1
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
2
|
Certo M, Elkafrawy H, Pucino V, Cucchi D, Cheung KC, Mauro C. Endothelial cell and T-cell crosstalk: Targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol 2021; 178:2041-2059. [PMID: 31999357 PMCID: PMC8246814 DOI: 10.1111/bph.15002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, T cells need to generate sufficient energy and biomolecules to support growth, proliferation, and effector functions. Therefore, T cells need to rearrange their metabolism to meet these demands. A similar metabolic reprogramming has been described in endothelial cells, which have the ability to interact with and modulate the function of immune cells. In this overview, we will discuss recent insights in the complex crosstalk between endothelial cells and T cells as well as their metabolic reprogramming following activation. We highlight key components of this metabolic switch that can lead to the development of new therapeutics against chronic inflammatory disorders. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Hagar Elkafrawy
- Medical Biochemistry and Molecular Biology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Danilo Cucchi
- Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Kenneth C.P. Cheung
- School of Life SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Metabolism and Systems Research, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Taha A, Sharifpanah F, Wartenberg M, Sauer H. Omega-3 and Omega-6 polyunsaturated fatty acids stimulate vascular differentiation of mouse embryonic stem cells. J Cell Physiol 2020; 235:7094-7106. [PMID: 32020589 DOI: 10.1002/jcp.29606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and their metabolites may influence cell fate regulation. Herein, we investigated the effects of linoleic acid (LA) as ω-6 PUFA, eicosapentaenoic acid (EPA) as ω-3 PUFA and palmitic acid (PA) on vasculogenesis of embryonic stem (ES) cells. LA and EPA increased vascular structure formation and protein expression of the endothelial-specific markers fetal liver kinase-1, CD31 as well as VE-cadherin, whereas PA was without effect. LA and EPA increased reactive oxygen species (ROS) and nitric oxide (NO), activated endothelial NO synthase (eNOS) and raised intracellular calcium. The calcium response was inhibited by the intracellular calcium chelator BAPTA, sulfo-N-succinimidyl oleate which is an antagonist of CD36, the scavenger receptor for fatty acid uptake as well as by a CD36 blocking antibody. Prevention of ROS generation by radical scavengers or the NADPH oxidase inhibitor VAS2870 and inhibition of eNOS by L-NAME blunted vasculogenesis. PUFAs stimulated AMP activated protein kinase-α (AMPK-α) as well as peroxisome proliferator-activated receptor-α (PPAR-α). AMPK activation was abolished by calcium chelation as well as inhibition of ROS and NO generation. Moreover, PUFA-induced vasculogenesis was blunted by the PPAR-α inhibitor GW6471. In conclusion, ω-3 and ω-6 PUFAs stimulate vascular differentiation of ES cells via mechanisms involving calcium, ROS and NO, which regulate function of the energy sensors AMPK and PPAR-α and determine the metabolic signature of vascular cell differentiation.
Collapse
Affiliation(s)
- Amer Taha
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Fatemeh Sharifpanah
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wartenberg
- Department of Cardiology, Clinic of Internal Medicine I, University Heart Center, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Moradi Sarabi M, Mohammadrezaei Khorramabadi R, Zare Z, Eftekhar E. Polyunsaturated fatty acids and DNA methylation in colorectal cancer. World J Clin Cases 2019; 7:4172-4185. [PMID: 31911898 PMCID: PMC6940323 DOI: 10.12998/wjcc.v7.i24.4172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) has been designated a major global problem, especially due to its high prevalence in developed countries. CRC mostly occurs sporadically (75%-80%), and only 20%-25% of patients have a family history. Several processes are involved in the development of CRC such as a combination of genetic and epigenetic alterations. Epigenetic changes, including DNA methylation play a vital role in the progression of CRC. Complex interactions between susceptibility genes and environmental factors, such as a diet and sedentary lifestyle, lead to the development of CRC. Clinical and experimental studies have confirmed the beneficial effects of dietary polyunsaturated fatty acids (PUFAs) in preventing CRC. From a mechanistic viewpoint, it has been suggested that PUFAs are pleiotropic agents that alter chromatin remodeling, membrane structure and downstream cell signaling. Moreover, PUFAs can alter the epigenome via modulation of DNA methylation. In this review, we summarize recent investigations linking PUFAs and DNA methylation-associated CRC risk.
