1
|
Tomczyk-Warunek A, Winiarska-Mieczan A, Blicharski T, Blicharski R, Kowal F, Pano IT, Tomaszewska E, Muszyński S. Consumption of Phytoestrogens Affects Bone Health by Regulating Estrogen Metabolism. J Nutr 2024; 154:2611-2627. [PMID: 38825042 DOI: 10.1016/j.tjnut.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoporosis is a significant concern in bone health, and understanding its pathomechanism is crucial for developing effective prevention and treatment strategies. This article delves into the relationship between estrogen metabolism and bone mineralization, shedding light on how phytoestrogens can influence this intricate process. Estrogen, a hormone primarily associated with reproductive health, plays a pivotal role in maintaining bone density and structure. The article explores the positive effects of estrogen on bone mineralization, highlighting its importance in preventing conditions like osteoporosis. Phytoestrogens, naturally occurring compounds found in certain plant-based foods, are the focal point of the discussion. These compounds have the remarkable ability to mimic estrogen's actions in the body. The article investigates how phytoestrogens can modulate the activity of estrogen, thereby impacting bone health. Furthermore, the article explores the direct effects of phytoestrogens on bone mineralization and structure. By regulating estrogen metabolism, phytoestrogens can contribute to enhanced bone density and reduced risk of osteoporosis. Finally, the article emphasizes the role of plant-based diets as a source of phytoestrogens. By incorporating foods rich in phytoestrogens into one's diet, individuals may potentially bolster their bone health, adding a valuable dimension to the ongoing discourse on osteoporosis prevention. In conclusion, this article offers a comprehensive overview of 137 positions of literature on the intricate interplay between phytoestrogens, estrogen metabolism, and bone health, shedding light on their potential significance in preventing osteoporosis and promoting overall well-being.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Department of Rehabilitation and Physiotherapy, Laboratory of Locomotor Systems Research, Medical University of Lublin, Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Tomasz Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Rudolf Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Filip Kowal
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Inés Torné Pano
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
2
|
Del Bo’ C, Chehade L, Tucci M, Canclini F, Riso P, Martini D. Impact of Substituting Meats with Plant-Based Analogues on Health-Related Markers: A Systematic Review of Human Intervention Studies. Nutrients 2024; 16:2498. [PMID: 39125378 PMCID: PMC11314210 DOI: 10.3390/nu16152498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The growing drive towards more sustainable dietary patterns has led to an increased demand for and availability of plant-based meat analogues (PBMAs). This systematic review aims to summarize the currently available evidence from human intervention studies investigating the impact of substituting animal meat (AM) with PBMAs in adults. A total of 19 studies were included. Overall, an increase in satiety following PBMA intake was reported, albeit to different extents and not always accompanied by changes in leptin and ghrelin. PBMAs generally resulted in lower protein bioavailability and a smaller increase in plasma essential amino acids in comparison to AM. However, muscle protein synthesis and physical performance were not affected. Finally, conflicting results have been reported for other outcomes, such as pancreatic and gastrointestinal hormones, oxidative stress and inflammation, vascular function, and microbiota composition. In conclusion, we documented that the impact of substituting AM with PBMA products has been scarcely investigated. In addition, the heterogeneity found in terms of study design, population, outcomes, and findings suggests the need for additional high-quality intervention trials, particularly long-term ones, to better clarify the advantages and potential critical issues of such substitutions within sustainable healthy diets.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy (L.C.); (F.C.); (D.M.)
| | | |
Collapse
|
3
|
Itkonen ST, Karhu P, Pellinen T, Lehtovirta M, Kaartinen NE, Männistö S, Päivärinta E, Pajari AM. Effects of partial replacement of red and processed meat with non-soya legumes on bone and mineral metabolism and amino acid intakes in BeanMan randomised clinical trial. Br J Nutr 2024; 131:82-91. [PMID: 37424311 DOI: 10.1017/s0007114523001514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The transition towards more plant-based diets may pose risks for bone health such as low vitamin D and Ca intakes. Findings for the contribution of animal and plant proteins and their amino acids (AA) to bone health are contradictory. This 6-week clinical trial aimed to investigate whether partial replacement of red and processed meat (RPM) with non-soya legumes affects AA intakes and bone turnover and mineral metabolism in 102 healthy 20-65-year-old men. Participants were randomly assigned to diet groups controlled for RPM and legume intake (designed total protein intake (TPI) 18 E%): the meat group consumed 760 g RPM per week (25 % TPI) and the legume group consumed non-soya legume-based products (20 % TPI) and 200 g RPM per week, the upper limit of the Planetary Health Diet (5 % TPI). No differences in bone (bone-specific alkaline phosphatase; tartrate-resistant acid phosphatase 5b) or mineral metabolism (25-hydroxyvitamin D; parathyroid hormone; fibroblast growth factor 23; phosphate and Ca) markers or Ca and vitamin D intakes were observed between the groups (P > 0·05). Methionine and histidine intakes were higher in the meat group (P ≤ 0·042), whereas the legume group had higher intakes of arginine, asparagine and phenylalanine (P ≤ 0·013). Mean essential AA intakes in both groups met the requirements. Increasing the proportion of non-soya legumes by reducing the amount of RPM in the diet for 6 weeks did not compromise bone turnover and provided on average adequate amounts of AA in healthy men, indicating that this ecologically sustainable dietary change is safe and relatively easy to implement.
