1
|
Chen X, Zhu Z, Zhang X, Chen L, Gu Q, Li P. Lactobacillus paracasei ZFM54 alters the metabolomic profiles of yogurt and the co-fermented yogurt improves the gut microecology of human adults. J Dairy Sci 2024; 107:5280-5300. [PMID: 38460876 DOI: 10.3168/jds.2023-24332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024]
Abstract
Gut microbiota imbalance could lead to various diseases, making it important to optimize the structure of the gut flora in adults. Lactobacillus paracasei ZFM54 is a bacteriocin- and folic acid-producing Lactobacillus strain. Herein, L. paracasei ZFM54 was used as the potentially probiotic bacterium to ferment milk together with a yogurt starter. We optimized the fermentation conditions, and the obtained yogurts were then subjected to volatile and nonvolatile metabolome analysis, showing that L. paracasei ZFM54 can not only improve the acidity, water holding capacity and live lactic acid bacteria counts, but also improve many volatile acid contents and increase some beneficial nonvolatile metabolites, such as N-ethyl glycine and l-lysine, endowing the yogurt with more flavor and better function. The regulatory effects of the co-fermented yogurt on the intestinal microecology of volunteers were investigated by 16S rRNA sequencing and short-chain fatty acid (SCFA) analysis after consuming the yogurt for a 2-wk period, showing a better effect to increase the relative abundance of beneficial bacteria such as Ruminococcus and Alistipes, decrease harmful bacteria (Escherichia-Shigella and Enterobacter), and enhance the production of SCFA (acetate, propionate, and butyric acid) compared with the control yogurt. We found that L. paracasei ZFM54 can significantly improve the health benefits of yogurt, laying the foundation for its commercial application in improving gut microbiota.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zichun Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xin Zhang
- College of Forest and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Lin Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Rafii M, Paoletti A, He H, Porto B, Szwiega S, Pencharz PB, Ball RO, Kong D, Xu L, Elango R, Courtney-Martin G. Dietary Lysine Requirements of Older Adults Stratified by Age and Sex. J Nutr 2024; 154:2133-2142. [PMID: 38735574 DOI: 10.1016/j.tjnut.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Current recommendation for lysine in older adults, 30 mg/kg/d, is based on young adult data. Evidence suggests that amino acid requirements may differ between young and old adults with both sex and age having an effect in the elderly. OBJECTIVES This study aimed to define the lysine requirements in healthy older adults using the indicator amino acid oxidation (IAAO) method with L-[1-13C] phenylalanine as the indicator and to compare the derived estimates based on age: 60-69 y and >70 y. METHODS Fourteen healthy males and 16 healthy females [>60 y, body mass index (BMI) = 26.3 kg/m2] were randomly assigned to receive 3-7 lysine intakes from 10 to 80 mg/kg/d. Subjects were adapted to a standard liquid diet providing 1.0 g/kg/d protein and adequate energy, for 2 d, with indicator oxidation measurements performed on day 3. The rate of release of 13CO2 from the oxidation of L-[1-13C] phenylalanine was measured in breath. A 2-phase linear mixed-effect model, and parametric bootstrap were used to determine mean lysine requirements and the 95% confidence intervals (CIs). The overlap of the 95% CI between the 2 age groups were used to compare the requirement estimates. The null hypothesis was accepted if the interval contained zero. RESULTS The mean and upper 95% CI of the lysine requirement for females were 32.9 and 40.9 and 46.2 and 53.7 mg/kg/d for those aged 60-69 y and >70 y, respectively. The mean and upper 95% CI of the lysine requirement for the 2 groups of males were not different so was combined to yield a mean and 95% CI of 32.2 and 38.2 mg/kg/d. CONCLUSIONS To our knowledge, this is the first study to report on the lysine requirement in adults aged >60 y. These results provide a basis from which the adequacy of diets to meet lysine needs of older adults can be assessed. The trial was registered at clinicaltrials.gov as NCT02008955 (https://clinicaltrials.gov/study/NCT02008955).
