1
|
Han L, Liu W, Yuan F, Liu Q, Cheng H, Jin X, Sun Y. Integration of microbiomics and metabolomics reveals energy metabolism imbalance in crucian carp (Carassius auratus) under saline-alkaline exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 291:110145. [PMID: 39983937 DOI: 10.1016/j.cbpc.2025.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
The ecological conditions of freshwater aquaculture are deteriorating by degrees in recent years. Consequently, the comprehensive utilization of saline-alkaline water has garnered increasing societal attention. Here, crucian carp (Carassius auratus) were exposed to 20, 40 mmol/L NaHCO3 for 30 days (T, F group). Metabolomic analyses were conducted using UPLC-QTOF/MS, complemented by biochemical and microbiology profiling to elucidate the damage of the saline environment to the intestinal microbial structure, which in turn interfered with the energy metabolism. It was observed that carbonate alkalinity (CA) exposure not only caused intestine oxidative stress but also changed the levels of several digestive enzymes, including α-amylase (AMS), chymotrypsin (CHY), lipase (LPS). Metabolomic analysis identified 22 different metabolites (DEMs) in T group and 77 DEMs in F group. MetaboAnalyst analysis indicated that these metabolites are primarily involved in energy-related pathways, including the citric acid cycle, galactose metabolism, and glycine, serine, and threonine metabolism. Intestinal microbial diversity and community composition were altered under carbonate alkalinity exposure, with increase in Proteobacteria abundance and decline in Firmicutes, abundance alongside enrichment of Sphingomonas. Herein, saline-alkaline stress disrupted the physiological homeostasis of the crucian carp intestine, leading to microbial dysbiosis and energy metabolic imbalance. This study provides a theoretical foundation for understanding the stress response of the crucian carp intestine and the role of the intestinal microbiome in host resilience under adverse environmental conditions.
Collapse
Affiliation(s)
- Lin Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzhi Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fangying Yuan
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Qianwen Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hongyu Cheng
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Food Science and Engineering, School of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xiaofeng Jin
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Chemical Engineering and Technology, College of Materials and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Shani MA, Irani M. Feeding strategy and prebiotic supplementation: Effects on immune responses and gut health in the early life stage of broiler chickens. Res Vet Sci 2024; 171:105226. [PMID: 38502998 DOI: 10.1016/j.rvsc.2024.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
This study aimed to investigate the effects of early or late feeding strategies and prebiotic, on immune responses and gut health during the early life stage of broiler chickens. A total of 240 day-old male broiler chicks were used in a 2 × 3 factorial arrangement of treatments that comprised 2 feeding strategies (early or late) and 3 levels of prebiotic (0, recommended dosage or three times the recommended dosage) in a completely randomized design with 4 pen replicates and 10 broilers per each. Compared to broiler chickens that had early access to feed, delayed access to feed resulted in an increased population of Escherichia coli and a decreased population of Lactobacillus spp. and Bifidobacterium spp. in the ileum (P < 0.05). Additionally, delayed access to feed led to a decrease in villus height, crypt depth, villus height: villus width ratio, goblet cell density, and mucin 2 gene expression in the ileum (P < 0.05). The supplementation of prebiotics in both the late and early feeding strategy groups resulted in increased villus height, crypt depth, goblet cell density, mucin 2 gene expression, and antibodies against Infectious Bursal Disease (IBD). Additionally, it led to an improvement in the foot web thickness index (P < 0.05). Furthermore, it resulted in a significant decrease in the population of Escherichia coli, while the populations of Lactobacillus spp. and Bifidobacterium spp. in the ileum were significantly increased (P < 0.05). Therefore, this study suggests that incorporating prebiotics in the starter diet can effectively enhance immune responses and promote gut health, regardless of the feeding strategy (early or late). In conclusion, this study demonstrates the potential benefits of incorporating prebiotics into poultry diets to alleviate the detrimental effects of delayed access to feed and improve gut health during the early life stage of broiler chickens.
Collapse
Affiliation(s)
- Mostafa Abbasnejad Shani
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran
| | - Mehrdad Irani
- Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran.
| |
Collapse
|
3
|
Torres N, Tobón-Cornejo S, Velazquez-Villegas LA, Noriega LG, Alemán-Escondrillas G, Tovar AR. Amino Acid Catabolism: An Overlooked Area of Metabolism. Nutrients 2023; 15:3378. [PMID: 37571315 PMCID: PMC10421169 DOI: 10.3390/nu15153378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15. Col Belisario Domínguez-Sección XVI, Tlalpan, Mexico City 14080, Mexico; (N.T.); (S.T.-C.); (L.A.V.-V.); (L.G.N.); (G.A.-E.)
| |
Collapse
|
4
|
Guo Y, Wang L, Hanson A, Urriola PE, Shurson GC, Chen C. Identification of Protective Amino Acid Metabolism Events in Nursery Pigs Fed Thermally Oxidized Corn Oil. Metabolites 2023; 13:metabo13010103. [PMID: 36677028 PMCID: PMC9866068 DOI: 10.3390/metabo13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Feeding thermally oxidized lipids to pigs has been shown to compromise growth and health, reduce energy digestibility, and disrupt lipid metabolism. However, the effects of feeding oxidized lipids on amino acid metabolism in pigs have not been well defined even though amino acids are indispensable for the subsistence of energy metabolism, protein synthesis, the antioxidant system, and many other functions essential for pig growth and health. In this study, oxidized corn oil (OCO)-elicited changes in amino acid homeostasis of nursery pigs were examined by metabolomics-based biochemical analysis. The results showed that serum and hepatic free amino acids and metabolites, including tryptophan, threonine, alanine, glutamate, and glutathione, as well as associated metabolic pathways, were selectively altered by feeding OCO, and more importantly, many of these metabolic events possess protective functions. Specifically, OCO activated tryptophan-nicotinamide adenosine dinucleotide (NAD+) synthesis by the transcriptional upregulation of the kynurenine pathway in tryptophan catabolism and promoted adenine nucleotide biosynthesis. Feeding OCO induced oxidative stress, causing decreases in glutathione (GSH)/oxidized glutathione (GSSG) ratio, carnosine, and ascorbic acid in the liver but simultaneously promoted antioxidant responses as shown by the increases in hepatic GSH and GSSG as well as the transcriptional upregulation of GSH metabolism-related enzymes. Moreover, OCO reduced the catabolism of threonine to α-ketobutyrate in the liver by inhibiting the threonine dehydratase (TDH) route. Overall, these protective metabolic events indicate that below a certain threshold of OCO consumption, nursery pigs are capable of overcoming the oxidative stress and metabolic challenges posed by the consumption of oxidized lipids by adjusting antioxidant, nutrient, and energy metabolism, partially through the transcriptional regulation of amino acid metabolism.
Collapse
Affiliation(s)
- Yue Guo
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
| | - Lei Wang
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
| | - Andrea Hanson
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Gerald C. Shurson
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
- Correspondence: ; Tel.: +1-612-624-7704; Fax: +1-612-625-5272
| |
Collapse
|
5
|
Hong J, Clizer D, Cline P, Samuel R. Effects of branched-chain amino acids to lysine ratios in corn distillers dried grains with solubles containing diets on growth performance, plasma nitrogen profile, carcass traits, and economic analysis in growing-finishing pigs. Transl Anim Sci 2023; 7:txad066. [PMID: 37455942 PMCID: PMC10347966 DOI: 10.1093/tas/txad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
A study was conducted to identify the effects of standardized ileal digestible (SID) branched-chain amino acids (BCAA):lysine (Lys) ratios on the growth performance, plasma nitrogen (N) profile, carcass traits, and economic analysis of growing-finishing pigs fed diets with high corn distillers dried grains with solubles (cDDGS) inclusions. A total of 1,140 pigs (initial body weight [BW] = 28.7 ± 2.0 kg) were housed in 45 pens of 25 or 26 pigs and fed one of five diets in a randomized complete block design. Experimental diets were fed in four phases based on BW. Dietary treatments were a corn-soybean meal (SBM) based diet (PC), a corn-SBM-cDDGS-based diet (NC) with SID BCAA:Lys ratio of PIC (2020) recommendation and NC diets with SID BCAA:Lys ratios targeted for the 73% SID Val:Lys, 60% SID Ile:Lys, and 144% SID Leu:Lys during the growing phases (25 to 80 kg, Grow), targeted for the 78% SID Val:Lys, 70% SID Ile:Lys, and 160% to 170% SID Leu:Lys during the finishing phases (80 to 120 kg, finish), and both during the growing and finishing phases (Grow-Finish). One pig from each pen was bled at the end of 7 and 13 wk. After the 11-wk-feeding trial, pigs were sent to a commercial abattoir to investigate carcass traits. Pigs fed the Finish diet had a greater overall average daily gain (P < 0.05) than pigs fed the other cDDGS diets. Dietary treatments did not affect the hot carcass weight. However, feeding the Finish diet increased (P < 0.05) the iodine value of pork belly samples and decreased (P < 0.05) carcass yield. The plasma urea nitrogen (PUN) concentration at the end of the growing phase and plasma concentrations of Leu and Val were greater (P < 0.05) in pigs fed the Finish diet compared to the other cDDGS diets. Feeding pigs the cDDGS diets with different BCAA:Lys ratios had no difference in income over feed cost and income over feed and facility costs compared to the corn-SBM diet. Therefore, feeding pigs cDDGS diets with SID BCAA:Lys ratios adjusted for the previously determined finishing phase (from 80 to 120 kg of BW) recommendations by SBM inclusion supported growth performance and economic benefits equal to the corn-SBM diet.