Collapse
Affiliation(s)
- Suvi T Itkonen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Piia Karhu
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Tiina Pellinen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Mikko Lehtovirta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | | | - Satu Männistö
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Essi Päivärinta
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Hidayat K, Tong X, Rizzoli R, Fan JB, Shi YJ, Su HW, Liu B, Qin LQ. The skeletal safety of milk-derived proteins: A meta-analysis of randomized controlled trials. Osteoporos Int 2023; 34:1937-1949. [PMID: 37526672 DOI: 10.1007/s00198-023-06840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE There has been a persistent claim that dairy products contain calcium-leaching proteins, although the soundness of such a claim has been challenged. A meta-analysis of randomized controlled trials (RCTs) on the effects of milk-derived protein supplementation on bone health indices in adults was performed to reconcile the controversy surrounding the potential skeletal safety concerns of proteins of dairy origin. METHODS The PubMed and Web of Science databases were searched for relevant RCTs. A random-effects model was used to generate pooled effect sizes and 95% confidence intervals. RESULTS Milk-derived protein supplementation did not significantly affect whole-body BMD (n = 7 RCTs) and BMD at the lumbar spine (n = 10), hip (n = 8), femoral neck (n = 9), trochanter (n = 5), intertrochanter (n = 2), and ultradistal radius (n = 2). The concentrations of bone formation markers (bone-specific alkaline phosphatase [n = 11], osteocalcin [n = 6], procollagen type 1 amino-terminal propeptide [n = 5]), bone resorption markers (N-terminal telopeptide of type 1 collagen [n = 7], C-terminal telopeptide of type 1 collagen [n = 7], deoxypyridinoline [n = 4]), and parathyroid hormone (n = 7) were not significantly affected. However, increased insulin-like growth factor-1 (IGF-1) concentrations (n = 13) were observed. Reduced IGF-1 concentrations were observed when soy protein was used as a comparator, and increased IGF-1 concentrations were observed when carbohydrate was used. CONCLUSION Our findings do not support the claim that proteins of dairy origin are detrimental to bone health.
Collapse
Affiliation(s)
- Khemayanto Hidayat
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123, China.
| | - Xing Tong
- Laboratory Center, Medical College of Soochow University, Suzhou, 215123, China
| | - René Rizzoli
- Division of Bone Diseases, Department of Internal Medicine, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva, Switzerland
| | - Jing-Bo Fan
- Laboratory Center, Medical College of Soochow University, Suzhou, 215123, China
| | - Yu-Jie Shi
- Branch Company, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, 010110, China
| | - Hong-Wen Su
- Branch Company, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, 010110, China
| | - Biao Liu
- Branch Company, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, 010110, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Je M, Kang K, Yoo JI, Kim Y. The Influences of Macronutrients on Bone Mineral Density, Bone Turnover Markers, and Fracture Risk in Elderly People: A Review of Human Studies. Nutrients 2023; 15:4386. [PMID: 37892460 PMCID: PMC10610213 DOI: 10.3390/nu15204386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is a health condition that involves weak bone mass and a deteriorated microstructure, which consequently lead to an increased risk of bone fractures with age. In elderly people, a fracture attributable to osteoporosis elevates mortality. The objective of this review was to examine the effects of macronutrients on bone mineral density (BMD), bone turnover markers (BTMs), and bone fracture in elderly people based on human studies. A systematic search was conducted in the PubMed®/MEDLINE® database. We included human studies published up to April 2023 that investigated the association between macronutrient intake and bone health outcomes. A total of 11 meta-analyses and 127 individual human studies were included after screening the records. Carbohydrate consumption seemed to have neutral effects on bone fracture in limited studies, but human studies on carbohydrates' effects on BMD or/and BTMs are needed. The human studies analyzed herein did not clearly show whether the intake of animal, vegetable, soy, or milk basic proteins has beneficial effects on bone health due to inconsistent results. Moreover, several individual human studies indicated an association between eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and osteocalcin. Further studies are required to draw a clear association between macronutrients and bone health in elderly people.
Collapse
Affiliation(s)
- Minkyung Je
- Department of Food and Nutrition, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (M.J.); (K.K.)
| | - Kyeonghoon Kang
- Department of Food and Nutrition, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (M.J.); (K.K.)
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Inha University Hospital, 27 Inhang-Ro, Incheon 22332, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Consalez F, Ahern M, Andersen P, Kjellevold M. The Effect of the Meat Factor in Animal-Source Foods on Micronutrient Absorption: A Scoping Review. Adv Nutr 2022; 13:2305-2315. [PMID: 36055778 PMCID: PMC9776636 DOI: 10.1093/advances/nmac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 08/18/2022] [Indexed: 01/29/2023] Open
Abstract
The EAT-Lancet Commission's planetary health guidelines suggest a reduction in the consumption of animal-source foods (ASFs) for better health and more sustainable food systems. ASFs are highly nutrient dense, therefore suited to address the widespread issue of micronutrient deficiencies, particularly in low-resource settings where diets are predominantly plant based. ASFs are also believed to contain the meat factor, a substance enhancing the absorption of micronutrients from plant-based foods. We conducted a scoping review with the objective of systematically mapping the available evidence on the meat factor. The MEDLINE/PubMed and Web of Science databases were searched for literature published up to September 2021. Articles eligible for inclusion were all studies assessing the effect of adding ASFs and/or ASF fractions on micronutrient absorption from a plant-based meal or the overall diet in animal models and human subjects. Screening and data extraction were performed, and results were charted into 12 categories. We identified 77 articles eligible for inclusion, 52 of which were conducted in human subjects, 24 in animal models, and 1 in both. The addition of muscle tissue and muscle tissue fractions to single plant-based meals steadily increased absorption of iron and zinc across studies. The efficacy of the meat factor in increasing iron and zinc absorption in the overall diet is less clear. No clear differences emerged between red meat, poultry, and fish in promoting the meat factor effect. No clear evidence indicates that milk and egg products contain the meat factor. Our review highlights the importance of muscle tissue for the potential of the meat factor to enhance absorption of micronutrients of concern. Although the literature supports including sustainable and economically accessible forms of these ASFs into the diet, we found limited studies in resource-poor countries and of diets with low meat intake.