Collapse
Affiliation(s)
- Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Reza Mohammadrezaei Khorramabadi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Zohre Zare
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad 381251698, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| |
Collapse
|
5
|
He L, Wei JY, Liu DX, Zhao WD, Chen YH. Atg7 Silencing Inhibits Laminin-5 Expression to Suppress Tube Formation by Brain Endothelial Cells. Anat Rec (Hoboken) 2019; 302:2255-2260. [PMID: 31265765 DOI: 10.1002/ar.24223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Cerebral angiogenesis is a key event during brain development and recovery from brain injury. We previously demonstrated that Atg7 knockout impaired angiogenesis in the mouse brain. However, the role of Atg7 in angiogenesis is not completely understood. In this study, we used human brain microvascular endothelial cells (HBMECs) to investigate the mechanism of Atg7-regulated cerebral angiogenesis. We found that Atg7 depletion specifically diminished the expression of the β3 and γ2 chains of laminin-5, a major component of the extracellular matrix. In contrast, autophagy inhibitors did not affect laminin-5 expression, suggesting that Atg7-regulated laminin-5 expression is autophagy-independent. We also found that Atg7-regulated laminin-5 expression occurred at the transcriptional level through NF-κB signaling. Exogenous laminin-5 or the NF-κB agonist betulinic acid effectively rescued tube formation by Atg7-deficient HBMECs. Taken together, our study identified a novel mechanism by which Atg7 regulates laminin-5 expression via NF-κB to modulate tube formation by brain endothelial cells during cerebral angiogenesis. Anat Rec, 302:2255-2260, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Lin He
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
6
|
The Mediterranean Diet, a Rich Source of Angiopreventive Compounds in Cancer. Nutrients 2019; 11:nu11092036. [PMID: 31480406 PMCID: PMC6769787 DOI: 10.3390/nu11092036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022] Open
Abstract
Diet-based chemoprevention of cancer has emerged as an interesting approach to evade the disease or even target its early phases, reducing its incidence or slowing down tumor progression. In its basis in the essential role of angiogenesis for tumor growth and metastasis, angioprevention proposes the use of inhibitors of angiogenesis in cancer prevention. The anti-angiogenic potential exhibited by many natural compounds contained in many Mediterranean diet constituents makes this dietary pattern especially interesting as a source of chemopreventive agents, defined within the angioprevention strategy. In this review, we focus on natural bioactive compounds derived from the main foods included in the Mediterranean diet that display anti-angiogenic activity, as well as their possible use as angiopreventive agents.
Collapse
|
7
|
Khojastehfard M, Dolatkhah H, Somi MH, Nazari Soltan Ahmad S, Estakhri R, Sharifi R, Naghizadeh M, Rahmati-Yamchi M. The Effect of Oral Administration of PUFAs on the Matrix Metalloproteinase Expression in Gastric Adenocarcinoma Patients Undergoing Chemotherapy. Nutr Cancer 2019; 71:444-451. [PMID: 30616380 DOI: 10.1080/01635581.2018.1506494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gastric cancer is the third-leading cause of cancer-related mortality and the fifth most common cancer globally. Polyunsaturated fatty acids (PUFAs) are considered as functional ingredients that improve the efficacy of chemotherapeutic drugs. The aim of this study is to investigate the effect of PUFAs administration on matrix metalloproteinases (MMPs). METHODS This study was designed as a randomized, double-blind trial. Thirty-four newly diagnosed patients with gastric cancer were randomly divided into two groups: control group (n = 17) and case group (n =17). Both groups received the same dose (75 mg/m2) of cisplatin. Control group received cisplatin plus placebo and the case group received cisplatin plus PUFAs [3600 mg/day, for three courses (each course included 3 weeks)]. The mRNA and protein expression of MMPs determined by real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. RESULTS The relative gene expression of MMP-1 and MMP-9 was significantly lower in case group than control. The protein expression of MMP-1 and MMP-9 was significantly lower in case group than control. CONCLUSION According to the results of this study, PUFAs reduced the expression of MMPs in gastric cancer cells. It seems that PUFAs may have an inhibitory effect on invasion and metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Mehran Khojastehfard
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran.,b Liver and Gastrointestinal Disease Research Center , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| | - Homayun Dolatkhah
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Mohammad-Hossein Somi
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Saeed Nazari Soltan Ahmad
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Rasoul Estakhri
- c Department of Pathology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| | - Rasoul Sharifi
- d Department of Molecular Biology, Faculty of Science , Islamic Azad University , Ahar Branch , Iran
| | - Mohsen Naghizadeh
- e Department of Clinical Biochemistry, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Rahmati-Yamchi
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran.,b Liver and Gastrointestinal Disease Research Center , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| |
Collapse
|
8
|
Wang L, Luo L, Zhao W, Yang K, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Jiang Q, Wang L. Lauric Acid Accelerates Glycolytic Muscle Fiber Formation through TLR4 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6308-6316. [PMID: 29877088 DOI: 10.1021/acs.jafc.8b01753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.