Collapse
Affiliation(s)
- Mahroukh Rafii
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alyssa Paoletti
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Henry He
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beatriz Porto
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sylwia Szwiega
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ronald O Ball
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Libai Xu
- School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Gunarathne R, Guan X, Feng T, Zhao Y, Lu J. L-lysine dietary supplementation for childhood and adolescent growth: Promises and precautions. J Adv Res 2024:S2090-1232(24)00202-9. [PMID: 38740261 DOI: 10.1016/j.jare.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND L-lysine (lysine) is an essential amino acid that plays a vital role in human nutrition. It serves as a key component in protein synthesis and fulfills critical roles in various physiological activities. For decades, lysine supplements have been extensively used to promote the growth and development of children, particularly in developing countries where cereal-based diets are everyday staples. AIM OF THE REVIEW This review aims to provide an overview of the overall effectiveness of lysine supplements concerning the growth of children and adolescents. Additionally, it addresses the potential precautions that should be considered when using lysine supplements in this context. KEY SCIENTIFIC CONCEPTS OF REVIEW Receiving lysine oral supplements and lysine-fortified cereal diets were observed to enhance nitrogen retention and improve anthropometric measurements such as height, weight, Z-scores, body mass index, and skinfold thickness. Furthermore, lysine positively influenced the children's developmental quotient and various serological biochemical parameters, such as hormones, immunological indicators, proteins, bone metabolic indicators, and red blood cell parameters. These supplements are generally considered clinically safe, with no reported toxicity where the related side effects are limited to subjective gastrointestinal tract symptoms. It is essential to be cautious about excessive intake of lysine, as it can lead to an imbalance of amino acids, thereby potentially suppressing its intended benefits. When used with appropriate precautions, lysine can serve as a safe supplement with promising benefits for the growth of children and adolescents. Nevertheless, further contemporary research studies on lysine supplementation would be insightful and valuable in better understanding its optimal use, potential benefits, and safety in promoting growth.
Collapse
Affiliation(s)
- Rasika Gunarathne
- Auckland Bioengineering Institute, the University of Auckland, Auckland 1142, New Zealand
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201400, China
| | - Yu Zhao
- School of Life Sciences, Shanghai Normal University, Shanghai 200042, China
| | - Jun Lu
- Auckland Bioengineering Institute, the University of Auckland, Auckland 1142, New Zealand; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand; Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China.
| |
Collapse
|
4
|
Sarafska T, Ivanova S, Dudev T, Tzachev C, Petrov V, Spassov T. Enhanced Solubility of Ibuprofen by Complexation with β-Cyclodextrin and Citric Acid. Molecules 2024; 29:1650. [PMID: 38611930 PMCID: PMC11013186 DOI: 10.3390/molecules29071650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The ability of β-CD to form inclusion complexes with ibuprofen (IBU) and at the same time to make a two-phase system with citric acid was explored in the present study for achieving improved solubility and dissolution rate of IBU. Mechanical milling as well as mechanical milling combined with thermal annealing of the powder mixtures were applied as synthetic methods. Solubility and dissolution kinetics of the complexes were studied in compliance with European Pharmacopoeia (ICH Q4B). β-CD and citric acid (CA) molecules were shown to interact by both ball milling (BM), thermal annealing, as well as BM with subsequent annealing. Complexes were also formed by milling the three compounds (β-CD, CA and IBU) simultaneously, as well as by a consecutive first including IBU into β-CD and then binding the formed β-CD/IBU inclusion complex with CA. As a result, ternary β-CD/IBU/CA complex formed by initial incorporation of ibuprofen into β-CD, followed by successive formation of a two-phase mixture with CA, exhibited notably improved dissolution kinetics compared to the pure ibuprofen and slightly better compared to the binary β-CD/IBU system. Although the addition of CA to β-CD/IBU does not significantly increase the solubility rate of IBU, it must be considered that the amount of β-CD is significantly less in the ternary complex compared to the binary β-CD/IBU.
Collapse
Affiliation(s)
| | | | | | | | | | - Tony Spassov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (T.S.); (S.I.); (T.D.); (C.T.); (V.P.)