Collapse
Affiliation(s)
- Fabio Consalez
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Molly Ahern
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Peter Andersen
- Department of Geography, University of Bergen, Bergen, Norway
| | | |
Collapse
|
7
|
Han Y, An M, Yang L, Li L, Rao S, Cheng Y. Effect of Acid or Base Interventions on Bone Health: A Systematic Review, Meta-Analysis, and Meta-Regression. Adv Nutr 2021; 12:1540-1557. [PMID: 33684217 PMCID: PMC8321841 DOI: 10.1093/advances/nmab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a global health issue among the aging population. The effect of the acid or base interventions on bone health remains controversial. This study performed a systematic review and meta-analysis to investigate effects of acidic diets and alkaline supplements on bone health simultaneously. We conducted a comprehensive literature search in 5 available databases and 1 registered clinical trial system to identify randomized controlled trials (RCTs) that assessed effects of the acid-base intervention on bone health. Depending on heterogeneity across studies, the pooled effects were calculated by fixed-effects or random-effects models. The present study included 13 acidic diet intervention studies and 13 alkaline supplement studies for final quantitative assessments. The meta-analysis showed that acidic diets significantly increased net acid excretion [NAE; standardized mean difference (SMD) = 2.99; P = 0.003] and urinary calcium excretion (SMD = 0.47, P < 0.00001) but had no significant effect on bone turnover markers and bone mineral density (BMD). On the other hand, alkaline supplement intervention significantly reduced NAE (SMD = -1.29, P < 0.00001), urinary calcium excretion (SMD = -0.44, P = 0.007), bone resorption marker aminoterminal cross-linking telopeptide (NTX; SMD = -0.29, P = 0.003), and bone formation marker osteocalcin (OC; SMD = -0.23, P = 0.02), but did not affect the other bone turnover markers. Furthermore, alkaline supplements significantly increased BMD in femoral neck [mean difference (MD) = 1.62, P < 0.00001, I2 = 0%], lumbar spine (MD = 1.66, P < 0.00001, I2 = 87%), and total hip (MD = 0.98, P = 0.02, I2 = 99%). Subsequently, meta-regression analyses identified 1 study that substantially contributed to the high heterogeneity of BMD in the latter 2 sites, but sensitivity analysis suggested that this study did not affect the significant pooled effects. Despite that, the results should be interpreted with caution and need to be further validated by a larger RCT. In summary, through integrating evidence from RCTs, the present meta-analysis initially suggests that alkaline supplements may be beneficial to bone metabolism and acidic diets may not be harmful to bone health. This work may be clinically useful for both clinicians and patients with osteoporosis.
Collapse
Affiliation(s)
- Yibing Han
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Min An
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Li Yang
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Liuran Li
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | | | | |
Collapse
|
8
|
Van Elswyk ME, Weatherford CA, McNeill SH. A Systematic Review of Renal Health in Healthy Individuals Associated with Protein Intake above the US Recommended Daily Allowance in Randomized Controlled Trials and Observational Studies. Adv Nutr 2018; 9:404-418. [PMID: 30032227 PMCID: PMC6054213 DOI: 10.1093/advances/nmy026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/10/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
A systematic review was used to identify randomized controlled trials (RCTs) and observational epidemiologic studies (OBSs) that examined protein intake consistent with either the US RDA (0.8 g/kg or 10-15% of energy) or a higher protein intake (≥20% but <35% of energy or ≥10% higher than a comparison intake) and reported measures of kidney function. Studies (n = 26) of healthy, free-living adults (>18 y old) with or without metabolic disease risk factors were included. Studies of subjects with overt disease, such as chronic kidney, end-stage renal disease, cancer, or organ transplant, were excluded. The most commonly reported variable was glomerular filtration rate (GFR), with 13 RCTs comparing GFRs obtained with normal and higher protein intakes. Most (n = 8), but not all (n = 5), RCTs reported significantly higher GFRs in response to increased protein intake, and all rates were consistent with normal kidney function in healthy adults. The evidence from the current review is limited and inconsistent with regard to the role of protein intake and the risk of kidney stones. Increased protein intake had little or no effect on blood markers of kidney function. Evidence reported here suggests that protein intake above the US RDA has no adverse effect on blood pressure. All included studies were of moderate to high risk of bias and, with the exception of 2 included cohorts, were limited in duration (i.e. <6 mo). Data in the current review are insufficient to determine if increased protein intake from a particular source, i.e., plant or animal, influences kidney health outcomes. These data further indicate that, at least in the short term, higher protein intake within the range of recommended intakes for protein is consistent with normal kidney function in healthy individuals.