Collapse
|
9
|
Maly IV, Hofmann WA. Fatty Acids and Calcium Regulation in Prostate Cancer. Nutrients 2018; 10:nu10060788. [PMID: 29921791 PMCID: PMC6024573 DOI: 10.3390/nu10060788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is a widespread malignancy characterized by a comparative ease of primary diagnosis and difficulty in choosing the individualized course of treatment. Management of prostate cancer would benefit from a clearer understanding of the molecular mechanisms behind the transition to the lethal, late-stage forms of the disease, which could potentially yield new biomarkers for differential prognosis and treatment prioritization in addition to possible new therapeutic targets. Epidemiological research has uncovered a significant correlation of prostate cancer incidence and progression with the intake (and often co-intake) of fatty acids and calcium. Additionally, there is evidence of the impact of these nutrients on intracellular signaling, including the mechanisms mediated by the calcium ion as a second messenger. The present review surveys the recent literature on the molecular mechanisms associated with the critical steps in the prostate cancer progression, with special attention paid to the regulation of these processes by fatty acids and calcium homeostasis. Testable hypotheses are put forward that integrate some of the recent results in a more unified picture of these phenomena at the interface of cell signaling and metabolism.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Wilma A Hofmann
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
10
|
Behl T, Kotwani A. Omega-3 fatty acids in prevention of diabetic retinopathy. ACTA ACUST UNITED AC 2017; 69:946-954. [PMID: 28481011 DOI: 10.1111/jphp.12744] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To review the competence of Omega-3 fatty acids in restricting the progression, thereby leading to prevention of diabetic retinopathy. KEY FINDINGS Owing to their anti-inflammatory and anti-angiogenic properties, Omega-3 fatty acids alleviate major aetiological agents. These fatty acids are renowned for their beneficial effects in various cardiovascular and other disorders; however, their potential to prevent the progression of diabetic retinopathy remains least explored. SUMMARY Utilizing this potential, we may develop effective prophylactic agents which markedly inhibit the advent of retinal angiogenesis and prevent the apoptosis of retinal endothelial and neuronal cells, thereby averting retinal degeneration, hence safeguarding diabetic patients from this sight-threatening complication.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Das UN. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions. Arch Med Sci 2016; 12:1142-1157. [PMID: 27695506 PMCID: PMC5016593 DOI: 10.5114/aoms.2016.61918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Diabetic macular edema (DME) and diabetic retinopathy (DR) are complications affecting about 25% of all patients with long-standing type 1 and type 2 diabetes mellitus and are a major cause of significant decrease in vision and quality of life. Age-related macular degeneration (AMD) is not uncommon, and diabetes mellitus affects the incidence and progression of AMD through altering hemodynamics, increasing oxidative stress, accumulating advanced glycation end products, etc. Recent studies suggest that DME, DR and AMD are inflammatory conditions characterized by a breakdown of the blood-retinal barrier, inflammatory processes and an increase in vascular permeability. Key factors that seem to have a dominant role in DME, DR and AMD are angiotensin II, prostaglandins and the vascular endothelial growth factor and a deficiency of anti-inflammatory bioactive lipids. The imbalance between pro- and anti-inflammatory eicosanoids and enhanced production of pro-angiogenic factors may initiate the onset and progression of DME, DR and AMD. This implies that bioactive lipids that possess anti-inflammatory actions and suppress the production of angiogenic factors could be employed in the prevention and management of DME, DR and AMD.
Collapse
|
12
|
Sources and Bioactive Properties of Conjugated Dietary Fatty Acids. Lipids 2016; 51:377-97. [PMID: 26968402 DOI: 10.1007/s11745-016-4135-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.
Collapse
|
13
|
Tsuduki T. Research on food and nutrition characteristics of conjugated fatty acids. Biosci Biotechnol Biochem 2015; 79:1217-22. [DOI: 10.1080/09168451.2015.1027656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
In this study, the physiological effects of fatty acids with conjugated double bonds were widely examined in vitro and in vivo. Initially, a method for determination of conjugated fatty acids in food and biological samples was established. I then clarified that the oxidative stability of conjugated fatty acids was improved by the form of triacylglycerol and addition of an antioxidant, and the influence of this effect on the metabolism and pharmacokinetics of conjugated fatty acids was clarified in vivo. In addition, antitumor, anti-angiogenesis, and antiobesity effects of conjugated fatty acids were found for the first time, thus demonstrating the usefulness of conjugated fatty acids. This communication mainly outlines the data obtained for conjugated linolenic acid. In addition, this review summarizes my research on conjugated fatty acid.
Collapse
Affiliation(s)
- Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Modifying Choroidal Neovascularization Development with a Nutritional Supplement in Mice. Nutrients 2015; 7:5423-42. [PMID: 26153682 PMCID: PMC4517006 DOI: 10.3390/nu7075229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
We examined the effect of nutritional supplements (modified Age Related Eye Disease Study (AREDS)-II formulation containing vitamins, minerals, lutein, resveratrol, and omega-3 fatty acids) on choroidal neovascularization (CNV). Supplements were administered alone and combined with intravitreal anti-VEGF in an early-CNV (diode laser-induced) murine model. Sixty mice were evenly divided into group V (oral vehicle, intravitreal saline), group S (oral supplement, intravitreal saline), group V + aVEGF (oral vehicle, intravitreal anti-VEGF), and group S + aVEGF (oral supplement, intravitreal anti-VEGF). Vehicle and nutritional supplements were administered daily for 38 days beginning 10 days before laser. Intravitreal injections were administered 48 h after laser. Fluorescein angiography (FA) and flat-mount CD31 staining evaluated leakage and CNV lesion area. Expression of VEGF, MMP-2 and MMP-9 activity, and NLRP3 were evaluated with RT-PCR, zymography, and western-blot. Leakage, CNV size, VEGF gene and protein expression were lower in groups V + aVEGF, S + aVEGF, and S than in V (all p < 0.05). Additionally, MMP-9 gene expression differed between groups S + aVEGF and V (p < 0.05) and MMP-9 activity was lower in S + aVEGF than in V and S (both p < 0.01). Levels of MMP-2 and NLRP3 were not significantly different between groups. Nutritional supplements either alone or combined with anti-VEGF may mitigate CNV development and inhibit retinal disease involving VEGF overexpression and CNV.