Collapse
Affiliation(s)
- Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | | | - Paul Cline
- Christensen Farms, Sleepy Eye, MN 56085, USA
| | | |
Collapse
|
6
|
Effect of dietary threonine supplementation on growth performance and diarrhoea in weaned pigs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Lv X, Zhou C, Yan Q, Tan Z, Kang J, Tang S. Elucidating the underlying mechanism of amino acids to regulate muscle protein synthesis: impact on human health. Nutrition 2022; 103-104:111797. [DOI: 10.1016/j.nut.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 10/31/2022]
|
8
|
Aguihe PC, Hirata KA, Ospina-Rojas CI, dos Santos TC, Pozza PC, Iyayi EA, Murakami AE. Effect of glycine equivalent levels in low protein diet containing different SID threonine concentrations on performance, serum metabolites and muscle creatine of broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Paschal C. Aguihe
- Department of Animal Production and Heath Technology, Federal College of Wildlife Management, New Bussa, Nigeria
| | - Kazuo A. Hirata
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | - Paulo C. Pozza
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eustace A. Iyayi
- Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| | - Alice E. Murakami
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
9
|
Effects of Different Ionic Polysaccharides in Cooked Lean Pork Batters on Intestinal Health in Mice. Foods 2022; 11:foods11101372. [PMID: 35626942 PMCID: PMC9141551 DOI: 10.3390/foods11101372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
The effects of cooked lean pork batters with three ionic types of polysaccharides (anionic xanthan-gum/sodium-alginate, neutral curdlan-gum/konjac-gum and cationic chitosan) on the intestinal health of mice were investigated in this study. The results showed that the zeta potential in the sodium-alginate group (−31.35 mV) was higher (p < 0.05) than that in the chitosan group (−26.00 mV), thus promoting the protein hydrolysis in the anionic group because of electrostatic repulsion. The content of total free amino acids in the small intestine in the xanthan-gum and sodium-alginate groups (2754.68 μg and 2733.72 μg, respectively) were higher (p < 0.05) than that in the chitosan group (1949.78 μg), which could decrease the amount of undigested protein entering the colon. The two anionic groups could also increase the abundance of Lactobacillus and the balance of Faecalibaculum and Alistipes in the colon. The content of proinflammatory factor IL−6 of colon tissues in the sodium-alginate group (1.02 ng/mL) was lower (p < 0.05) than that in chitosan, curdlan-gum and konjac-gum groups (1.29, 1.31 and 1.31 ng/mL, respectively). The result of haematoxylin-eosin staining of the colon also revealed that sodium alginate was beneficial for colonic health. The two neutral groups increased the content of faecal short-chain fatty acids in mice. These results demonstrated that anionic polysaccharides have potential for developing functional low-fat meat products.
Collapse
|
10
|
Tolosa AF, Tokach MD, Goodband RD, Woodworth JC, DeRouchey JM, Gebhardt JT. Evaluation of increasing digestible threonine to lysine ratio in corn-soybean meal diets without and with distillers dried grains with solubles on growth performance of growing-finishing pigs. Transl Anim Sci 2022; 6:txac058. [DOI: 10.1093/tas/txac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Corn distillers dried grains with solubles (DDGS) is commonly available and often can lower diet cost for swine diets. This corn co-product is recognized to be a source of dietary insoluble fiber which can increase villous length of the gut mucosa, but also increase intestinal production of mucin. Mucin structure, functions, and synthesis are correlated to Thr intake, consequently, the dietary Thr level may need to be increased when feeding an insoluble fiber source such as corn-DDGS. Thus, the objective of this study was to evaluate if feeding standardized ileal digestible (SID) Thr:Lys ratio at or above the estimated requirement in diets without and with DDGS would influence growth performance in finishing pigs. A total of 2,160 pigs (PIC 337 × 1050; initially 35.1 ± 0.5 kg) were used in a 112-d growth trial. Pigs were randomly assigned to pens (27 pigs per pen) in a randomized complete block design by BW with 20 replications per treatment. Pens of pigs were allotted to 1 of 4 dietary treatments that were arranged in a 2 × 2 factorial with main effects of dietary Thr level (normal vs. high) and DDGS (without or with). Treatment diets were formulated in 4 phases from 34 to 57, 57 to 79, 79 to 104, and 104 to 130 kg body weight. Diets with high DDGS were formulated to include 40% DDGS in phase 1 and 2, 30% in phase 3, and 15% in phase 4. The normal Thr diets were formulated to contain 61, 62, 63, and 65% SID Thr:Lys ratios for the four dietary phases, respectively. High Thr diets had SID Thr:Lys ratios of 67, 68, 69, and 72%, respectively. There were no interactions (P > 0.10) observed in any phase or overall between Thr level and added DDGS. For the overall period (d 0 to 112), pigs fed diets without DDGS had increased (P < 0.001) average daily gain (ADG), but reduced (P < 0.001) average daily feed intake (ADFI) leading to increased (P < 0.001) feed efficiency (G:F). There was no evidence for difference (P > 0.10) between pigs fed diets formulated at normal or high SID Thr:Lys ratio. In summary, feeding high levels of DDGS decreased ADG and increased ADFI, which resulted in decreased G:F and lower final body weight, regardless of the dietary SID Thr:Lys level. In the current study, increasing the level of digestible Thr in a diet that contained a highly insoluble fiber source did not increase growth performance of grow-finish pigs.
Collapse
Affiliation(s)
- Andres F Tolosa
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| |
Collapse
|
11
|
Święch E, Tuśnio A, Taciak M, Barszcz M. Modulation of Mucin Secretion in the Gut of Young Pigs by Dietary Threonine and Non-Essential Amino Acid Levels. Animals (Basel) 2022; 12:ani12030270. [PMID: 35158594 PMCID: PMC8833754 DOI: 10.3390/ani12030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The mucus layer is an important part of the system protecting the gut against injuries and bacterial infections. The main components of mucus responsible for its properties are mucins. They are large glycoproteins with a protein core rich in threonine (Thr) and many sugar side chains that differ in structure and affect mucin functions. Diet composition affects the amount of secreted mucins and their quality. Therefore, the aim of the study was to determine the effect of Thr and wheat gluten (WG) protein, added as a source of non-essential amino acids, on the content of tissue and luminal mucins in different parts of the intestine of young pigs. Results showed that tissue and luminal mucin content was only affected by WG levels in the duodenum and middle jejunum, and in the proximal colon, respectively. The effect of WG on luminal mucin content in the proximal colon depended on the analytical method applied. Abstract The aim of the study was to determine the effect of threonine (Thr) and non-essential amino acid (NEAA) levels on mucin secretion and sugar composition of digesta and crude mucin preparations analyzed in different segments of the gut in young pigs. A two-factorial experiment was conducted on 72 pigs using the following factors: Thr level (5.1, 5.7, 6.3 and 6.9 g standardized ileal digestible(SID) Thr/kg) and wheat gluten (WG) level used as a source of NEAA (20.4, 40.4 and 60.4 g WG protein in WG20, WG40 and WG60 diets, respectively). Mucin content was affected only by WG level. Tissue mucin content in the duodenum was higher in WG60 pigs than in WG20 and WG40 pigs, whereas in the middle jejunum was higher in WG40 and WG60 pigs than in WG20 pigs. In contrast, luminal crude mucin content in the proximal colon was lower in WG60 pigs compared to WG40 pigs. The lowest and highest Thr levels reduced arabinose and xylose contents and increased glucose content in ileal digesta. The highest WG level reduced arabinose and xylose contents and increased glucose content in ileal digesta. The lowest WG level increased mannose content in ileal digesta. WG60 level decreased the content of arabinose and galactose compared to lower WG levels in colonic digesta. Arabinose content was higher, while glucose and galactose contents were lower in crude mucin preparations isolated from colonic digesta in pigs fed diets containing the highest Thr level. The content of tissue mucin was higher in the ileum and proximal colon and lower in the duodenum than in the middle jejunum, whereas luminal mucin content was lower in the proximal colon than in the ileum. Ileal digesta contained less arabinose and glucose and more galactose as compared to colonic digesta. In conclusion, no effect of dietary Thr levels on mucin secretion in the gut of young pigs was found. Wheat gluten added to the diet with adequate Thr content positively affected mucin secretion only in the duodenum and middle jejunum.
Collapse
|
12
|
Ingerslev AK, Rasmussen L, Zhou P, Nørgaard JV, Theil PK, Jensen SK, Lærke HN. Effects of dairy and plant protein on growth and growth biomarkers in a piglet model. Food Funct 2021; 12:11625-11640. [PMID: 34724015 DOI: 10.1039/d1fo02092g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing world population with improved living conditions has increased the demand for food protein. This has intensified the search for sustainable alternative plant-derived high-quality protein sources for human nutrition. To study the effect of plant and milk proteins on growth in weaned pigs as a model for humans, 96 weaned pigs were divided into 48 pens and fed one of 4 different diets for 3 weeks. The dietary protein originated from either 50% rice + 50% 00-rapeseed protein (RICE + RAPE), 50% milk protein (MPC) + 50% 00-rapeseed protein (MPC + RAPE), 50% milk + 50% rice protein (MPC + RICE), or 100% MPC, and were supplemented with crystalline amino acids to meet the amino acid requirements. Weekly feed intake and body weights were recorded and after 3 weeks, a blood sample was taken 1 hour after a fixed meal, while organ weights were measured, and liver- and muscle tissue, and bone samples were collected at euthanasia. All pigs had a high daily gain and a low feed-to-gain ratio (F : G, feed intake per kg weight gain), but feed intake and daily gain was lowest and F : G highest in the RICE + RAPE diet. Metacarpal bones were longer and heavier in MPC + RICE and MPC fed pigs compared to pigs fed diet RICE + RAPE (P < 0.05), and intermediate in MPC + RAPE fed pigs, with no differences in bone thickness (P > 0.05). Plasma levels of all essential amino acids except Cys and Lys decreased markedly when fed a diet containing only plant protein. The differences were not associated with differences in plasma insulin or IGF-1, nor in the abundance of mRNA related to growth in liver and longissimus dorsi muscle. In conclusion, the growth of piglets fed a combination of milk and rice protein did not differ from the pure dairy-based diet, whereas the pure plant-based diet consisting of rice and rapeseed protein led to reduced growth. This was most likely caused by a lower feed intake and a lower than expected amino acid digestibility of the 00-rapeseed protein. There were no indications that the milk protein, beyond a favourable amino acid composition and high digestibility, specifically stimulated growth factors or other biomarkers of growth via the IGF-1 and insulin signalling pathways.