Collapse
|
9
|
Dirkes RK, Richard MW, Meers GM, Butteiger DN, Krul ES, Thyfault JP, Rector RS, Hinton PS. Soy Protein Isolate Suppresses Bone Resorption and Improves Trabecular Microarchitecture in Spontaneously Hyperphagic, Rapidly Growing Male OLETF Rats. Curr Dev Nutr 2018; 2:nzy010. [PMID: 30019033 PMCID: PMC6041976 DOI: 10.1093/cdn/nzy010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traditionally, milk proteins have been recommended for skeletal health; recently, soy proteins have emerged as popular alternatives. Excess adiposity appears detrimental to skeletal health, as obese adolescents have increased fracture rates compared with healthy controls. However, soy protein effects on skeletal health during excess adiposity remain unknown. OBJECTIVE The study objective was to examine the effects of isocaloric diets containing milk protein isolate (MPI), soy protein isolate (SPI), or a 50/50 combination (MIX) as the sole protein source on metabolic health indicators and bone outcomes in rapidly growing, hyperphagic, male Otsuka Long Evans Tokushima Fatty (OLETF) rats. METHODS OLETF rats, aged 4 wk, were randomly assigned to 3 treatment groups (MPI, SPI, or MIX, n = 20 per group) and provided with access to experimental diets ad libitum for 16 wk. RESULTS Body mass did not differ between the groups, but SPI had lower percentage body fat than MPI (P = 0.026). Insulin was lower in MPI than in MIX (P = 0.033) or SPI (P = 0.044), but fasting blood glucose was not different between the groups. SPI significantly reduced serum cholesterol compared with MPI (P = 0.001) and MIX (P = 0.002). N-terminal propeptide of type I collagen (P1NP) was higher in MIX than MPI (P = 0.05); C-terminal telopeptide of type 1 collagen (CTx) was higher in MPI than SPI (P < 0.001) and MIX (P < 0.001); the P1NP to CTx ratio was significantly higher in SPI and MIX than in MPI (P < 0.001). Trabecular separation was reduced in SPI compared with MPI (P = 0.030) and MIX (P = 0.008); trabecular number was increased in SPI compared with MIX (P = 0.038). No differences were seen in cortical geometry and biomechanical properties. CONCLUSIONS In the context of excess adiposity, soy- and milk-based proteins have comparable effects on cortical bone geometry and biomechanical properties, whereas soy-based proteins favorably affect the trabecular microarchitecture, and the combination of both proteins may offer additional benefits to bone remodeling in rapidly growing male OLETF rats.
Collapse
Affiliation(s)
- Rebecca K Dirkes
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Matthew W Richard
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Grace M Meers
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | | | | | - John P Thyfault
- University of Kansas Medical Center and Kansas City VA, Kansas City, MO
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
10
|
Wallace TC, Frankenfeld CL. Dietary Protein Intake above the Current RDA and Bone Health: A Systematic Review and Meta-Analysis. J Am Coll Nutr 2017; 36:481-496. [PMID: 28686536 DOI: 10.1080/07315724.2017.1322924] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dietary intake of protein is fundamental for optimal acquisition and maintenance of bone across all life stages; however, it has been hypothesized that intakes above the current recommended dietary allowance (RDA) might be beneficial for bone health. We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines when preparing and reporting this systematic review and meta-analysis. A literature search strategy through April 11, 2017, was developed for the following 3 databases: PubMed, Ovid Medline, and Agricola. Included studies were those randomized controlled trials and prospective cohort studies among healthy adults ages 18 and older that examined the relationships between varying doses of protein intake at or above the current U.S. RDA (0.8 g/kg/d or 10%-15% of total caloric intake) from any source on fracture, bone mineral density (BMD)/bone mineral content (BMC), and/or markers of bone turnover. Twenty-nine articles were included for data extraction (16 randomized controlled trials [RCTs] and 13 prospective cohort studies). Meta-analysis of the prospective cohort studies showed high vs low protein intakes resulted in a statistically significant 16% decrease in hip fractures (standardized mean difference [SMD] = 0.84, 95% confidence interval [CI], 0.73, 0.95; I2 = 36.8%). Data from studies included in these analyses collectively lean toward the hypothesis that protein intake above the current RDA is beneficial to BMD at several sites. This systematic review supports that protein intakes above the current RDA may have some beneficial role in preventing hip fractures and BMD loss. There were no differences between animal or plant proteins, although data in this area were scarce. Larger, long-term, and more well-controlled clinical trials measuring fracture outcomes and BMD are needed to adequately assess whether protein intake above the current RDA is beneficial as a preventative measure and/or intervention strategy for osteoporosis. Key teaching points: • • Bone health is a multifactorial musculoskeletal issue, and optimal protein intakes are key in developing and maintaining bone throughout the life span. • • Dietary protein at levels above the current RDA may be beneficial in preventing hip fractures and BMD loss. • • Plant vs animal proteins do not seem to differ in their ability to prevent bone loss; however, data in this area are scarce. • • Larger, long-term RCTs using women not using hormone replacement therapy (HRT) are needed to adequately assess the magnitude of impact that protein intakes above the RDA have on preventing bone loss.
