fish is scarce. Thus, it is difficult to conclude whether the observed effects are caused by the DON level or by some other aspect of the GM maize ingredient.
Collapse
|
44
|
Hook SE. Promise and progress in environmental genomics: a status report on the applications of gene expression-based microarray studies in ecologically relevant fish species. JOURNAL OF FISH BIOLOGY 2010; 77:1999-2022. [PMID: 21133914 DOI: 10.1111/j.1095-8649.2010.02814.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The advent of any new technology is typically met with great excitement. So it was a few years ago, when the combination of advances in sequencing technology and the development of microarray technology made measurements of global gene expression in ecologically relevant species possible. Many of the review papers published around that time promised that these new technologies would revolutionize environmental biology as they had revolutionized medicine and related fields. A few years have passed since these technological advancements have been made, and the use of microarray studies in non-model fish species has been adopted in many laboratories internationally. Has the relatively widespread adoption of this technology really revolutionized the fields of environmental biology, including ecotoxicology, aquaculture and ecology, as promised? Or have these studies merely become a novelty and a potential distraction for scientists addressing environmentally relevant questions? In this review, the promises made in early review papers, in particular about the advances that the use of microarrays would enable, are summarized; these claims are compared to the results of recent studies to determine whether the forecasted changes have materialized. Some applications, as discussed in the paper, have been realized and have led to advances in their field, others are still under development.
Collapse
Affiliation(s)
- S E Hook
- Battelle Pacific Northwest Division, 1529 W. Sequim Bay Road, Sequim, WA 98382, USA.
| |
Collapse
|
45
|
Murray HM, Lall SP, Rajaselvam R, Boutilier LA, Flight RM, Blanchard B, Colombo S, Mohindra V, Yúfera M, Douglas SE. Effect of early introduction of microencapsulated diet to larval Atlantic halibut, Hippoglossus hippoglossus L. assessed by microarray analysis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:214-229. [PMID: 19618242 DOI: 10.1007/s10126-009-9211-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 05/06/2009] [Indexed: 05/28/2023]
Abstract
An experimental microdiet prepared using an internal gelation method was used to partially replace the traditional live feed (Artemia) for larval Atlantic halibut, Hippoglossus hippoglossus L. Three trials were conducted with microdiet introduced at 20, 32, and 43 days post first feeding and larvae were sampled at approximately 2, 13, 23, and 33 days after microdiet introduction in each trial. The success of feeding was assessed by morphometrics and histological analysis of gut contents. Microdiet particles were readily consumed after a period of adaptation and provided an adequate source of nutrients with no significant increase in mortality in the microdiet-fed group compared to the control group. However, growth was limited and there was an increased incidence of malpigmentation of the eye and skin. Subtle changes in underlying digestive and developmental physiology were revealed by microarray analysis of RNA from control and experimental fish given microdiet from day 20 post first feeding. Fifty-eight genes were differentially expressed over the four sampling times in the course of the trial and the 28 genes with annotated functions fell into five major categories: metabolism and biosynthesis, cell division and proliferation, protein trafficking, cell structure, and stress. Interestingly, several of these genes were involved in pigmentation and eye development, in agreement with the phenotypic abnormalities seen in the larvae.
Collapse
Affiliation(s)
- H M Murray
- Institute for Marine Biosciences, 1411 Oxford Street, Halifax, Nova Scotia, Canada, B3H 3Z1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Krøvel AV, Søfteland L, Torstensen BE, Olsvik PA. Endosulfan in vitro toxicity in Atlantic salmon hepatocytes obtained from fish fed either fish oil or vegetable oil. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:175-86. [PMID: 19874912 DOI: 10.1016/j.cbpc.2009.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 11/29/2022]
Abstract
The composition of the feed may alter the cellular composition of an organism and thus has the potential to influence a xenobiotic response. The main aim of this study was to see if the fatty acid composition of primary hepatocytes isolated from Atlantic salmon (Salmo salar L.) obtained from fish fed either a fish oil or a vegetable oil based diet, influenced the response to endosulfan exposure in vitro. The primary cultures were exposed to six different concentrations of endosulfan (0.001, 0.01, 0.1, 1, 10 and 100 microM) for 48 h. Cell morphology as well as a molecular toolbox of 16 genes encoding stress responsive and biotransformation proteins was examined. Endosulfan exposure caused moderate cytotoxicity and steatosis in a dose-dependent manner in the hepatocytes. In general, endosulfan hepatoxicity seems to be unaffected by the fatty acid composition of the hepatocytes. Exceptions were general stress (HSP70) and markers for estrogen exposure (ZP and VTG), which appeared to be slightly less responsive in hepatocytes isolated from the vegetable oil fed fish.
Collapse
Affiliation(s)
- Anne Vatland Krøvel
- National Institute of Nutrition and Seafood Research, N-5817 Bergen, Norway.