Collapse
Affiliation(s)
| | - Laura Rasmussen
- Department of Animal Science, Aarhus University, Tjele, Denmark.
| | - Pan Zhou
- Department of Animal Science, Aarhus University, Tjele, Denmark.
| | | | | | | | | |
Collapse
|
13
|
Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients 2021; 13:nu13082592. [PMID: 34444752 PMCID: PMC8399342 DOI: 10.3390/nu13082592] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023] Open
Abstract
Threonine (Thr), an essential amino acid for animals and the limiting amino acid in swine and poultry diets, which plays a vital role in the modulation of nutritional metabolism, macromolecular biosynthesis, and gut homeostasis. Current evidence supports that the supplementation of Thr leads to benefits in terms of energy metabolism. Threonine is not only an important component of gastrointestinal mucin, but also acts as a nutritional modulator that influences the intestinal immune system via complex signaling networks, particularly mitogen-activated protein kinase (MAPK) and the target of the rapamycin (TOR) signal pathway. Threonine is also recognized as an indispensable nutrient for cell growth and proliferation. Hence, optimization of Thr requirement may exert a favorable impact on the factors linked to health and diseases in animals. This review focuses on the latest reports of Thr in metabolic pathways and nutritional regulation, as well as the relationship between Thr and relevant physiological functions.
Collapse
|
14
|
Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids. Animals (Basel) 2021; 11:ani11041110. [PMID: 33924356 PMCID: PMC8069201 DOI: 10.3390/ani11041110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Gut health has significant implications for swine nutrient utilization and overall health. The basic gut morphology and its luminal microbiota play determinant roles for maintaining gut health and functions. Amino acids (AA), a group of essential nutrients for pigs, are not only obligatory for maintaining gut mucosal mass and integrity, but also for supporting the growth of luminal microbiota. This review summarized the up-to-date knowledge concerning the effects of dietary AA supplementation on the gut health of weanling piglets. For instance, threonine, arginine, glutamine, methionine and cysteine are beneficial to gut mucosal immunity and barrier function. Glutamine, arginine, threonine, methionine and cysteine can also assist with relieving the post-weaning stress of young piglets by improving gut immunological functions, antioxidant capacity, and/or anti-inflammatory ability. Glutamine, glutamate, glycine and cysteine can assist to reconstruct the gut structure after its damage and reverse its dysfunction. Furthermore, methionine, lysine, threonine, and glutamate play key roles in affecting bacteria growth in the lumen. Overall, the previous studies with different AA showed both similar and different effects on the gut health, but how to take advantages of all these effects for field application is not clear. It is uncertain whether these AA effects are synergetic or antagonistic. The interactions between the effects of non-nutrient feed additives and the fundamental effects of AA warrant further investigation. Considering the global push to minimize the antibiotics and ZnO usage in swine production, a primary effort at present may be made to explore the specific effects of individual AA, and then the concert effects of multiple AA, on the profile and functions of gut microbiota in young pigs.
Collapse
|
15
|
Mehri M, Hasanvand S, Bazzi H. Nutritional requirement of meat-type Japanese quail: Threonine. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Emadinia A, Toghyani M, Foroozandeh AD, Tabeidian SA, Ostadsharif M. Growth performance, jejunum morphology and mucin-2 gene expression of broiler Japanese quails fed low-protein diets supplemented with threonine. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1780962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ashkan Emadinia
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Majid Toghyani
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Amir Davar Foroozandeh
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Sayed Ali Tabeidian
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Maryam Ostadsharif
- Department of Medical Basic Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
- Department of Medical Biotechnology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
17
|
Silva KE, Huber LA, Mansilla WD, Shoveller AK, Htoo JK, Cant JP, de Lange CFM. The effect of reduced dietary glycine and serine and supplemental threonine on growth performance, protein deposition in carcass and viscera, and skin collagen abundance of nursery pigs fed low crude protein diets. J Anim Sci 2020; 98:5835304. [PMID: 32386296 DOI: 10.1093/jas/skaa157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Thirty five barrows (initial body weight [BW]: 15.1 ± 1.0 kg) were used to determine the effect of partially replacing Gly + Ser with Thr in reduced crude protein (CP) diets on growth performance, protein deposition in carcass and viscera, and skin collagen abundance during the late nursery phase to 25 kg BW. Pigs were individually fed one of five iso-nitrogenous diets (n = 7) for 21 d. The basal diet met estimated essential amino acids (AA) requirements by using all essential AA plus Gly and Ser in free form (CON; 12.1% CP; as-fed, analyzed contents). The remaining four diets were formulated by reducing total Gly and Ser concentrations to 60% or 20% of the CON diet. The N removed with Gly and Ser was replaced with either crystalline Thr or Glu. Total analyzed Thr made up either 1.59% (T1; 12.5% CP) or 2.34% (T2; 12.2% CP) of the Thr-supplemented diets, and total analyzed Glu made up either 3.47% (G1; 12.7% CP) or 4.64% (G2; 12.9% CP) of the Glu-supplemented diets. Pigs were slaughtered on day 21 to determine body composition and skin collagen abundance via bright field microscopy. Overall, average daily gain (ADG) and G:F and final carcass weights were greater for pigs fed diets supplemented with Glu (G1 + G2) vs. those fed diets supplemented with Thr (T1 + T2; P < 0.05, P = 0.060, and P = 0.050 for ADG, G:F, and final carcass weight, respectively); intermediate values were observed for CON. Nitrogen retention in carcass plus viscera and the AA profile of deposited protein in the carcass were not influenced by dietary treatment. Pigs fed the T2 and G2 diets had greater retention of Thr (vs. CON and G2) and Glu (vs. CON and T2) in the viscera protein, respectively (P < 0.05). The apparent utilization efficiency of standardized ileal digestible Thr for protein deposition in carcass plus viscera was less for pigs fed T2 (15.1%) vs. those fed CON (56.7%) or G2 (58.6% ± 2.9%) diets (P < 0.001). Only pigs fed T1 had skin collagen abundance not different from CON; pigs fed G1, G2, and T2 had reduced skin collagen abundance compared with CON and T1 (P < 0.01). Using Glu as an N source when Gly and Ser were reduced to 60% and 20% of CON in reduced CP diets maintained ADG for pigs between 15 and 25 kg BW, whereas supplying Thr as a N source reduced ADG and carcass weight. When dietary Gly and Ser were supplied at 60% of CON, only Thr supplementation rescued skin collagen abundance. Therefore, supplemental Thr at excess levels is not sufficient to replace N from Gly and Ser in reduced CP diets fed to late nursery pigs, despite supporting skin collagen abundance as a secondary indicator of Gly status.
Collapse
Affiliation(s)
- Kayla E Silva
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - John P Cant
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
18
|
Mansilla WD, Fortener L, Templeman JR, Shoveller AK. Adult dogs of different breed sizes have similar threonine requirements as determined by the indicator amino acid oxidation technique. J Anim Sci 2020; 98:5764160. [PMID: 32108874 DOI: 10.1093/jas/skaa066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/25/2020] [Indexed: 11/14/2022] Open
Abstract
Threonine (Thr) requirements for immature (growing) Beagles have been determined, but little knowledge is available on Thr requirements for maintenance in mature dogs. Moreover, differences of Thr requirements among different breeds or sizes of adult dogs have not been investigated. The objective of the present study was to determine Thr requirements in adult dogs of three different breeds using the indicator amino acid oxidation (IAAO) technique. In total, 13 adult dogs were used, 4 Miniature Dachshunds (5.8 ± 0.4 kg body weight [BW]; 3 spayed and 1 neutered), 4 spayed Beagles (9.3 ± 0.6 kg BW), and 5 neutered Labrador Retrievers (30.5 ± 1.7 kg BW). Dogs were fed a Thr-deficient diet (Thr = 0.23%) and randomly allocated to receiving one of seven concentrations of Thr supplementation (final Thr concentration in experimental diets was 0.23%, 0.33%, 0.43%, 0.53%, 0.63%, 0.73%, and 0.83%; as fed basis) for 2 d. After 2 d of adaptation to the experimental diets, dogs underwent individual IAAO studies. During the IAAO studies, total daily feed was divided into 13 equal meals; at the sixth meal, dogs were fed a bolus of l-[1-13C]-Phenylalanine (Phe) (9.40 mg/kg BW), and thereafter, l-[1-13C]-Phe (2.4 mg/kg BW) was supplied with every meal. Before feeding the next experimental diet, dogs were fed a Thr-adequate basal diet for 4 d (Thr = 0.80% as fed basis) in known amounts that maintained individual dog BW. Total production of 13CO2 during isotopic steady state was determined by enrichment of 13CO2 in breath samples and total production of CO2 measured using indirect calorimetry. The mean requirements for Thr, defined as the breakpoint, and the 95% confidence interval (CI) were determined using a two-phase linear regression model. For Miniature Dachshunds, the two-phase model was not significant, and Thr requirements could not be determined. Mean Thr requirements for Beagles and Labradors were 72.2 and 64.1 mg/kg BW on an as-fed basis, respectively. The requirement for Thr between these two dog breeds was not different (P > 0.10). Thus, the data for Beagles and Labradors were pooled and a mean requirement for Thr was determined at 66.9 mg/kg BW, and the 95% CI was estimated at 84.3 mg/kg BW. In conclusion, estimated Thr requirements for Beagles and Labradors did not differ, and these recommendations are higher than those suggested by NRC (2006) and AAFCO (2014) for adult dogs at maintenance.