Collapse
|
15
|
Zhang W, Wang H, Zhang H, Leak RK, Shi Y, Hu X, Gao Y, Chen J. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Exp Neurol 2015; 272:170-80. [PMID: 25771800 DOI: 10.1016/j.expneurol.2015.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
Stroke is a devastating neurological disease with no satisfactory therapies to preserve long-term neurological function, perhaps due to the sole emphasis on neuronal survival in most preclinical studies. Recent studies have revealed the importance of protecting multiple cell types in the injured brain, such as oligodendrocytes and components of the neurovascular unit, before long-lasting recovery of function can be achieved. For example, revascularization in the ischemic penumbra is critical to provide various neurotrophic factors that enhance the survival and activity of neurons and other progenitor cells, such as oligodendrocyte precursor cells. In the present study, we hypothesized that chronic dietary supplementation with fish oil promotes post-stroke angiogenesis, neurogenesis, and oligodendrogenesis, thereby leading to long-term functional improvements. Mice received dietary supplementation with n-3 PUFA-enriched fish oil for three months before and up to one month after stroke. As expected, dietary n-3 PUFAs significantly increased levels of n-3 PUFAs in the brain and improved long-term behavioral outcomes after cerebral ischemia. n-3 PUFAs also robustly improved revascularization and angiogenesis and boosted the survival of NeuN/BrdU labeled newborn neurons up to 35days after stroke injury. Furthermore, these pro-neurogenic effects were accompanied by robust oligodendrogenesis. Thus, this is the first study to demonstrate that chronic dietary intake of n-3 PUFAs is an effective prophylactic measure not only to protect against ischemic injury for the long term but also to actively promote neurovascular restorative dynamics and brain repair.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Departments of Anesthesiology and Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Hailian Wang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Departments of Anesthesiology and Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Departments of Anesthesiology and Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Departments of Anesthesiology and Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Departments of Anesthesiology and Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Departments of Anesthesiology and Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Runau F, Arshad A, Isherwood J, Norris L, Howells L, Metcalfe M, Dennison A. Potential for proteomic approaches in determining efficacy biomarkers following administration of fish oils rich in omega-3 fatty acids: application in pancreatic cancers. Nutr Clin Pract 2015; 30:363-70. [PMID: 25616520 DOI: 10.1177/0884533614567337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a disease with a significantly poor prognosis. Despite modern advances in other medical, surgical, and oncologic therapy, the outcome from pancreatic cancer has improved little over the last 40 years. To improve the management of this difficult disease, trials investigating the use of dietary and parenteral fish oils rich in omega-3 (ω-3) fatty acids, exhibiting proven anti-inflammatory and anticarcinogenic properties, have revealed favorable results in pancreatic cancers. Proteomics is the large-scale study of proteins that attempts to characterize the complete set of proteins encoded by the genome of an organism and that, with the use of sensitive mass spectrometric-based techniques, has allowed high-throughput analysis of the proteome to aid identification of putative biomarkers pertinent to given disease states. These biomarkers provide useful insight into potentially discovering new markers for early detection or elucidating the efficacy of treatment on pancreatic cancers. Here, our review identifies potential proteomic-based biomarkers in pancreatic cancer relating to apoptosis, cell proliferation, angiogenesis, and metabolic regulation in clinical studies. We also reviewed proteomic biomarkers from the administration of ω-3 fatty acids that act on similar anticarcinogenic pathways as above and reflect that proteomic studies on the effect of ω-3 fatty acids in pancreatic cancer will yield favorable results.
Collapse
Affiliation(s)
- Franscois Runau
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Ali Arshad
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Leonie Norris
- Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Lynne Howells
- Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Matthew Metcalfe
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Ashley Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| |
Collapse
|
17
|
Chuang CH, Liu CH, Lu TJ, Hu ML. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells. Toxicol Appl Pharmacol 2014; 281:310-6. [DOI: 10.1016/j.taap.2014.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/16/2022]
|
18
|
Palomino-Morales R, Alejandre MJ, Perales S, Torres C, Linares A. Effect of PUFAs on extracellular matrix production and remodeling in vascular smooth muscle cell cultures in an atherosclerotic model. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rogelio Palomino-Morales
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| | - M. Jose Alejandre
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| | - Sonia Perales
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| | - Carolina Torres
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| | - Ana Linares
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| |
Collapse
|
19
|
Huang K, Huang X, Xiao G, Yang H, Lin J, Diao Y. Kallistatin, a novel anti-angiogenesis agent, inhibits angiogenesis via inhibition of the NF-κB signaling pathway. Biomed Pharmacother 2014; 68:455-61. [DOI: 10.1016/j.biopha.2014.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022] Open