Collapse
Affiliation(s)
- Taylor C Wallace
- a Department of Nutrition and Food Studies , George Mason University , Fairfax , Virginia , USA.,b Think Healthy Group, Inc. , Washington , DC
| | - Cara L Frankenfeld
- c Department of Global and Community Health , George Mason University , Fairfax , Virginia , USA
| |
Collapse
|
11
|
Bihuniak JD, Insogna KL. The effects of dietary protein and amino acids on skeletal metabolism. Mol Cell Endocrinol 2015; 410:78-86. [PMID: 25843057 PMCID: PMC5852680 DOI: 10.1016/j.mce.2015.03.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Dietary protein is required for optimal skeletal growth and maturation. Although Recommended Dietary Allowances (RDAs) exist for global dietary protein intake, the level and sources of dietary protein that are optimal for skeletal health over the life continuum have not been established. This is partly due to the difficulty in quantifying the effects of variable levels of a nutrient's intake over a lifetime as well as the complex nature of the relationships between dietary protein and calcium economy. Areas of current uncertainty include the precise source and amount of dietary protein required for optimal skeletal accretion and maintenance of skeletal mass, as well as the site-specific effects of dietary protein. The cellular and molecular mechanisms that underpin the actions of dietary protein on mineral metabolism and skeletal homeostasis remain unclear. This review attempts to summarize recent data bearing on these questions.
Collapse
Affiliation(s)
- Jessica D Bihuniak
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, 06269-1101, USA; Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, 06269-1101, USA.
| | - Karl L Insogna
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, 06269-1101, USA
| |
Collapse
|
12
|
Gaffney-Stomberg E, Cao JJ, Lin GG, Wulff CR, Murphy NE, Young AJ, McClung JP, Pasiakos SM. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats. J Nutr 2014; 144:821-9. [PMID: 24717364 DOI: 10.3945/jn.113.188532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-protein (HP) diets may attenuate bone loss during energy restriction. The objective of the current study was to determine whether HP diets suppress bone turnover and improve bone quality in male rats during food restriction and whether dietary protein source affects this relation. Eighty 12-wk-old male Sprague Dawley rats were randomly assigned to consume 1 of 4 study diets under ad libitum (AL) control or restricted conditions [40% food restriction (FR)]: 1) 10% [normal-protein (NP)] milk protein; 2) 32% (HP) milk protein; 3) 10% (NP) soy protein; or 4) 32% (HP) soy protein. After 16 wk, markers of bone turnover, volumetric bone mineral density (vBMD), microarchitecture, strength, and expression of duodenal calcium channels were assessed. FR increased bone turnover and resulted in lower femoral trabecular bone volume (P < 0.05), higher cortical bone surface (P < 0.001), and reduced femur length (P < 0.01), bending moment (P < 0.05), and moment of inertia (P = 0.001) compared with AL. HP intake reduced bone turnover and tended to suppress parathyroid hormone (PTH) (P = 0.06) and increase trabecular vBMD (P < 0.05) compared with NP but did not affect bone strength. Compared with milk, soy suppressed PTH (P < 0.05) and increased cortical vBMD (P < 0.05) and calcium content of the femur (P < 0.01) but did not affect strength variables. During AL conditions, transient receptor potential cation channel, subfamily V, member 6 was higher for soy than milk (P < 0.05) and HP compared with NP (P < 0.05). These data demonstrate that both HP and soy diets suppress PTH, and HP attenuates bone turnover and increases vBMD regardless of FR, although these differences do not affect bone strength. The effects of HP and soy may be due in part to enhanced intestinal calcium transporter expression.
Collapse
Affiliation(s)
- Erin Gaffney-Stomberg
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Jay J Cao
- USDA Agricultural Research Service Grand Forks Human Nutrition Research Center, Grand Forks, ND
| | - Gregory G Lin
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Charles R Wulff
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Nancy E Murphy
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Andrew J Young
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - James P McClung
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| | - Stefan M Pasiakos
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, Natick, MA; and
| |
Collapse
|
13
|
Cao JJ, Pasiakos SM, Margolis LM, Sauter ER, Whigham LD, McClung JP, Young AJ, Combs GF. Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized controlled trial. Am J Clin Nutr 2014; 99:400-7. [PMID: 24284444 DOI: 10.3945/ajcn.113.073809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although consuming dietary protein above current recommendations during energy deficit (ED) preserves lean body mass, concerns have been raised regarding the effects of high-protein diets on bone health. OBJECTIVE The objective was to determine whether calcium homeostasis and bone turnover are affected by high-protein diets during weight maintenance (WM) and ED. DESIGN In a randomized, parallel-design, controlled trial of 32 men and 7 women, volunteers were assigned diets providing protein at 0.8 [Recommended Dietary Allowance (RDA)], 1.6 (2 × RDA), or 2.4 (3 × RDA) g · kg(-1) · d(-1) for 31 d. Ten days of WM preceded 21 d of ED, during which total daily ED was 40%, achieved by reduced dietary energy intake (∼30%) and increased physical activity (∼10%). The macronutrient composition (protein g · kg(-1) · d(-1) and % fat) was held constant from WM to ED. Calcium absorption (ratio of (44)Ca to (42)Ca) and circulating indexes of bone turnover were determined at day 8 (WM) and day 29 (ED). RESULTS Regardless of energy state, mean (±SEM) urinary pH was lower (P < 0.05) at 2 × RDA (6.28 ± 0.05) and 3 × RDA (6.23 ± 0.06) than at the RDA (6.54 ± 0.06). However, protein had no effect on either urinary calcium excretion (P > 0.05) or the amount of calcium retained (P > 0.05). ED decreased serum insulin-like growth factor I concentrations and increased serum tartrate-resistant acid phosphatase and 25-hydroxyvitamin D concentrations (P < 0.01). Remaining markers of bone turnover and whole-body bone mineral density and content were not affected by either the protein level or ED (P > 0.05). CONCLUSION These data demonstrate that short-term consumption of high-protein diets does not disrupt calcium homeostasis and is not detrimental to skeletal integrity. This trial was registered at www.clinicaltrials.gov as NCT01292395.