Collapse
Affiliation(s)
| | | | - James R Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.,Procter & Gamble Co., Pet Care, Mason, OH
| |
Collapse
|
19
|
Beaumont M, Blachier F. Amino Acids in Intestinal Physiology and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:1-20. [PMID: 32761567 DOI: 10.1007/978-3-030-45328-2_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary protein digestion is an efficient process resulting in the absorption of amino acids by epithelial cells, mainly in the jejunum. Some amino acids are extensively metabolized in enterocytes supporting their high energy demand and/or production of bioactive metabolites such as glutathione or nitric oxide. In contrast, other amino acids are mainly used as building blocks for the intense protein synthesis associated with the rapid epithelium renewal and mucin production. Several amino acids have been shown to support the intestinal barrier function and the intestinal endocrine function. In addition, amino acids are metabolized by the gut microbiota that use them for their own protein synthesis and in catabolic pathways releasing in the intestinal lumen numerous metabolites such as ammonia, hydrogen sulfide, branched-chain amino acids, polyamines, phenolic and indolic compounds. Some of them (e.g. hydrogen sulfide) disrupts epithelial energy metabolism and may participate in mucosal inflammation when present in excess, while others (e.g. indole derivatives) prevent gut barrier dysfunction or regulate enteroendocrine functions. Lastly, some recent data suggest that dietary amino acids might regulate the composition of the gut microbiota, but the relevance for the intestinal health remains to be determined. In summary, amino acid utilization by epithelial cells or by intestinal bacteria appears to play a pivotal regulator role for intestinal homeostasis. Thus, adequate dietary supply of amino acids represents a key determinant of gut health and functions.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| |
Collapse
|
20
|
Remus A, Hauschild L, Létourneau-Montminy MP, Corrent E, Pomar C. The ideal protein profile for late-finishing pigs in precision feeding systems: Threonine. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nat Commun 2020; 11:2894. [PMID: 32518324 PMCID: PMC7283339 DOI: 10.1038/s41467-020-16568-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary protein dilution (DPD) promotes metabolic-remodelling and -health but the precise nutritional components driving this response remain elusive. Here, by mimicking amino acid (AA) supply from a casein-based diet, we demonstrate that restriction of dietary essential AA (EAA), but not non-EAA, drives the systemic metabolic response to total AA deprivation; independent from dietary carbohydrate supply. Furthermore, systemic deprivation of threonine and tryptophan, independent of total AA supply, are both adequate and necessary to confer the systemic metabolic response to both diet, and genetic AA-transport loss, driven AA restriction. Dietary threonine restriction (DTR) retards the development of obesity-associated metabolic dysfunction. Liver-derived fibroblast growth factor 21 is required for the metabolic remodelling with DTR. Strikingly, hepatocyte-selective establishment of threonine biosynthetic capacity reverses the systemic metabolic response to DTR. Taken together, our studies of mice demonstrate that the restriction of EAA are sufficient and necessary to confer the systemic metabolic effects of DPD. Dietary protein dilution, where protein is reduced and replaced by other nutrient sources without caloric restriction, promotes metabolic health via the hepatokine Fgf21. Here, the authors show that essential amino acids threonine and tryptophan are necessary and sufficient to induce these effects.
Collapse
|
22
|
Koo B, Lee J, Nyachoti CM. Diet complexity and l-threonine supplementation: effects on nutrient digestibility, nitrogen and energy balance, and body composition in nursery pigs. J Anim Sci 2020; 98:skaa124. [PMID: 32307532 PMCID: PMC7216776 DOI: 10.1093/jas/skaa124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
This study was conducted to investigate the effects of dietary complexity and l-Thr supplementation on energy and nutrient utilization in nursery pigs. Thirty-two nursery pigs (7.23 ± 0.48 kg) were randomly assigned to a 2 × 2 factorial treatment arrangement based on diet complexity (complex vs. simple) with different levels of l-Thr supplementation. The complex diet contained animal protein sources (e.g., fish meal and plasma) and a dairy product (e.g., dried whey) to mimic a conventional nursery diet. The simple diet was formulated with corn, wheat, and soybean meal. Both diets were supplemented with l-Thr to contain either 100% or 115% (SUP Thr) of the estimated standardized ileal digestible Thr requirement for 9 kg body weight pigs (NRC, 2012). The pigs were individually housed in metabolism crates and fed an experimental diet ad libitum for a 7-d adaptation period and 5 d of total but separate urine and fecal collection. On day 14, all pigs were euthanized to determine body composition. The diet complexity, l-Thr supplementation, and their interactions were considered main effects. Pigs fed the complex diet tended to exhibit greater (P < 0.10) apparent total tract digestibility (ATTD) of ash and urinary energy output than those fed the simple diet. The complex diet had greater (P < 0.05) digestible energy and net energy contents than the simple diet. Furthermore, the complex diet-fed pigs had lower (P < 0.05) plasma urea nitrogen concentration on day 14 than simple diet-fed pigs. The SUP Thr decreased (P < 0.05) ATTD of acid detergent fiber but trended (P < 0.10) toward a decrease in urinary nitrogen (N) output and an increase in N retention and body N mass. In conclusion, the simple diet for nursery pigs had lower digestible and net energy contents than a complex diet. The SUP Thr can improve N utilization and body protein deposition, irrespective of diet complexity.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
23
|
Koo B, Choi J, Yang C, Nyachoti CM. Diet complexity and l-threonine supplementation: effects on growth performance, immune response, intestinal barrier function, and microbial metabolites in nursery pigs. J Anim Sci 2020; 98:skaa125. [PMID: 32307528 PMCID: PMC7229884 DOI: 10.1093/jas/skaa125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to investigate the effects of diet complexity and l-Thr supplementation level on the growth performance, immune response, intestinal barrier function, and microbial metabolites in nursery pigs. Thirty-two weaned pigs (body weight 7.23 ± 0.48 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement based on diet complexity (complex or simple) and dietary Thr content. The complex diet contained fish meal, plasma protein, and dried whey to mimic a conventional nursery diet. The simple diet was formulated with corn, wheat, and soybean meal and did not contain any animal products. l-Thr was supplemented to each diet to supply either 100% (STD Thr) or 115% (SUP Thr) of the NRC (2012) requirement for standardized ileal digestible Thr. Pigs were individually housed and fed experimental diets ad libitum for 14 d. Diet complexity, dietary Thr content, and their interactions were considered the main effects. Pigs fed the simple diet had greater (P < 0.05) plasma interleukin (IL)-10 and IL-6 concentrations compared with those fed the complex diet on days 7 and 14, respectively. Simple diet-fed pigs tended to show greater (P < 0.10) expression of genes encoding for tumor necrosis factor-α, claudin-1, and zonula occludens-1 in the jejunum compared with complex diet-fed pigs. The simple diet-fed pigs had greater (P < 0.05) concentrations of NH3-N in the jejunum digesta than did complex diet-fed pigs. The SUP Thr increased (P < 0.05) villus height and goblet cell (GC) density in villi and crypts in the jejunum and deepened (P < 0.05) crypts in the proximal colon. The SUP Thr resulted in the upregulation (P < 0.05) of occludin gene expression and a tendency toward the downregulation (P = 0.10) of IL-6 gene expression in the jejunum. Interactions (P < 0.05) between diet complexity and l-Thr supplementation level were observed in GC density in the crypt, NH3-N concentration in the jejunum, and the contents of acetate, propionate, and total volatile fatty acids in the colon. In conclusion, feeding a simple diet to nursery pigs resulted in systemic and intestinal inflammation. The SUP Thr diet did not normalize the simple diet-induced inflammation but improved gut integrity. SUP Thr seems to have greater benefits with a simple diet than with a complex diet. Therefore, SUP Thr in a simple diet could be a beneficial nutritional strategy for enhancing gut health.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
24
|
Glycine equivalent and threonine inclusions in reduced-crude protein, maize-based diets impact on growth performance, fat deposition, starch-protein digestive dynamics and amino acid metabolism in broiler chickens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Ji S, Qi X, Ma S, Liu X, Liu S, Min Y. A deficient or an excess of dietary threonine level affects intestinal mucosal integrity and barrier function in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2019; 103:1792-1799. [PMID: 31435969 DOI: 10.1111/jpn.13185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the effects of deficient or excess of dietary threonine (Thr) levels on intestinal integrity and barrier function of broilers. A total of 432 1-day-old commercial broilers (Arbor Acre) were assigned to four experiment groups consisting of six replicates of 18 birds. The treatments were designed as follows: 85%, 100%, 125% and 150% of NRC (Nutrient requirements of poultry (9th edn). Washington, DC: The National Academies Press, 1994) recommendations. The results indicated that expressions of jejunal and ileal secretory immunoglobulin A (sIgA) mRNA were increased linearly or quadratically by increasing Thr (p < .05), and the highest sIgA mRNA abundance was obtained in 125% Thr level. Likewise, the intestinal sIgA content showed similar increasing trend with the intestinal sIgA gene expression in this instance. The high level of Thr inclusion upregulated mucin 2 (MUC2) mRNA expression in the jejunum and ileum (p < .05). In addition, on day 21, the expression levels of jejunal zonula occludens-2 (ZO-2) and ileal zonula occludens-1 (ZO-1) decreased then increased with increasing Thr level (p < .05), whereas, the mRNA expressions of occludin in the jejunum and ileum had no significant difference amongst groups (p >.05). On day 42, Thr treatments did not affect the mRNA abundance of measured genes in the jejunum and ileum (p > .05). These findings suggested that Thr might be a nutrient immunomodulator that affects intestinal barrier function, moreover, 125% of the NRC (1994) recommendations Thr level was optimum.