|
20
|
Wang J, Shi Y, Zhang L, Zhang F, Hu X, Zhang W, Leak RK, Gao Y, Chen L, Chen J. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol Dis 2014; 68:91-103. [PMID: 24794156 DOI: 10.1016/j.nbd.2014.04.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/11/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
Stroke is a devastating neurological disorder and one of the leading causes of death and serious disability. After cerebral ischemia, revascularization in the ischemic boundary zone provides nutritive blood flow as well as various growth factors to promote the survival and activity of neurons and neural progenitor cells. Enhancement of angiogenesis and the resulting improvement of cerebral microcirculation are key restorative mechanisms and represent an important therapeutic strategy for ischemic stroke. In the present study, we tested the hypothesis that post-stroke angiogenesis would be enhanced by omega-3 polyunsaturated fatty acids (n-3 PUFAs), a major component of dietary fish oil. To this end, we found that transgenic fat-1 mice that overproduce n-3 PUFAs exhibited long-term behavioral and histological protection against transient focal cerebral ischemia (tFCI). Importantly, fat-1 transgenic mice also exhibited robust improvements in revascularization and angiogenesis compared to wild type littermates, suggesting a potential role for n-3 fatty acids in post-stroke cerebrovascular remodeling. Mechanistically, n-3 PUFAs induced upregulation of angiopoietin 2 (Ang 2) in astrocytes after tFCI and stimulated extracellular Ang 2 release from cultured astrocytes after oxygen and glucose deprivation. Ang 2 facilitated endothelial proliferation and barrier formation in vitro by potentiating the effects of VEGF on phospholipase Cγ1 and Src signaling. Consistent with these findings, blockade of Src activity in post-stroke fat-1 mice impaired n-3 PUFA-induced angiogenesis and exacerbated long-term neurological outcomes. Taken together, our findings strongly suggest that n-3 PUFA supplementation is a potential angiogenic treatment capable of augmenting brain repair and improving long-term functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Jiayin Wang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yejie Shi
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lili Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wenting Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ling Chen
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Department of Neurosurgery and PLA Institute of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.
| | - Jun Chen
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Pinazo-Durán MD, Gómez-Ulla F, Arias L, Araiz J, Casaroli-Marano R, Gallego-Pinazo R, García-Medina JJ, López-Gálvez MI, Manzanas L, Salas A, Zapata M, Diaz-Llopis M, García-Layana A. Do nutritional supplements have a role in age macular degeneration prevention? J Ophthalmol 2014; 2014:901686. [PMID: 24672708 PMCID: PMC3941929 DOI: 10.1155/2014/901686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/12/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids ( ω -3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and ω -3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of ω -3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and ω -3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- University of Valencia, Spain ; The Ophthalmic Research Unit "Santiago Grisolía", Valencia, Spain
| | - Francisco Gómez-Ulla
- University of Santiago de Compostela, Spain ; The Institute Gomez-Ulla, Santiago de Compostela, Spain ; Foundation RetinaPlus, Spain
| | - Luis Arias
- University of Barcelona, Spain ; Retina Section, Department of Ophthalmology, Bellvitge University Hospital, Barcelona, Spain
| | - Javier Araiz
- Vitreous and Retina Department, UPV/EHU and Instituto Clínico Quirúrgico de Oftalmología (ICQO), University of the Basque Country, Bilbao, Spain
| | - Ricardo Casaroli-Marano
- Clinic Institute of Ophthalmology, Clinic Hospital of Barcelona, University of Barcelona, Barcelona, Spain
| | - Roberto Gallego-Pinazo
- Macula Section, Department of Ophthalmology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jose J García-Medina
- University of Murcia, General University Hospital Reina Sofia, Murcia, Spain ; Ophthalmic Reseach Unit "Santiago Grisolia", Valencia, Spain
| | - Maria Isabel López-Gálvez
- The University of Valladolid, Diabetes and Telemedicine Unit at the IOBA, Spain ; The Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Lucía Manzanas
- The University of Valladolid, Spain ; The Vitreo-Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Anna Salas
- Research Institute of the Hospital of Vall Hebron, Barcelona, Spain
| | - Miguel Zapata
- Retina Section of the Hospital of Vall Hebron, The Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Diaz-Llopis
- Faculty of Medicine, University of Valencia, Valencia, Spain ; University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
22
|
Stephenson JA, Al-Taan O, Arshad A, Morgan B, Metcalfe MS, Dennison AR. The multifaceted effects of omega-3 polyunsaturated Fatty acids on the hallmarks of cancer. J Lipids 2013; 2013:261247. [PMID: 23762563 PMCID: PMC3671553 DOI: 10.1155/2013/261247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/26/2013] [Accepted: 04/05/2013] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids, in particular eicosapentaenoic acid, and docosahexaenoic acid have been shown to have multiple beneficial antitumour actions that affect the essential alterations that dictate malignant growth. In this review we explore the putative mechanisms of action of omega-3 polyunsaturated fatty acid in cancer protection in relation to self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasion, and how these will hopefully translate from bench to bedside.