Collapse
Affiliation(s)
- Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND (JJC, LDW, and GFC); the Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA (SMP, LMM, JPM, and AJY); and the School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND (ERS)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The search for a new paradigm to study micronutrient and phytochemical bioavailability: from reductionism to holism. Med Hypotheses 2013; 82:181-6. [PMID: 24355424 DOI: 10.1016/j.mehy.2013.11.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022]
Abstract
The study of micronutrient and phytochemical (MaP, i.e., non-energy nutrients) bioavailability has been mainly studied through a reductionist and pharmacological approach. This has led to associate one health effect to one MaP. However, human interventional studies have given conflicting and disappointing results about MaP supplementation. This is because the health effect is the result of the synergetic action of numerous MaPs supplied by foods and/or diets at nutritional doses. A food is not a drug. Therefore, there is a need for more holistic approach to study MaP bioavailability, then their health effect to achieve general recommendations. This paper aims to hypothesize for such a paradigm shift in this topic and to lay new foundations for research in MaP bioavailability.
Collapse
|
15
|
Ruxton CHS, Derbyshire E, Pickard RS. Micronutrient challenges across the age spectrum: Is there a role for red meat? NUTR BULL 2012. [DOI: 10.1111/nbu.12000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Brown PM, Hutchison JD, Crockett JC. Absence of glutamine supplementation prevents differentiation of murine calvarial osteoblasts to a mineralizing phenotype. Calcif Tissue Int 2011; 89:472-82. [PMID: 21972050 DOI: 10.1007/s00223-011-9537-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
Abstract
Osteoblasts in vitro differentiate from a proliferating to a mineralizing phenotype upon transfer to a medium rich in beta-glycerophosphate and ascorbic acid. The nutritional requirements of the cells at different stages of this differentiation process are not known. In other cell types, nutritional supplementation during surgery can improve the outcome in terms of speed of patient recovery and prognosis. There is therefore the potential for supplementation at the site of fracture repair or bone grafting with critical osteoblast nutritional factors to potentially accelerate healing. In this study we investigate which common cell nutrients are required for the proliferating and mineralizing stages of osteoblast differentiation. Medium containing 5.5 mM glucose was sufficient to achieve maximal proliferation of primary calvarial osteoblasts and human osteoblast cell lines, with some added benefit of additional glutamine supplementation. However, when cells were stimulated to mineralize, glucose was insufficient to support their energetic requirements. Only when cells were supplemented with glucose together with glutamine were high levels of osteocalcin expression observed together with mineralized nodules in culture, suggesting that this would be a useful combination to assess in cultures of primary human osteoblasts to determine whether it may have beneficial effects during fracture surgery, bone grafting, and fixation of uncemented arthroplasty implants.
Collapse
Affiliation(s)
- Philip M Brown
- Musculoskeletal Research Programme, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, UK
| | | | | |
Collapse
|
17
|
Abstract
High-protein (HP) diets exert a hypercalciuric effect at constant levels of calcium intake, even though the effect may depend on the nature of the dietary protein. Lower urinary pH is also consistently observed for subjects consuming HP diets. The combination of these two effects was suspected to be associated with a dietary environment favorable for demineralization of the skeleton. However, increased calcium excretion due to HP diet does not seem to be linked to impaired calcium balance. In contrast, some data indicate that HP intakes induce an increase of intestinal calcium absorption. Moreover, no clinical data support the hypothesis of a detrimental effect of HP diet on bone health, except in a context of inadequate calcium supply. In addition, HP intake promotes bone growth and retards bone loss and low-protein diet is associated with higher risk of hip fractures. The increase of acid and calcium excretion due to HP diet is also accused of constituting a favorable environment for kidney stones and renal diseases. However, in healthy subjects, no damaging effect of HP diets on kidney has been found in either observational or interventional studies and it seems that HP diets might be deleterious only in patients with preexisting metabolic renal dysfunction. Thus, HP diet does not seem to lead to calcium bone loss, and the role of protein seems to be complex and probably dependent on other dietary factors and the presence of other nutrients in the diet.