Collapse
Affiliation(s)
- Shuyun Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuxue Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengguo Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Święch E, Tuśnio A, Barszcz M, Taciak M, Siwiak E. Goblet cells and mucus layer in the gut of young pigs: Response to dietary contents of threonine and non-essential amino acids. J Anim Physiol Anim Nutr (Berl) 2019; 103:894-905. [PMID: 30941782 DOI: 10.1111/jpn.13086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 11/28/2022]
Abstract
Mucins secreted by goblet cells (GC) are the major components of mucus layer coating and protecting gut epithelium. The study aimed at determining the effect of non-essential amino acids (NEAA) and threonine (Thr) levels on GC number and mucus layer thickness measured in different parts of the gut. A two-factorial experiment was conducted on 72 pigs (initial BW 12.5 kg) using as factors: Thr level (5.1, 5.7, 6.3 and 6.9 g standardized ileal digestible [SID] Thr/kg) and wheat gluten (WG) level used as a source of NEAA (20.4, 40.4 and 60.4 g WG protein in WG20, WG40 and WG60 diets respectively). All diets covered the requirement for essential AA, except for Thr, and they were fed to six pigs for 20 days. Thr level affected only the count of GC containing acidic mucins in the proximal colon, which was higher in pigs fed a diet with 5.1 g SID Thr/kg in comparison with diet containing 6.3 g SID Thr/kg. In the villi, WG40 and/or WG60 increased the GC number containing acidic mucins and lowered that with neutral mucins in the middle jejunum. In the crypts, higher WG levels decreased the GC number with acidic mucins in the duodenum, ileum and proximal colon and increased that with neutral and mixed mucins in the duodenum and ileum. The mucus layer was thicker in the proximal and middle jejunum in WG20 pigs, whereas in the proximal colon it was thicker in WG60 pigs. The lowest GC count was found in the middle jejunum and the highest in the duodenum and proximal colon. The mucus layer was the thinnest in the proximal and middle jejunum and the thickest in the ileum. The results did not show the negative effect of a moderate Thr deficiency and the positive effect of non-essential AA supplementation on GC functions.
Collapse
Affiliation(s)
- Ewa Święch
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Anna Tuśnio
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Marcin Taciak
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Ewelina Siwiak
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
27
|
Jones JW, Clifford Z, Li F, Tudor GL, Farese AM, Booth C, MacVittie TJ, Kane MA. Targeted Metabolomics Reveals Metabolomic Signatures Correlating Gastrointestinal Tissue to Plasma in a Mouse Total-body Irradiation Model. HEALTH PHYSICS 2019; 116:473-483. [PMID: 30624349 PMCID: PMC6384130 DOI: 10.1097/hp.0000000000000955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
High-throughput, targeted metabolomics was used to identify early time-point small intestine and plasma metabolite markers of gastrointestinal acute radiation syndrome. The small intestine metabolite markers were cross correlated to plasma metabolites in order to identify minimally invasive circulating markers. The radiation exposure covered lethal and sublethal gastrointestinal acute radiation syndrome. The small intestine and plasma metabolite profiles were generated at 1 and 3 d postexposure following total-body irradiation. The small intestine and plasma metabolite profiles for mice receiving radiation at day 1 and 3 postexposure were significantly different from sham-irradiated mice. There were 14 metabolite markers identified at day 1 and 18 metabolite markers at day 3 that were small-intestine-specific plasma markers of gastrointestinal acute radiation syndrome. A number of the identified metabolites at day 1 were amino acids. Dysregulation of amino acid metabolism at 24 h post-total-body irradiation provides potential insight into the initial inflammatory response during gastrointestinal acute radiation syndrome.
Collapse
Affiliation(s)
- Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Zachary Clifford
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Fei Li
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | | | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
28
|
Debnath BC, Biswas P, Roy B. The effects of supplemental threonine on performance, carcass characteristics, immune response and gut health of broilers in subtropics during pre-starter and starter period. J Anim Physiol Anim Nutr (Berl) 2018; 103:29-40. [PMID: 30264514 DOI: 10.1111/jpn.12991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 11/28/2022]
Abstract
Three hundred thirty-day-old unsexed commercial broiler chicks (Vencobb-400) with initial average body weight of 44.04 ± 0.42 g were allocated into five experimental groups, in a completely randomized design (CRD) with 21-day experiment. Groups were formed according to dose of supplemental L-threonine in various rations i.e., 100% NRC specification, 100% threonine of Vencobb-400 strain specification, 110% threonine of Vencobb-400 strain specification, 120% of threonine of Vencobb-400 strain specification and 130% threonine of Vencobb-400 strain specification. Average daily feed intake (ADFI), average daily body weight gain (ADG), cumulative feed conversion ratio (CFCR), carcass characteristics, immune response, intestinal morphometry and biochemical profile were studied. The ADFI and ADG increased linearly and quadratically as dietary threonine levels were increased. However, the CFCR did not differ (p ˃ 0.05) among the groups. Though the carcass weight and drumstick yield did not differ (p ˃ 0.05) among the groups, the relative breast yield increased linearly (p = 0.007). The relative dressing yield and relative thigh weight increased linearly (p = 0.05 and p = 0.03, respectively). The relative weight of immune organs like bursa and thymus increased linearly. The mean total serum immunoglobulin, ND-ELISA titre and the mean lymphocyte proliferation response index increased linearly, whereas mean phagocytic activity index of neutrophil increased linearly (p < 0.001) and quadratically (p = 0.001). The mean villus height (VH), crypt depth (CD), villus surface area and mean goblet cell number/villus increased linearly and quadratically, whereas the villus width (VW) and goblet cell density increased quadratically. The serum glucose increased linearly (p = 0.001), whereas serum total protein concentration and serum globulin level increased both linearly and quadratically. The albumin: globulin ratio tended to decrease linearly. There was a significant decrease (p < 0.05) in serum cholesterol and VLDL cholesterol level. However, a linear increment (p = 0.04) in the blood serum HDL cholesterol level with a linear reduction (p = 0.01) in the blood serum LDL cholesterol was noticed.
Collapse
Affiliation(s)
| | | | - Barun Roy
- Department of Animal Nutrition, VAS, WBUAFS, Kolkata, India
| |
Collapse
|
29
|
Abstract
Abstract
Threonine (Thr) is the third limiting essential amino acid after methionine and lysine in cornsoybean based diets of broilers. Dietary imbalance of Thr, therefore, results in a poor growth performance in broilers. This review summarizes literature data on the known effects of dietary levels of Thr on growth performance, gut morphology, immunity and carcass characteristics in broilers. Due to continuous improvement in genetic potential and management practices for poultry production, dietary Thr requirements are changing. A number of studies have shown that supplementation of Thr in broiler diet at a higher level than the current NRC recommendation (0.74-0.81%), increases body weight gain, feed conversion ratio, and improves gut morphology, carcass quality and immune status, mainly by enhancing the functional capability of digestive system and immune organs (spleen, bursa, and thymus). According to the literature data discussed in this review, the minimal and maximal total dietary Thr levels for healthy birds reared in normal conditions were 0.67 and 0.90% for growth performance, 0.77 and 1.1% for a better gut health, 0.60 and 1.02% for immunity and 0.62 and 0.97% for better carcass characteristics. This background provides impetus to further investigate the exact level of Thr and its effects on growth performance, gut morphology, immunity and carcass characteristics in broilers.
Collapse
|
30
|
Worsøe PS, Sangild PT, van Goudoever JB, Koletzko B, van der Beek EM, Abrahamse-Berkeveld M, Burrin DG, van de Heijning BJM, Thymann T. Growth and Clinical Variables in Nitrogen-Restricted Piglets Fed an Adjusted Essential Amino Acid Mix: Effects of Partially Intact Protein-Based Diets. J Nutr 2018; 148:1118-1125. [PMID: 29901723 DOI: 10.1093/jn/nxy073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/19/2018] [Indexed: 01/26/2023] Open
Abstract
Background Current recommendations for protein levels in infant formula are intended to ensure that growth matches or exceeds growth of breastfed infants, but may provide a surplus of amino acids (AAs). Recent infant studies with AA-based formulas support specific adjustment of the essential amino acid (EAA) composition allowing for potential lowering of total protein levels. With the use of a combination of intact protein and free EAAs, we designed a formula that meets these adjusted EAA requirements for infants. Objective Our objective was to test whether this adjusted formula is safe and supports growth in a protein-restricted piglet model, and whether it shows better growth than an isonitrogenous formula based on free AAs. Methods Term piglets (Landrace × Yorkshire × Duroc, n = 72) were fed 1 of 4 isoenergetic formulas containing 70% intact protein and 30% of an EAA mixture or a complete AA-based control for 20 d: standard formula (ST-100), ST-100 with 25% reduction in proteinaceous nitrogen (ST-75), ST-75 with an adjusted EAA composition (O-75), or a diet as O-75, given as a complete AA-based diet (O-75AA). Results After an initial adaptation period, ST-75 and O-75 pigs showed similar growth rates, both lower than ST-100 pigs (∼25 compared with 31 g · kg-1 · d-1, respectively). The O-75AA pigs showed further reduced growth rate (15 g · kg-1 · d-1) and fat proportion (both P < 0.05, relative to O-75). Conclusions Formula based partly on intact protein is superior to AA-based formula in this experimental setting. The 25% lower, but EAA-adjusted, partially intact protein-based formula resulted in similar weight gain with a concomitant increased AA catabolism, compared with the standard 25% lower standard formula in artificially reared, protein-restricted piglets. Further studies should investigate if and how the specific EAA adjustments that allow for lowering of total protein levels will affect growth and body composition development in formula-fed infants.