Collapse
Affiliation(s)
- J. A. Stephenson
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Imaging, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - O. Al-Taan
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - A. Arshad
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - B. Morgan
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Imaging, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - M. S. Metcalfe
- Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - A. R. Dennison
- Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| |
Collapse
|
23
|
Tsushima T, Matsubara K, Ohkubo T, Inoue Y, Takahashi K. Docosahexaenoic- and eicosapentaenoic acid-bound lysophospholipids are more effective in suppressing angiogenesis than conjugated docosahexaenoic acid. J Oleo Sci 2013; 61:427-32. [PMID: 22864513 DOI: 10.5650/jos.61.427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Suppression of leukemia, colon cancer, myeloma, and fibrosarcoma to some extent by omega 3 fatty acid bound phospholipids has been reported in the last two decade. However, the anti-angiogenic activity of those phospholipids is still not known. Four kinds of marine phospholipid molecular species i.e. starfish EPA bound diacyl phospholipid (EPA-PC), EPA bound monoacyl phospholipid (EPA-LPC) which was prepare via Lipozyme RMIM mediated partial hydrolysis of EPA-PC, squid DHA bound diacyl phospholipid (DHA-PC), and DHA bound monoacyl phospholipid (DHA-LPC) which was also prepare via Lipozyme RMIM mediated partial hydrolysis of DHA-PC, were subjected to antiangiogenic activity assay by using a piece of rat main artery and a human umbilical cord vein endothelial cell. The lengths of micro vein generated from those tissues after incubation with the above four kinds of phospholipid molecular species were measured and compared. EPA-LPC and DHA-LPC showed strong antiangiogenic activity on the rat main artery tissue, while on the human umbilical cord vein endothelial cells, 100 µM of EPA-LPC in the culture medium, exhibited the most effective suppression on angiogenesis, followed by 100 µM of DHA-LPC. It was concluded that EPA-LPC obtained via Lipozyme RMIM mediated partial hydrolysis of EPA-PC is the most effective omega 3 phospholipid on anti-angiogenesis.
Collapse
Affiliation(s)
- Tadahiro Tsushima
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | | | | | | | | |
Collapse
|
24
|
Huang CS, Chuang CH, Lo TF, Hu ML. Anti-angiogenic effects of lycopene through immunomodualtion of cytokine secretion in human peripheral blood mononuclear cells. J Nutr Biochem 2013; 24:428-34. [DOI: 10.1016/j.jnutbio.2012.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 12/20/2011] [Accepted: 01/06/2012] [Indexed: 01/03/2023]
|
25
|
Muscaritoli M, Molfino A, Laviano A, Rasio D, Rossi Fanelli F. Parenteral nutrition in advanced cancer patients. Crit Rev Oncol Hematol 2012; 84:26-36. [DOI: 10.1016/j.critrevonc.2012.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/23/2011] [Accepted: 01/25/2012] [Indexed: 10/28/2022] Open
|
26
|
Abstract
Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.
Collapse
|
27
|
|
28
|
Potential applications of fish oils rich in n-3 fatty acids in the palliative treatment of advanced pancreatic cancer. Br J Nutr 2011; 106:795-800. [DOI: 10.1017/s0007114511003060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The palliative treatment of patients with advanced pancreatic cancer (APC) has undergone little advancement in the last 15 years. Novel therapies that have been investigated to extend survival have shown little benefit over existing chemotherapy regimens. Patients with APC often experience significant weight loss, which is one of the primary factors involved in declining quality of life. Recently, the ability of n-3 fatty acid rich oral preparations to attenuate or reverse tumour-related weight loss has been investigated in this patient group with encouraging results. Laboratory investigation has also yielded promising results suggesting a potential direct tumouricidal effect of n-3 fatty acids as well as the putative potentiation of existing chemotherapy regimes. The present review aims to examine the potential applications of fish oils rich in n-3 fatty acids in patients with APC, present a selection of the studies carried out to date and outline avenues of possible further clinical investigation.
Collapse
|
29
|
Ganesan P, Matsubara K, Ohkubo T, Tanaka Y, Noda K, Sugawara T, Hirata T. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:1140-1144. [PMID: 20637577 DOI: 10.1016/j.phymed.2010.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/26/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Since anti-angiogenic therapy has becoming a promising approach in the prevention of cancer and related diseases, the present study was aimed to examine the anti-angiogenic effect of siphonaxanthin from green alga (Codium fragile) in cell culture model systems and ex vivo approaches using human umbilical vein endothelial cells (HUVECs) and rat aortic ring, respectively. Siphonaxanthin significantly suppressed HUVEC proliferation (p<0.05) at the concentration of 2.5 μM (50% as compared with control) and above, while the effect on chemotaxis was not significant. Siphonaxanthin exhibited strong inhibitory effect on HUVEC tube formation. It suppressed the formation of tube length by 44% at the concentration of 10 μM, while no tube formation was observed at 25 μM, suggesting that it could be due to the suppression of angiogenic mediators. The ex vivo angiogenesis assay exhibited reduced microvessel outgrowth in a dose dependent manner and the reduction was significant at more than 2.5 μM. Our results imply a new insight on the novel function of siphonaxanthin in preventing angiogenesis related diseases.