Collapse
|
18
|
Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality. Nutr J 2011; 10:41. [PMID: 21529374 PMCID: PMC3114717 DOI: 10.1186/1475-2891-10-41] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 04/30/2011] [Indexed: 01/19/2023] Open
Abstract
Background Modern diets have been suggested to increase systemic acid load and net acid excretion. In response, alkaline diets and products are marketed to avoid or counteract this acid, help the body regulate its pH to prevent and cure disease. The objective of this systematic review was to evaluate causal relationships between dietary acid load and osteoporosis using Hill's criteria. Methods Systematic review and meta-analysis. We systematically searched published literature for randomized intervention trials, prospective cohort studies, and meta-analyses of the acid-ash or acid-base diet hypothesis with bone-related outcomes, in which the diet acid load was altered, or an alkaline diet or alkaline salts were provided, to healthy human adults. Cellular mechanism studies were also systematically examined. Results Fifty-five of 238 studies met the inclusion criteria: 22 randomized interventions, 2 meta-analyses, and 11 prospective observational studies of bone health outcomes including: urine calcium excretion, calcium balance or retention, changes of bone mineral density, or fractures, among healthy adults in which acid and/or alkaline intakes were manipulated or observed through foods or supplements; and 19 in vitro cell studies which examined the hypothesized mechanism. Urine calcium excretion rates were consistent with osteoporosis development; however calcium balance studies did not demonstrate loss of whole body calcium with higher net acid excretion. Several weaknesses regarding the acid-ash hypothesis were uncovered: No intervention studies provided direct evidence of osteoporosis progression (fragility fractures, or bone strength as measured using biopsy). The supporting prospective cohort studies were not controlled regarding important osteoporosis risk factors including: weight loss during follow-up, family history of osteoporosis, baseline bone mineral density, and estrogen status. No study revealed a biologic mechanism functioning at physiological pH. Finally, randomized studies did not provide evidence for an adverse role of phosphate, milk, and grain foods in osteoporosis. Conclusions A causal association between dietary acid load and osteoporotic bone disease is not supported by evidence and there is no evidence that an alkaline diet is protective of bone health.
Collapse
Affiliation(s)
- Tanis R Fenton
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Cao JJ, Johnson LK, Hunt JR. A diet high in meat protein and potential renal acid load increases fractional calcium absorption and urinary calcium excretion without affecting markers of bone resorption or formation in postmenopausal women. J Nutr 2011; 141:391-7. [PMID: 21248199 DOI: 10.3945/jn.110.129361] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our objective in this study was to determine the effects of a high-protein and high-potential renal acid load (PRAL) diet on calcium (Ca) absorption and retention and markers of bone metabolism. In a randomized crossover design, 16 postmenopausal women consumed 2 diets: 1 with low protein and low PRAL (LPLP; total protein: 61 g/d; PRAL: -48 mEq/d) and 1 with high protein and high PRAL (HPHP; total protein: 118 g/d; PRAL: 33 mEq/d) for 7 wk each separated by a 1-wk break. Ca absorption was measured by whole body scintillation counting of radio-labeled (47)Ca. Compared with the LPLP diet, the HPHP diet increased participants' serum IGF-I concentrations (P < 0.0001), decreased serum intact PTH concentrations (P < 0.001), and increased fractional (47)Ca absorption (mean ± pooled SD: 22.3 vs. 26.5 ± 5.4%; P < 0.05) and urinary Ca excretion (156 vs. 203 ± 63 mg/d; P = 0.005). The net difference between the amount of Ca absorbed and excreted in urine did not differ between 2 diet periods (55 vs. 28 ± 51 mg/d). The dietary treatments did not affect other markers of bone metabolism. In summary, a diet high in protein and PRAL increases the fractional absorption of dietary Ca, which partially compensates for increased urinary Ca, in postmenopausal women. The increased IGF-I and decreased PTH concentrations in serum, with no change in biomarkers of bone resorption or formation, indicate a high-protein diet has no adverse effects on bone health.
Collapse
Affiliation(s)
- Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58202, USA.
| | | | | |
Collapse
|
21
|
Langsetmo L, Hanley DA, Prior JC, Barr SI, Anastassiades T, Towheed T, Goltzman D, Morin S, Poliquin S, Kreiger N. Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged ≥ 50 y: a population-based cohort study. Am J Clin Nutr 2011; 93:192-9. [PMID: 21068350 PMCID: PMC5101071 DOI: 10.3945/ajcn.110.002956] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Previous research has shown that dietary patterns are related to the risk of several adverse health outcomes, but the relation of these patterns to skeletal fragility is not well understood. OBJECTIVE Our objective was to determine the relation between dietary patterns and incident fracture and possible mediation of this relation by body mass index, bone mineral density, or falls. DESIGN We performed a retrospective cohort study based on the Canadian Multicentre Osteoporosis Study-a randomly selected population-based cohort. We assessed dietary patterns by using self-administered food-frequency questionnaires in year 2 of the study (1997-1999). Our primary outcome was low-trauma fracture occurring before the 10th annual follow-up (2005-2007). RESULTS We identified 2 dietary patterns by using factor analysis. The first factor (nutrient dense) was strongly associated with intake of fruit, vegetables, and whole grains. The second factor (energy dense) was strongly associated with intake of soft drinks, potato chips, French fries, meats, and desserts. The nutrient-dense factor was associated with a reduced risk of fracture per 1 SD in men overall [hazard ratio (HR): 0.83; 95% CI: 0.64, 1.08] and in women overall (HR: 0.86; 95% CI: 0.76, 0.98). An age trend (P = 0.03) was observed, which yielded an HR of 0.97 in younger women (age < 70 y) compared with an HR of 0.82 in older women (age ≥ 70 y). The associations were independent of body mass index, bone mineral density, falls, and demographic variables. The energy-dense pattern was not related to fracture. CONCLUSION A diet high in vegetables, fruit, and whole grains may reduce the risk of low-trauma fracture, particularly in older women.