Collapse
Affiliation(s)
- Päivi S Worsøe
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Per T Sangild
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Berthold Koletzko
- Ludwig-Maximilians-Universität, Dr. von Hauner Children's Hospital, University of Munich Medical Centre, Munich, Germany
| | - Eline M van der Beek
- Nutricia Research, Utrecht, The Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Thomas Thymann
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Lv D, Xiong X, Yang H, Wang M, He Y, Liu Y, Yin Y. Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1233-1242. [PMID: 29785573 DOI: 10.1007/s11427-018-9301-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/07/2018] [Indexed: 10/16/2022]
Abstract
Weaning stress results in gastrointestinal dysfunction and depressed performance in pigs. This study aimed to investigate the effect of soy oil, glucose, and glutamine on the growth and health of weaned piglets. Compared with those in the glutamine group, piglets in the glucose and soy oil groups had greater average daily gain, average daily feed intake, and gain: feed ratio from day 0 to 14, and gain: feed ratio for the overall period. There were no differences with regard to serum amino acids among the three groups on day 14, except glycine and threonine. The serum concentration of histidine, serine, threonine, proline, and cysteine was the highest in the glutamine group, while the content of glycine and lysine in the soy oil group on day 28 was the highest among all groups. Piglets fed with glutamine had greater serum glucose and creatinine on day 14, high-density lipoprotein on day 28, and serum IgG and IgM on day 28. Piglets in the glutamine group demonstrated lower serum total superoxide dismutase on day 14 and 28; however, they demonstrated higher total superoxide dismutase and total antioxidant capacity in the duodenum and ileum on day 14. Weaned pigs supplemented with glucose or soy oil demonstrate better growth performance possibly due to their enhanced feed intake, whereas those supplemented with glutamine may have improved immunity and intestinal oxidative capacity.
Collapse
Affiliation(s)
- Dinghong Lv
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410006, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Meiwei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yijie He
- Department of Animal Science, University of California, Davis, 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, 95616, USA
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410006, China. .,Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
32
|
Dietaryl-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. Br J Nutr 2018; 119:1254-1262. [DOI: 10.1017/s0007114518000740] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractThis study was conducted to investigate the protective effects ofl-threonine (l-Thr) supplementation on growth performance, inflammatory responses and intestinal barrier function of young broilers challenged with lipopolysaccharide (LPS). A total of 144 1-d-old male chicks were allocated to one of three treatments: non-challenged broilers fed a basal diet (control group), LPS-challenged broilers fed a basal diet withoutl-Thr supplementation and LPS-challenged broilers fed a basal diet supplemented with 3·0 g/kgl-Thr. LPS challenge was performed intraperitoneally at 17, 19 and 21 d of age, whereas the control group received physiological saline injection. Compared with the control group, LPS challenge impaired growth performance of broilers, andl-Thr administration reversed LPS-induced increase in feed/gain ratio. LPS challenge elevated blood cell counts related to inflammation, and pro-inflammatory cytokine concentrations in serum (IL-1βand TNF-α), spleen (IL-1βand TNF-α) and intestinal mucosa (jejunal interferon-γ(IFN-γ) and ileal IL-1β). The concentrations of intestinal cytokines in LPS-challenged broilers were reduced byl-Thr supplementation. LPS administration increased circulatingd-lactic acid concentration, whereas it reduced villus height, the ratio between villus height and crypt depth and goblet density in both jejunum and ileum. LPS-induced decreases in jejunal villus height, intestinal villus height:crypt depth ratio and ileal goblet cell density were reversed withl-Thr supplementation. Similarly, LPS-induced alterations in the intestinal mRNA abundances of genes related to intestinal inflammation and barrier function (jejunal toll-like receptor 4,IFN-γand claudin-3, and ilealIL-1βand zonula occludens-1) were normalised withl-Thr administration. It can be concluded thatl-Thr supplementation could attenuate LPS-induced inflammatory responses and intestinal barrier damage of young broilers.
Collapse
|
33
|
Dong XY, Azzam MMM, Zou XT. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens. Poult Sci 2018; 96:3654-3663. [PMID: 28938780 DOI: 10.3382/ps/pex185] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/13/2017] [Indexed: 12/23/2022] Open
Abstract
The effects of supplemental dietary threonine (Thr) on laying performance, expression of intestinal mucin 2 (MUC2) and secretory IgA (sIgA), and intestinal microbiota of laying hens fed a low CP diet were investigated. A total of 240 Lohmann Brown laying hens, 28 wk of age, was allocated to 3 dietary treatments, each of which included 5 replicates of 16 hens. Hens were fed a control diet (16% CP), a low CP diet (14% CP), or a low CP diet supplemented with 0.3% L-Thr for 12 weeks. Chemical analyses of the diets for Thr are 0.49, 0.45, and 0.69%, respectively. Lowering dietary CP impaired egg production and egg mass of laying hens. Dietary Thr supplementation to the low CP diet increased (P < 0.05) egg production and egg mass. In addition, ileal sIgA contents and MUC2 and sIgA mRNA expression were increased (P < 0.05) by dietary Thr addition. Dietary CP reduction reduced (P < 0.05) intestinal bacterial diversity, whereas dietary Thr supplementation to the low CP diet recovered the bacteria diversity and significantly increased the abundance of potential beneficial bacteria. In conclusion, dietary Thr supplementation to a low CP diet could affect intestinal health and hence productivity via regulating intestinal mucin and sIgA expression, and microbial population of laying hens.
Collapse
Affiliation(s)
- X Y Dong
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - M M M Azzam
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Al-Mansoura 35516, Egypt
| | - X T Zou
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
34
|
Jeong SJ, Kim JH, Lim BJ, Yoon I, Song JA, Moon HS, Kim D, Lee DK, Kim S. Inhibition of MUC1 biosynthesis via threonyl-tRNA synthetase suppresses pancreatic cancer cell migration. Exp Mol Med 2018; 50:e424. [PMID: 29328069 PMCID: PMC5799795 DOI: 10.1038/emm.2017.231] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Mucin1 (MUC1), a heterodimeric oncoprotein, containing tandem repeat structures with a high proportion of threonine, is aberrantly overexpressed in many human cancers including pancreatic cancer. Since the overall survival rate of pancreatic cancer patients has remained low for several decades, novel therapeutic approaches are highly needed. Intestinal mucin has been known to be affected by dietary threonine supply since de novo synthesis of mucin proteins is sensitive to luminal threonine concentration. However, it is unknown whether biosynthesis of MUC1 is regulated by threonine in human cancers. In this study, data provided suggests that threonine starvation reduces the level of MUC1 and inhibits the migration of MUC1-expressing pancreatic cancer cells. Interestingly, knockdown of threonyl-tRNA synthetase (TRS), an enzyme that catalyzes the ligation of threonine to its cognate tRNA, also suppresses MUC1 levels but not mRNA levels. The inhibitors of TRS decrease the level of MUC1 protein and prohibit the migration of MUC1-expressing pancreatic cancer cells. In addition, a positive correlation between TRS and MUC1 levels is observed in human pancreatic cancer cells. Concurrent with these results, the bioinformatics data indicate that co-expression of both TRS and MUC1 is correlated with the poor survival of pancreatic cancer patients. Taken together, these findings suggest a role for TRS in controlling MUC1-mediated cancer cell migration and provide insight into targeting TRS as a novel therapeutic approach to pancreatic cancer treatment.
Collapse
Affiliation(s)
- Seung Jae Jeong
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea.,College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea
| | - Beom Jin Lim
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ina Yoon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea.,College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ji-Ae Song
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea
| | - Hee-Sun Moon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea
| | - Dong Ki Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea.,College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
35
|
Effect of dietary β-glucan supplementation on growth performance, carcass characteristics and gut morphology in broiler chicks fed diets containing different theronine levels. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Munasinghe LL, Robinson JL, Harding SV, Brunton JA, Bertolo RF. Protein Synthesis in Mucin-Producing Tissues Is Conserved When Dietary Threonine Is Limiting in Piglets. J Nutr 2017; 147:202-210. [PMID: 28053172 DOI: 10.3945/jn.116.236786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/17/2016] [Accepted: 12/01/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The neonatal gastrointestinal tract extracts the majority of dietary threonine on the first pass to maintain synthesis of threonine-rich mucins in mucus. As dietary threonine becomes limiting, this extraction must limit protein synthesis in extraintestinal tissues at the expense of maintaining protein synthesis in mucin-producing tissues. OBJECTIVE The objective was to determine the dietary threonine concentration at which protein synthesis is reduced in various tissues. METHODS Twenty Yucatan miniature piglets (10 females; mean ± SD age, 15 ± 1 d; mean ± SD weight, 3.14 ± 0.30 kg) were fed 20 test diets with different threonine concentrations, from 0.5 to 6.0 g/100 g total amino acids (AAs; i.e., 20-220% of requirement), and various tissues were analyzed for protein synthesis by administering a flooding dose of [3H]phenylalanine. The whole-body requirement was determined by [1-14C]phenylalanine oxidation and plasma threonine concentrations. RESULTS Breakpoint analysis indicated a whole-body requirement of 2.8-3.0 g threonine/100 g total AAs. For all of the non-mucin-producing tissues as well as lung and colon, breakpoint analyses indicated decreasing protein synthesis rates below the following concentrations (expressed in g threonine/100 g total AAs; mean ± SE): gastrocnemius muscle, 1.76 ± 0.23; longissimus dorsi muscle, 2.99 ± 0.50; liver, 2.45 ± 0.60; kidney, 3.81 ± 0.97; lung, 1.95 ± 0.14; and colon, 1.36 ± 0.29. Protein synthesis in the other mucin-producing tissues (i.e., stomach, proximal jejunum, midjejunum, and ileum) did not change with decreasing threonine concentrations, but mucin synthesis in the ileum and colon decreased over threonine concentrations <4.54 ± 1.50 and <3.20 ± 4.70 g/100 g total AAs, respectively. CONCLUSIONS The results of this study illustrate that dietary threonine is preferentially used for protein synthesis in gastrointestinal tissues in piglets. If dietary threonine intake is deficient, then muscle growth and the functions of other tissues are likely compromised at the expense of maintenance of the mucus layer in mucin-producing tissues.