Collapse
Affiliation(s)
- Ponesakki Ganesan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Tsurumi-Ikeya Y, Tamura K, Azuma K, Mitsuhashi H, Wakui H, Nakazawa I, Sugano T, Mochida Y, Ebina T, Hirawa N, Toya Y, Uchino K, Umemura S. Sustained Inhibition of Oxidized Low-Density Lipoprotein Is Involved in the Long-Term Therapeutic Effects of Apheresis in Dialysis Patients. Arterioscler Thromb Vasc Biol 2010; 30:1058-65. [DOI: 10.1161/atvbaha.109.200212] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yuko Tsurumi-Ikeya
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koichi Azuma
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Mitsuhashi
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Nakazawa
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Teruyasu Sugano
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuyuki Mochida
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiaki Ebina
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhito Hirawa
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiyuki Toya
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuaki Uchino
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Umemura
- From Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
31
|
Kawashima T, Yokoi T, Kaji H, Nishizawa M. Transfer of two-dimensional patterns of human umbilical vein endothelial cells into fibrin gels to facilitate vessel formation. Chem Commun (Camb) 2010; 46:2070-2. [PMID: 20221495 DOI: 10.1039/b924397f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional cell patterns prepared on substrate surfaces by an electrochemical-based biolithography method have been transferred into fibrin gels prepared in situ. Line patterns of human umbilical vein endothelial cells (HUVECs) in the gel that was strained after the transfer formed a linear vessel-like structure within 8 days.
Collapse
Affiliation(s)
- Takeaki Kawashima
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | |
Collapse
|
32
|
Tsuduki T, Nakamura Y, Honma T, Nakagawa K, Kimura T, Ikeda I, Miyazawa T. Intake of 1-deoxynojirimycin suppresses lipid accumulation through activation of the beta-oxidation system in rat liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:11024-11029. [PMID: 19863049 DOI: 10.1021/jf903132r] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It was recently shown that administration of 1-deoxynojirimycin (DNJ) extracted from mulberry suppresses an increase in postprandial blood glucose in humans. These findings are of interest, but other physiological functions of DNJ are unknown. This study examined the effects of oral administration of DNJ (1 mg/kg of body weight/day) or mulberry extracts enriched in DNJ (meDNJ; 100 or 200 mg of extract/kg of body weight/day, equivalent to 0.53 or 1.06 mg of DNJ/kg of body weight/day) in male Sprague-Dawley rats for 4 weeks. DNJ and meDNJ enhanced expression of adiponectin mRNA in white adipose tissue; increased plasma adiponectin levels, enhanced expression of AMPK mRNA, activated the beta-oxidation system, and suppressed lipid accumulation in the liver. Intake of DNJ and meDNJ did not cause hepatic dysfunction and led to a reduction of oxidative stress. These results indicate the efficacy and safety of DNJ and meDNJ.
Collapse
Affiliation(s)
- Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer 2009; 45:2077-86. [PMID: 19493674 DOI: 10.1016/j.ejca.2009.04.026] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/10/2009] [Accepted: 04/24/2009] [Indexed: 12/12/2022]
Abstract
Omega-3 fatty acid (omega-3 FA) consumption has long been associated with a lower incidence of colon, breast and prostate cancers in many human populations. Human trials have demonstrated omega-3 FA to have profound anti-inflammatory effects in those with cancer. In vitro and small animal studies have yielded a strong body of evidence establishing omega-3 FA as having anti-inflammatory, anti-apoptotic, anti-proliferative and anti-angiogenic effects. This review explores the evidence and the mechanisms by which omega-3 FA may act as angiogenesis inhibitors and identifies opportunities for original research trialling omega-3 FAs as anti-cancer agents in humans. The conclusions drawn from this review suggest that omega-3 FAs in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found principally in oily fish have potent anti-angiogenic effects inhibiting production of many important angiogenic mediators namely; Vascular Endothelial Growth Factor (VEGF), Platelet-Derived Growth Factor (PDGF), Platelet-Derived Endothelial Cell Growth Factor (PDECGF), cyclo-oxygenase 2 (COX-2), prostaglandin-E2 (PGE2), nitric oxide, Nuclear Factor Kappa Beta (NFKB), matrix metalloproteinases and beta-catenin.
Collapse
Affiliation(s)
- Laura Spencer
- Department of HPB and Pancreatic Surgery, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Miyake JA, Benadiba M, Colquhoun A. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis 2009; 8:8. [PMID: 19292920 PMCID: PMC2661078 DOI: 10.1186/1476-511x-8-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. METHODS Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. RESULTS GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. CONCLUSION Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Collapse
Affiliation(s)
- Juliano Andreoli Miyake
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
35
|
Miyazawa T, Shibata A, Sookwong P, Kawakami Y, Eitsuka T, Asai A, Oikawa S, Nakagawa K. Antiangiogenic and anticancer potential of unsaturated vitamin E (tocotrienol). J Nutr Biochem 2009; 20:79-86. [DOI: 10.1016/j.jnutbio.2008.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/05/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
|
36
|
Miyazawa T, Shibata A. Angiogenesis. J JPN SOC FOOD SCI 2009. [DOI: 10.3136/nskkk.56.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Shibata A, Nakagawa K, Sookwong P, Tsuduki T, Tomita S, Shirakawa H, Komai M, Miyazawa T. Tocotrienol Inhibits Secretion of Angiogenic Factors from Human Colorectal Adenocarcinoma Cells by Suppressing Hypoxia-Inducible Factor-1α. J Nutr 2008; 138:2136-42. [DOI: 10.3945/jn.108.093237] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
38
|
Tumor anti-angiogenic effect and mechanism of action of δ-tocotrienol. Biochem Pharmacol 2008; 76:330-9. [DOI: 10.1016/j.bcp.2008.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/21/2022]
|
39
|
Arai S, Yasuoka A, Abe K. Functional food science and food for specified health use policy in Japan: state of the art. Curr Opin Lipidol 2008; 19:69-73. [PMID: 18196990 DOI: 10.1097/mol.0b013e3282f3f505] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The science and policy of functional foods are a matter of global concern and this review provides up-to-date information about the Japanese 'food for specified health use' policy based on functional food science. RECENT FINDINGS A great many studies on nonnutritive but physiologically functional food components have provided more precise evidence regarding the structure-function relationships that underlie the approval of food for specified health use products. SUMMARY Functional foods, defined as those that have the potential to reduce the risk of lifestyle-related diseases and associated abnormal modalities, have garnered global interest since the 1980s when the systematic research had humble beginnings as a national project in Japan. In 1991, the project led to the launch of the national food for specified health use policy; 703 food for specified health use products with 11 categories of health claims have been approved up to the present (31 August 2007). The development of this policy has been supported basically by nutritional epidemiology, food chemistry and biochemistry, physiology and clinical medicine, and even the genomics on food and nutrition. This review also highlights the current academia-industry collaboration in Japan.