Collapse
Affiliation(s)
- Lisa Langsetmo
- CaMos National Coordinating Centre, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Update recent advancements regarding the effect of high-animal protein intakes on calcium utilization and bone health. RECENT FINDINGS Increased potential renal acid load resulting from a high protein (intake above the current Recommended Dietary Allowance of 0.8 g protein/kg body weight) intake has been closely associated with increased urinary calcium excretion. However, recent findings do not support the assumption that bone is lost to provide the extra calcium found in urine. Neither whole body calcium balance is, nor are bone status indicators, negatively affected by the increased acid load. Contrary to the supposed detrimental effect of protein, the majority of epidemiological studies have shown that long-term high-protein intake increases bone mineral density and reduces bone fracture incidence. The beneficial effects of protein such as increasing intestinal calcium absorption and circulating IGF-I whereas lowering serum parathyroid hormone sufficiently offset any negative effects of the acid load of protein on bone health. SUMMARY On the basis of recent findings, consuming protein (including that from meat) higher than current Recommended Dietary Allowance for protein is beneficial to calcium utilization and bone health, especially in the elderly. A high-protein diet with adequate calcium and fruits and vegetables is important for bone health and osteoporosis prevention.
Collapse
Affiliation(s)
- Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA.
| | | |
Collapse
|
23
|
|
24
|
Macdonald HM, Hardcastle AC, Fraser WD. Meta-analysis of the quantity of calcium excretion associated with net acid excretion: caution advised. Am J Clin Nutr 2009; 89:926-7; author reply 927. [PMID: 19158215 DOI: 10.3945/ajcn.2008.27254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Fenton TR, Eliasziw M, Lyon AW, Tough SC, Hanley DA. Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. Am J Clin Nutr 2008; 88:1159-66. [PMID: 18842807 DOI: 10.1093/ajcn/88.4.1159] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The acid-ash diet hypothesis of osteoporosis suggests that acid from the modern diet causes a demineralization of the skeleton, and mobilized bone calcium is excreted. A systematic approach has not been used to summarize the findings of the numerous studies about the hypothesis. OBJECTIVES The purpose of this meta-analysis was to estimate the quantity of net acid excretion and calciuria associated with the modern diet, to assess the association between acid excretion and calcium excretion, and to assess the influence of urine preservatives on calcium measurement. DESIGN We systematically searched for trials of the acid-ash hypothesis and conducted a meta-analysis. RESULTS Twenty-five of 105 studies met the inclusion criteria. The estimated quantity of net acid excretion from the weighted average of the control diets from 11 studies was 47 mEq/d. The increase in urinary calcium with a change in renal net acid excretion depended on whether the urine was acidic or alkaline (P < 0.001). A significant linear relation was observed between net acid excretion and calcium excretion for both acidic and alkaline urine (P < 0.001). The estimated change in urine calcium associated with a change of 47 mEq of net acid excretion in acidic urine was 1.6 mmol/d (66 mg/d) of calcium. CONCLUSION Evidence suggests a linear association between changes in calcium excretion in response to experimental changes in net acid excretion. However, this finding is not evidence that the source of the excreted calcium is bone or that this calciuria contributes to the development of osteoporosis.
Collapse
Affiliation(s)
- Tanis R Fenton
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| | | | | | | | | |
Collapse
|
26
|
Ausman LM, Oliver LM, Goldin BR, Woods MN, Gorbach SL, Dwyer JT. Estimated Net Acid Excretion Inversely Correlates With Urine pH in Vegans, Lacto-Ovo Vegetarians, and Omnivores. J Ren Nutr 2008; 18:456-65. [DOI: 10.1053/j.jrn.2008.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Indexed: 11/11/2022] Open
|
27
|
Thorpe M, Mojtahedi MC, Chapman-Novakofski K, McAuley E, Evans EM. A positive association of lumbar spine bone mineral density with dietary protein is suppressed by a negative association with protein sulfur. J Nutr 2008; 138:80-5. [PMID: 18156408 PMCID: PMC2852881 DOI: 10.1093/jn/138.1.80] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary protein is theorized to hold both anabolic effects on bone and demineralizing effects mediated by the diet acid load of sulfate derived from methionine and cysteine. The relative importance of these effects is unknown but relevant to osteoporosis prevention. Postmenopausal women (n = 161, 67.9 +/- 6.0 y) were assessed for areal bone mineral density (aBMD) of lumbar spine (LS) and total hip (TH) using dual X-ray absorptiometry, and dietary intakes of protein, sulfur-containing amino acids, and minerals using a USDA multiple-pass 24-h recall. The acidifying influence of the diet was estimated using the ratio of protein:potassium intake, the potential renal acid load (PRAL), and intake of sulfate equivalents from protein. aBMD was regressed onto protein intake then protein was controlled for estimated dietary acid load. A step-down procedure assessed potential confounding influences (weight, age, physical activity, and calcium and vitamin D intakes). Protein alone did not predict LS aBMD (P = 0.81); however, after accounting for a negative effect of sulfate (beta = -0.28; P < 0.01), the direct effect of protein intake was positive (beta = 0.22; P = 0.04). At the TH, protein intake predicted aBMD (beta = 0.18; P = 0.03), but R2 did not improve with adjustment for sulfate (P = 0.83). PRAL and the protein:potassium ratio were not significant predictors of aBMD. Results suggest that protein intake is positively associated with aBMD, but benefit at the LS is offset by a negative impact of the protein sulfur acid load. If validated experimentally, these findings harmonize conflicting theories on the role of dietary protein in bone health.
Collapse
Affiliation(s)
- Matthew Thorpe
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana IL
| | - Mina C. Mojtahedi
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana IL
| | | | - Edward McAuley
- Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana IL
| | - Ellen M. Evans
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana IL,Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana IL
| |
Collapse
|