Collapse
Affiliation(s)
- Lalani L Munasinghe
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, St. John's, Canada; and
| | - Jason L Robinson
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, St. John's, Canada; and
| | - Scott V Harding
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, London, United Kingdom
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, St. John's, Canada; and
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, St. John's, Canada; and
| |
Collapse
|
37
|
Moran ET. Gastric digestion of protein through pancreozyme action optimizes intestinal forms for absorption, mucin formation and villus integrity. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Hanczakowska E, Niwińska B, Grela ER, Węglarzy K, Okoń K. The Effect of Supplementing Sodium Butyrate Containing Feed with Glutamine and/or Glucose on the Structure of the Piglet Digestive Tract and Selected Blood Indices. ANNALS OF ANIMAL SCIENCE 2016. [DOI: 10.1515/aoas-2016-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The effect of supplementing the standard piglet diet containing sodium butyrate with glutamine and/or glucose on the structure of the piglet digestive tract and the small intestine epithelium, acidity and volatile fatty acid content of its digesta was investigated. The free amino acids level, insulin and insulin-like growth factor-1 (IGF-1) concentration in the blood were also analysed. The experiment was performed on 156 piglets (15 litters) allocated to 5 experimental groups, 3 litters in each. Group I (C, negative control) received a basal mixture with no supplement. Group II (SB, positive control) was fed the same basal diet containing additionally 3 g of sodium butyrate per kg. Group III and IV, besides sodium butyrate, received additionally 10 g of glutamine (GT) or glucose (GC), respectively. The last group V received all these supplements, i.e. SB+GT+GC (3, 10, 10 g per kg, respectively). At 60 days of age, the piglets (6 animals from each group) were slaughtered and their intestines were measured and weighed. The piglets in group SB+GT+GC receiving all the supplements grew slightly faster than the others, and at the end of the experiment the differences in body weight were significant. The total intestinal mass of the piglets fed with glucose or all the supplements was significantly higher than that of the piglets receiving glutamine but there was no significant difference in the total length of intestines. There was also no significant difference in acidity of chyme along the entire length of the gastrointestinal tract. Digesta in the jejunum of both control groups (C, SB) contained significantly more SCFA than the remaining groups. In the caecum their content in the negative control and the group fed with all supplements was significantly higher when compared to the butyrate and glucose group. In the duodenum villus height was similar in all the groups but in the jejunum it was significantly higher in the group receiving all supplements than in other groups. Free amino acids level was lowest in the piglets receiving glucose but there was no difference between the remaining groups. The lowest level of IGF-1 was found in the same group and this difference was significant when compared with remaining groups, except C. It is concluded that glutamine and glucose, when given together with sodium butyrate, improve the structure of piglet jejunum epithelium and average body weight gains. A supplement of glucose significantly lowers free amino acid content and IGF-1 level in piglet blood.
Collapse
Affiliation(s)
- Ewa Hanczakowska
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Barbara Niwińska
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Eugeniusz R. Grela
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karol Węglarzy
- Experimental Station of the National Research Institute of Animal Production, Grodziec Śląski Ltd., 43-386 Świętoszówka, Poland
| | - Krzysztof Okoń
- Medical College, Jagiellonian University, Department of Pathomorphology, Grzegórzecka 16, 31-531 Kraków, Poland
| |
Collapse
|
39
|
Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine. PLoS One 2016; 11:e0162475. [PMID: 27611307 PMCID: PMC5017764 DOI: 10.1371/journal.pone.0162475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/23/2016] [Indexed: 01/10/2023] Open
Abstract
Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption.
Collapse
|
40
|
Chen YP, Cheng YF, Li XH, Yang WL, Wen C, Zhuang S, Zhou YM. Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poult Sci 2016; 96:405-413. [PMID: 27418662 DOI: 10.3382/ps/pew240] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to investigate effects of L-threonine (L-Thr) supplementation on the growth performance, immunity, antioxidant status, and intestinal health of broilers at the early age. One hundred and forty-four 1-day-old male broiler chicks (Arbor Acres Plus) were allocated into 3 treatments with 6 replicates of 8 birds each, and fed a basal diet (analyzed Thr content, 7.87 g/kg) supplemented with 0 (control diet), 1 and 3 g/kg L-Thr for 21 d, respectively. Treatments did not alter growth performance of broilers. Compared with control, 1 g/kg Thr supplementation increased relative weight of spleen (P = 0.013). A higher level of Thr (3 g/kg) increased relative weight of thymus (P = 0.003). The supplementation of 3 g/kg Thr reduced Escherichia coli (P = 0.040) and Salmonella colonies (P = 0.015), whereas increased Lactobacillus colonies (P < 0.001) in the cecal contents. Thr supplementation increased intestinal villus height (P < 0.05), and the ratio of villus height to crypt depth (P < 0.001), and the values for these parameters were intermediate with 1 g/kg Thr. Goblet cell density was increased by Thr supplementation (P < 0.001). The jejunal immunoglobulin G content was increased by the inclusion of Thr (P = 0.002). Broilers fed diet supplemented with 1 g/kg Thr exhibited increased concentrations of jejunal immunoglobulin M (P = 0.037) and secretory immunoglobulin A (P = 0.018). Likewise, 3 g/kg Thr inclusion increased ileal secretory immunoglobulin A content (P = 0.023). The jejunal malondialdehyde accumulation was reduced by Thr inclusion (P = 0.012). A higher level of Thr inclusion also reduced malondialdehyde content in the serum (P = 0.029). The high level of Thr inclusion (3 g/kg) upregulated mucin-2 mRNA expression (P = 0.034), whereas downregulated the mRNA abundances of interferon-γ (P = 0.036) and interleukin-1β (P = 0.031) in the ileum. In conclusion, L-Thr supplementation can improve immunity, antioxidant capacity, and intestinal health of broilers at an early age.
Collapse
Affiliation(s)
- Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Y F Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - X H Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - W L Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - S Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
41
|
Habte-Tsion HM, Ren M, Liu B, Ge X, Xie J, Chen R. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2016; 51:189-199. [PMID: 26631806 DOI: 10.1016/j.fsi.2015.11.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish.
Collapse
Affiliation(s)
- Habte-Michael Habte-Tsion
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Ministry of Marine Resources the State of Eritrea, P.O.Box: 27, Massawa, Eritrea.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China
| | - Ruli Chen
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China
| |
Collapse
|
42
|
Zhang Q, Zeng QF, Cotter P, Applegate TJ. Dietary threonine response of Pekin ducks from hatch to 14 d of age based on performance, serology, and intestinal mucin secretion. Poult Sci 2016; 95:1348-55. [PMID: 26944967 DOI: 10.3382/ps/pew032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022] Open
Abstract
Two experiments were conducted to determine the dietary threonine (Thr) requirement of Pekin ducks from hatch to 14 d of age. In experiment 1, practical corn-soybean meal diets were formulated to contain 0.78, 0.84, 0.90, 0.96, and 1.02% Thr (0.74, 0.83, 0.88, 0.92, and 1.00% Thr on an analyzed basis). In experiment 2, corn-soybean meal diets supplemented with 11 crystalline amino acids were formulated to contain 0.60, 0.70, 0.80, 0.90, 1.00, and 1.10% Thr (0.60, 0.75, 0.89, 0.95, 1.01, and 1.09% Thr on an analyzed basis). In both experiments, diets were fed to 8 replicate cages with 6 male ducks per cage. Body weight and feed intake from each cage were recorded weekly. At 14 d of age, breast meat, ileal digesta, and serum were collected to determine breast meat yield, mucin secretion, and serology parameters. In both studies, the estimated Thr requirement (expressed as % dietary Thr basis) for 14 d BW and BW gain (BWG) by quadratic broken-line (QBL) regression were similar, which were 0.87 and 0.86%, respectively. Additional measures in both experiments resulted in Thr requirements via QBL regression in rank order of crude mucin secretion < breast meat yield < serum immune activity. Summing up the estimates from both studies, the Thr requirement ranged from a low of 0.81% to maximize feed intake (FI) to a high of 1.00% to maximize serum Rb L100 by QBL regression. Correspondingly, the Thr requirement varied between a low of 0.90% to maximize crude mucin secretion on a dry matter intake (DMI) basis and a high of 0.98% to maximize feed-to-gain when using quadratic regression.
Collapse
Affiliation(s)
- Q Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Q F Zeng
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan Province, 625014, PR China
| | - P Cotter
- Cotter Laboratory, Arlington, MA 02476
| | - T J Applegate
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
43
|
Liang Y, Carroll JA, Ballou MA. The digestive system of 1-week-old Jersey calves is well suited to digest, absorb, and incorporate protein and energy into tissue growth even when calves are fed a high plane of milk replacer. J Dairy Sci 2016; 99:1929-1937. [DOI: 10.3168/jds.2015-9895] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022]
|
44
|
Moghaddam HS, Moghaddam HN, Kermanshahi H, Mosavi AH, Raji A. The effect of threonine onmucin2gene expression, intestinal histology and performance of broiler chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2011.e14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Mastellar SL, Moffet A, Harris PA, Urschel KL. Effects of threonine supplementation on whole-body protein synthesis and plasma metabolites in growing and mature horses. Vet J 2015; 207:147-153. [PMID: 26670331 DOI: 10.1016/j.tvjl.2015.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/02/2023]
Abstract
Current equine threonine requirement estimates do not account for probable use of threonine to maintain gut health and mucin synthesis. The objective of this study was to determine if threonine supplementation (+Thr) would increase whole-body protein synthesis (WBPS) in weanling colts (Study 1) and adult mares (Study 2). Both studies used a crossover design, where each of six animals was studied twice while receiving the isonitrogenous diets. The basal diets contained lower threonine levels (Basal) than the threonine (+Thr) supplemented diets. Threonine intakes in mg/kg BW/day were as follows: 79 (Basal) and 162 (+Thr) for Study 1 and 58 (Basal) and 119 (+Thr) for Study 2, in comparison to the NRC estimated requirements of 81 and 33 mg/kg BW/day for weanling and mature horses, respectively. Following 5 days of adaptation, blood samples were taken before and 90 min after the morning concentrate meal. The next day, whole-body phenylalanine kinetics were determined using a 2 h primed, constant infusion of [(13)C]sodium bicarbonate followed by a 4 h primed, constant infusion of [1-(13)C]phenylalanine. Most plasma amino acid (AA) concentrations were elevated post-feeding (P < 0.01). Lysine and valine plasma concentrations were lower (P <0.10), while methionine, threonine, and glycine plasma concentrations were greater (P <0.10) 90 min post concentrate meal feeding with +Thr in both studies. Phenylalanine flux, intake, oxidation and non-oxidative disposal were similar between treatments (P > 0.05). These findings suggest that supplementation of a single AA can affect the metabolism of several AAs and threonine was not a limiting AA in these diets.