Collapse
Affiliation(s)
- Soichi Arai
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan.
| | | | | |
Collapse
|
40
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Tsuzuki T, Kawakami Y. Tumor angiogenesis suppression by α-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via peroxisome proliferator-activated receptor γ. Carcinogenesis 2008; 29:797-806. [DOI: 10.1093/carcin/bgm298] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
42
|
Tsuzuki T, Shibata A, Kawakami Y, Nakagaya K, Miyazawa T. Anti-angiogenic effects of conjugated docosahexaenoic acid in vitro and in vivo. Biosci Biotechnol Biochem 2007; 71:1902-10. [PMID: 17690464 DOI: 10.1271/bbb.70114] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The anti-angiogenic effects of conjugated docosahexaenoic acid (CDHA), which was prepared by an alkaline treatment of docosahexaenoic acid and contained conjugated double bonds, were investigated in vitro and in vivo. CDHA inhibited tube formation by the bovine aortic endothelial cell (BAEC), and also inhibited the proliferation of BAEC at a concentration of CDHA that suppressed tube formation, but did not influence cell migration. The inhibition of BAEC growth caused by CDHA was accompanied by a marked change in cellular morphology. Nuclear condensation and brightness were observed in Hoechst 33342-stained cells treated with CDHA, indicating that CDHA induced apoptosis in BAEC. We also evaluated the angiogenesis inhibition of CDHA in vivo. The vessel formation which was triggered by tumor cells was clearly suppressed in mice orally given CDHA. Our findings suggest that CDHA has potential use as a therapeutic dietary supplement for minimizing tumor angiogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Tsuzuki
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
43
|
Nakagawa K, Shibata A, Yamashita S, Tsuzuki T, Kariya J, Oikawa S, Miyazawa T. In vivo angiogenesis is suppressed by unsaturated vitamin E, tocotrienol. J Nutr 2007; 137:1938-43. [PMID: 17634267 DOI: 10.1093/jn/137.8.1938] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antiangiogenic therapy using drugs and food components is a recognized strategy for the prevention of various angiogenesis-mediated disorders such as tumor growth, diabetic retinopathy, and rheumatoid arthritis. Our preliminary cell culture studies, using both bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVEC) on screening for food-derived antiangiogenic compounds, showed tocotrienol (T3), an unsaturated version of vitamin E, to be a potential angiogenic inhibitor. We therefore investigaged the in vivo antiangiogenic properties of T3 using 2 well-characterized angiogenic models [mouse dorsal air sac (DAS) assay and the chick embryo chorioallantoic membrane (CAM) assay]. In the DAS assay, the increased neovascularization (angiogenesis index, 4.8 +/- 0.6) in tumor cell-implanted mice was suppressed (angiogenesis index, 2.7 +/- 0.6) by dietary supplementation of 10 mg T3-rich oil/d (equivalent to 4.4 mg T3/d). In the CAM assay, T3 (500-1000 microg/egg) inhibited new blood vessel formation on the growing CAM and increased the frequency of avascular zone (36-50%). To evaluate the antiangiogenic mechanism, we conducted cell-culture studies and found that T3 significantly reduced fibroblast growth factor -induced proliferation, migration, and tube formation in HUVEC (P < 0.05), with delta-T3 having the highest activity. Western blot analysis revealed that delta-T3 suppressed the phosphorylation of phosophoinositide-dependent protein kinase (PDK) and Akt, and increased the phosphorylation of apoptosis signal-regulating kinase and p38 in fibroblast growth factor-treated HUVEC, indicating that the antiangiogenic effects of T3 are associated with changes in growth factor-dependent phosphatidylinositol-3 kinase /PDK/Akt signaling as well as induction of apoptosis in endothelial cells. Our findings suggest that T3 has potential as a therapeutic dietary supplement for preventing angiogenic disorders, and therefore future clinical study will be required to evaluate the efficacy and safety of T3.
Collapse
Affiliation(s)
- Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|