| | | | | | | |
Collapse
|
47
|
Hepatic protein kinase B (Akt)-target of rapamycin (TOR)-signalling pathways and intermediary metabolism in rainbow trout (Oncorhynchus mykiss) are not significantly affected by feeding plant-based diets. Br J Nutr 2009; 102:1564-73. [PMID: 19664314 DOI: 10.1017/s000711450999095x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to analyse the effects of partial or total replacement of fish meal (FM) and fish oil (FO) by a mixture of plant protein (PP) and a mixture of vegetable oils (VO) on the hepatic insulin-nutrient-signalling pathway and intermediary metabolism-related gene expression in rainbow trout (Oncorhynchus mykiss). Triplicate groups of fish were fed four practical diets containing graded levels of replacement of FM and FO by PP and VO for 12 weeks: diet 0/0 (100 % FM, 100 % FO); diet 50/50 (50 % FM and 50 % PP, 50 % FO and 50 % VO); diet 50/100 (50 % FM and 50 % PP, 100 % VO); diet 100/100 (100 % PP, 100 % VO). Samplings were performed on trout starved for 5 d then refed with their allocated diet. In contrast to partial substitution (diet 50/50), total substitution of FM and FO (diet 100/100) led to significantly lower growth compared with diet 0/0. The insulin-nutrient-signalling pathway (protein kinase B (Akt), target of rapamycin (TOR), S6 protein kinase 1 (S6K1) and S6) was characterised in trout liver and found to be activated by refeeding. However, changes in diet compositions did not differentially affect the Akt-TOR-signalling pathway. Moreover, expression of genes encoding fructose-1,6-biphosphatase, mitochondrial phosphoenolpyruvate carboxykinase, glucokinase, pyruvate kinase and carnitine palmitoyl transferase 1 were not affected by refeeding or by dietary changes. Refeeding down- and up-regulated the expression of gluconeogenic glucose-6-phosphatase isoform 1 and lipogenic fatty acid synthase genes, respectively. Expression of both genes was also increased with partial replacement of FM and total replacement of FO (diet 50/100). These findings indicate that plant-based diets barely affect glucose and lipid metabolism in trout.
Collapse
|
48
|
Raingeard D, Cancio I, Cajaraville MP. Cloning and expression pattern of peroxisome proliferator-activated receptors, estrogen receptor alpha and retinoid X receptor alpha in the thicklip grey mullet Chelon labrosus. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:26-35. [PMID: 18619562 DOI: 10.1016/j.cbpc.2008.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 02/07/2023]
Abstract
Aquatic organisms are exposed to diverse xenobiotics that cause peroxisome proliferation and/or endocrine disruption, both modulated in vertebrates by transcription factors of the nuclear receptor (NR) superfamily. Peroxisome proliferators are agonists of peroxisome proliferator-activated receptors (PPARs) that heterodimerize with the retinoid X receptor (RXR). Many xenoestrogens activate the estrogen receptor (ER). Here, 1090 bp of PPARalpha, 1255 bp of PPARgamma, 278 bp of RXRalpha, and 578 bp of ERalpha of thicklip grey mullet Chelon labrosus were cloned. Sequences were highly conserved, although relevant changes with respect to mammalian homologs were identified in PPARgamma and ERalpha. Semi-quantitative RT-PCR was used to determine if these NRs were expressed in different tissues of male, female and undifferentiated mullets captured in January and June. Expression of PPARs was highest in liver and lowest in muscle. RXRalpha expression was homogeneous excepting a low expression in male and female gill in January and brain and heart of undifferentiated fish in January and June. ERalpha expression predominated in liver and female gonad in June. The expression level of PPARs and ERalpha was significantly higher in liver in January than in gills in January or June. The present results show tissue-dependent modulation of expression of NRs in mullets.
Collapse
Affiliation(s)
- Damien Raingeard
- Laboratory of Cell Biology and Histology, Department of Zoology and Animal Cell Biology, University of the Basque Country, Bilbao, Basque Country, Spain
| | | | | |
Collapse
|
49
|
Kolditz CI, Paboeuf G, Borthaire M, Esquerré D, SanCristobal M, Lefèvre F, Médale F. Changes induced by dietary energy intake and divergent selection for muscle fat content in rainbow trout (Oncorhynchus mykiss), assessed by transcriptome and proteome analysis of the liver. BMC Genomics 2008; 9:506. [PMID: 18959775 PMCID: PMC2612026 DOI: 10.1186/1471-2164-9-506] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/29/2008] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Growing interest is turned to fat storage levels and allocation within body compartments, due to their impact on human health and quality properties of farm animals. Energy intake and genetic background are major determinants of fattening in most animals, including humans. Previous studies have evidenced that fat deposition depends upon balance between various metabolic pathways. Using divergent selection, we obtained rainbow trout with differences in fat allocation between visceral adipose tissue and muscle, and no change in overall body fat content. Transcriptome and proteome analysis were applied to characterize the molecular changes occurring between these two lines when fed a low or a high energy diet. We focused on the liver, center of intermediary metabolism and the main site for lipogenesis in fish, as in humans and most avian species. RESULTS The proteome and transcriptome analyses provided concordant results. The main changes induced by the dietary treatment were observed in lipid metabolism. The level of transcripts and proteins involved in intracellular lipid transport, fatty acid biosynthesis and anti-oxidant metabolism were lower with the lipid rich diet. In addition, genes and proteins involved in amino-acid catabolism and proteolysis were also under expressed with this diet. The major changes related to the selection effect were observed in levels of transcripts and proteins involved in amino-acid catabolism and proteolysis that were higher in the fat muscle line than in the lean muscle line. CONCLUSION The present study led to the identification of novel genes and proteins that responded to long term feeding with a high energy/high fat diet. Although muscle was the direct target, the selection procedure applied significantly affected hepatic metabolism, particularly protein and amino acid derivative metabolism. Interestingly, the selection procedure and the dietary treatment used to increase muscle fat content exerted opposite effects on the expression of the liver genes and proteins, with little interaction between the two factors. Some of the molecules we identified could be used as markers to prevent excess muscle fat accumulation.
Collapse
Affiliation(s)
- Catherine-Ines Kolditz
- INRA, UMR 1067 Nutrition Aquaculture & Genomics - Pôle d'Hydrobiologie, F-64310 Saint-Pée-sur-Nivelle, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Leaver MJ, Bautista JM, Björnsson BT, Jönsson E, Krey G, Tocher DR, Torstensen BE. Towards Fish Lipid Nutrigenomics: Current State and Prospects for Fin-Fish Aquaculture. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325278] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|