Collapse
Affiliation(s)
- S L Mastellar
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - A Moffet
- Buckeye Nutrition, Dalton, OH 44618, USA
| | - P A Harris
- Equine Studies Group, WALTHAM Centre for Pet Nutrition, Melton Mowbray, UK
| | - K L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
46
|
Conde-Aguilera JA, Le Floc'h N, Le Huërou-Luron I, Mercier Y, Tesseraud S, Lefaucheur L, van Milgen J. Splanchnic tissues respond differently when piglets are offered a diet 30 % deficient in total sulfur amino acid for 10 days. Eur J Nutr 2015; 55:2209-19. [PMID: 26335055 DOI: 10.1007/s00394-015-1031-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/26/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE A deficient total sulfur amino acid (TSAA) supply has been reported to differently affect the amino acid composition of tissues, but limited information is available about its effects on the morphology and metabolic properties of splanchnic tissues. METHODS The amino acid composition, protein metabolism, glutathione concentration of the liver, proximal and distal jejunum, ileum and kidneys, and intestinal architecture were compared in 42-day-old piglets pair-fed either a diet deficient (TSAA-; 28 % deficiency) or sufficient (TSAA+) in TSAA for 10 days. RESULTS The supply of TSAA had no effect on tissue weights, but influenced the amino acid composition in a tissue-dependent manner. Compared with animals receiving diet TSAA+, the concentrations of Met and Ser were higher in liver protein of TSAA- animals while the Cys concentration in protein was lower in the liver but higher in the distal jejunum. The TSAA supply had no effect on protein synthesis and proteolytic activities of tissues. Villus width and surface, and crypt surface were lower in the proximal jejunum of TSAA- versus TSAA+ pigs. Crypt surface in the ileum of TSAA- pigs was higher. Pigs receiving diet TSAA- had lower GSH and GSSG concentrations in the liver and proximal jejunum, but the GSH/GSSG ratio was decreased only in the liver. CONCLUSIONS A greater nutritional priority appears to be given to splanchnic tissues so that its growth and protein metabolism can be maintained when the TSAA supply is limiting. The amino acid composition, glutathione status, and intestinal mucosa architecture are affected in a tissue-dependent manner.
Collapse
Affiliation(s)
| | - Nathalie Le Floc'h
- UMR1348 PEGASE, INRA, 35590, Saint-Gilles, France.,UMR1348 PEGASE, Agrocampus Ouest, 35000, Rennes, France
| | | | | | | | - Louis Lefaucheur
- UMR1348 PEGASE, INRA, 35590, Saint-Gilles, France.,UMR1348 PEGASE, Agrocampus Ouest, 35000, Rennes, France
| | - Jaap van Milgen
- UMR1348 PEGASE, INRA, 35590, Saint-Gilles, France. .,UMR1348 PEGASE, Agrocampus Ouest, 35000, Rennes, France.
| |
Collapse
|
47
|
Mao X, Liu M, Tang J, Chen H, Chen D, Yu B, He J, Yu J, Zheng P. Dietary Leucine Supplementation Improves the Mucin Production in the Jejunal Mucosa of the Weaned Pigs Challenged by Porcine Rotavirus. PLoS One 2015; 10:e0137380. [PMID: 26336074 PMCID: PMC4559446 DOI: 10.1371/journal.pone.0137380] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
The present study was mainly conducted to determine whether dietary leucine supplementation could attenuate the decrease of the mucin production in the jejunal mucosa of weaned pigs infected by porcine rotavirus (PRV). A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets supplemented with 1.00% L-leucine or 0.68% L-alanine (isonitrogenous control) for 17 d. On day 11, all pigs were orally infused PRV or the sterile essential medium. During the first 10 d of trial, dietary leucine supplementation could improve the feed efficiency (P = 0.09). The ADG and feed efficiency were impaired by PRV infusion (P<0.05). PRV infusion also increased mean cumulative score of diarrhea, serum rotavirus antibody concentration and crypt depth of the jejunal mucosa (P<0.05), and decreased villus height: crypt depth (P = 0.07), goblet cell numbers (P<0.05), mucin 1 and 2 concentrations (P<0.05) and phosphorylated mTOR level (P<0.05) of the jejunal mucosa in weaned pigs. Dietary leucine supplementation could attenuate the effects of PRV infusion on feed efficiency (P = 0.09) and mean cumulative score of diarrhea (P = 0.09), and improve the effects of PRV infusion on villus height: crypt depth (P = 0.06), goblet cell numbers (P<0.05), mucin 1 (P = 0.08) and 2 (P = 0.07) concentrations and phosphorylated mTOR level (P = 0.08) of the jejunal mucosa in weaned pigs. These results suggest that dietary 1% leucine supplementation alleviated the decrease of mucin production and goblet cell numbers in the jejunal mucosa of weaned pigs challenged by PRV possibly via activation of the mTOR signaling.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
- * E-mail:
| | - Minghui Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
| | - Jun Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
| | - Hao Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, Sichuan, People’s Republic of China
| |
Collapse
|
48
|
Threonine affects digestion capacity and hepatopancreatic gene expression of juvenile blunt snout bream (Megalobrama amblycephala). Br J Nutr 2015. [PMID: 26202077 DOI: 10.1017/s0007114515002196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study conducted a 9-week feeding trial to investigate the effects of threonine (Thr) on the digestion capacity and hepatopancreas gene expression of juvenile blunt snout bream (Megalobrama amblycephala). For this purpose, three tanks (300 litres/tank) were randomly arranged and assigned to each experimental diet. Juvenile fish were fed with diets containing graded Thr levels (0·58, 1·08, 1·58, 2·08 or 2·58 % of the diet) to apparent satiation four times daily. At the end of the feeding trial, the results indicated that hepatopancreas weight, hepatosomatic index, hepatopancreatic protein content, intestinal weight, intestosomatic index and intestinal protein content increased with increasing dietary Thr levels up to 1·58 % and thereafter decreased (P< 0·05). The activities of chymotrypsin, trypsin, amylase and lipase elevated as dietary Thr levels increased up to 1·58 % (P< 0·05), while these activities decreased in most cases after 1·58 % dietary Thr except for chymotrypsin and trypsin in the hepatopancreas (plateau 1·58-2·08 % Thr). The relative gene expression levels of chymotrypsin, trypsin, amylase, lipase, target of rapamycin and insulin-like growth factor-I were up-regulated, and the highest values were observed with 1·58 % dietary Thr or 1·58 and 2·08 % dietary Thr, whereas the relative gene expression levels of eukaryotic translation initiation factor 4E-binding protein 2 gradually decreased (P< 0·10) as dietary Thr levels increased up to 1·58 % and thereafter significantly increased (P< 0·05), which could explain that about 1·58 % dietary Thr could improve the growth and development of digestive organs and activities of digestive enzymes of juvenile blunt snout bream.
Collapse
|
49
|
Morales A, Buenabad L, Castillo G, Arce N, Araiza BA, Htoo JK, Cervantes M. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition. J Anim Sci 2015; 93:2154-64. [PMID: 26020311 DOI: 10.2527/jas.2014-8834] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pigs fed protein-bound AA appear to have a higher abundance of AA transporters for their absorption in the jejunum compared with the duodenum. However, there is limited data about the effect of dietary free AA, readily available in the duodenum, on the duodenal abundance of AA transporters and its impact on pig performance. Forty-eight pigs (24.3 kg initial BW) distributed in 4 treatments were used to evaluate the effect of the CP level and form (free vs. protein bound) in which AA are added to diets on the expression of AA transporters in the 3 small intestine segments, serum concentration of AA, and performance. Dietary treatments based on wheat and soybean meal (SBM) were 1) low-CP (14%) diet supplemented with L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp, and L-Phe (LPAA); 2) as in the LPAA but with added L-Gly as a N source (LPAA+N); 3) intermediate CP content (16%) supplemented with L-Lys HCl, L-Thr, and DL-Met (MPAA); and 4) high-CP (22%) diet (HP) without free AA. At the end of the experiment, 8 pigs from LPAA and HP were sacrificed to collect intestinal mucosa and blood samples and to dissect the carcasses. There were no differences in ADG, ADFI, G:F, and weights of carcass components and some visceral organs between treatments. Weights of the large intestine and kidney were higher in HP pigs (P < 0.01). Expression of b(0,+) in the duodenum was higher in pigs fed the LPAA compared with the HP diet (P= 0.036) but there was no difference in the jejunum and ileum. In the ileum, y+ L expression tended to be higher in pigs fed the LPAA diet (P = 0.098). Expression of b(0,+) in LPAA pigs did not differ between the duodenum and the jejunum, but in HP pigs, the expression of all AA transporters was higher in the jejunum than in the duodenum or ileum (P < 0.05). The serum concentration of Arg, His, Ile, Leu, Phe, and Val was higher but serum Lys and Met were lower in pigs fed the HP diet (P < 0.05). These results indicate that LPAA can substitute up to 8 percentage units of protein in HP wheat-SBM diets without affecting pig performance; nonessential N does not seem to be limiting in very low-protein wheat-SBM diets for growing pigs. Also, the inclusion of free AA in the diet appears to affect their serum concentration and the expression of the AA transporter b0,+ in the duodenum of pigs.
Collapse
|
50
|
Myrie SB, Bertolo RF, Moehn S, Ball RO. Barley does not change threonine requirement in growing pigs fed a barley–casein-based diet compared to a casein-based diet, as determined by the indicator amino acid oxidation method. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|