| |
Collapse
|
5
|
Barakat H, Al-Qabba MM, Algonaiman R, Radhi KS, Almutairi AS, Al Zhrani MM, Mohamed A. Impact of Sprouting Process on the Protein Quality of Yellow and Red Quinoa ( Chenopodium quinoa). Molecules 2024; 29:404. [PMID: 38257317 PMCID: PMC10821386 DOI: 10.3390/molecules29020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The demand for plant-based proteins has increased remarkably over the last decade. Expanding the availability and variety of plant-based protein options has shown positive potential. This study aimed to investigate the qualitative and quantitative changes in amino acids of yellow and red quinoa seeds (YQ and RQ) during a 9-day germination period. The results showed that the germination process led to an increase in the total amino acids by 7.43% and 14.36% in the YQ and RQ, respectively. Both varieties exhibited significant (p < 0.05) increases in non-essential and essential amino acids, including lysine, phenylalanine, threonine, and tyrosine. The content of non-essential amino acids nearly reached the standard values found in chicken eggs. These results were likely attributed to the impact of the germination process in increasing enzymes activity and decreasing anti-nutrient content (e.g., saponins). A linear relationship between increased seeds' hydration and decreased saponins content was observed, indicating the effect of water absorption in changing the chemical composition of the plant. Both sprouts showed positive germination progression; however, the sprouted RQ showed a higher germination rate than the YQ (57.67% vs. 43.33%, respectively). Overall, this study demonstrates that germination is a promising technique for enhancing the nutritional value of quinoa seeds, delivering sprouted quinoa seeds as a highly recommended source of high-protein grains with notable functional properties.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Maryam M. Al-Qabba
- Maternity and Children Hospital, Qassim Health Cluster, Ministry of Health, Buraydah 52384, Saudi Arabia;
| | - Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khadija S. Radhi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Abdulkarim S. Almutairi
- Al Rass General Hospital, Qassim Health Cluster, Ministry of Health, Ibn Sina Street, King Khalid District, Al Rass 58883, Saudi Arabia;
| | - Muath M. Al Zhrani
- Department of Applied Medical Science, College of Applied, Bishah University, Bishah 67714, Saudi Arabia;
| | - Ahmed Mohamed
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt;
| |
Collapse
|
6
|
Wan Y, Wang X, Bai T, Zheng X, Yang L, Li Q, Wang X. Lysine Inhibits Hemolytic Activity of Staphylococcus aureus and Its Application in Food Model Contaminated with Staphylococcus aureus. Toxins (Basel) 2022; 14:toxins14120867. [PMID: 36548764 PMCID: PMC9786064 DOI: 10.3390/toxins14120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha-hemolysin (Hla) is one of the important exotoxins of Staphylococcus aureus (S. aureus) and can be used as a target to reduce the virulence of S. aureus. This study explored the inhibitory effect of Lysine (Lys) on Hla and its application in food safety. Lys significantly inhibited the expression of Hla at sub-inhibitory concentrations and directly interacted with Hla to interfere with its oligomerization and thus significantly inhibited its hemolytic activity. Notably, Lys attenuated S. aureus damage to mouse small intestine and Caco-2 cells and delayed mouse mortality. In the food model, Lys inhibited the expression of Hla of S. aureus and had no significant effect on the sensory score. Moreover, Lys had no obvious damage effect on the main organs of mice, which indicated that Lys has good biocompatibility and has the potential to be used in the food industry as an anti-S. aureus preparation.
Collapse
|
7
|
mTORC1 Mediates the Processes of Lysine Regulating Satellite Cells Proliferation, Apoptosis, and Autophagy. Metabolites 2022; 12:metabo12090788. [PMID: 36144192 PMCID: PMC9505949 DOI: 10.3390/metabo12090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Lysine (Lys) is essential for skeletal muscle growth and protein synthesis in mammals. However, the regulatory network underlying Lys-regulated skeletal muscle development is unknown. To determine whether any cross-talk occurs among mammalian targets of rapamycin complex 1 (mTORC1) and Lys in the regulation of muscle satellite cells (SCs) proliferation, we applied the treatment rapamycin (a mTORC1 inhibitor) and MHY1485 (a mTORC1 activator) on Lys-added or -deficient SCs. The results show Lys deprivation significantly decreases SCs viability, protein synthesis, and cell cycling, increases autophagy and apoptosis, and inhibits the mTORC1 signaling pathway. Restoration of Lys content significantly attenuates this effect. mTORC1 signaling pathway activation during Lys deprivation or mTORC1 signaling pathway inhibition during Lys addition attenuates the effect of Lys deprivation or addition on SCs viability, protein synthesis, cell cycling, autophagy, and apoptosis. In conclusion, Lys could improve SCs proliferation, and inhibit SCs apoptosis and autophagy, via the mTORC1 signaling pathway.
Collapse
|
8
|
Pedrazini MC, da Silva MH, Groppo FC. L-lysine: its antagonism with L-arginine in controlling viral infection. Narrative Literature Review. Br J Clin Pharmacol 2022; 88:4708-4723. [PMID: 35723628 DOI: 10.1111/bcp.15444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Knowledge about viral characteristics, mechanisms of entry into the host cell and multiplication/dissemination can help in the control and treatment of viral pathologies. Several nutritional factors linked to the host may favor viral multiplication and their control, may lead to new prophylactic alternatives and/or antiviral therapies. The objective of this review is to discuss the relationship between the amino acid L-lysine and the control of viral infections, aiming at a possible therapeutic property. This research used databases such as PubMed, Web of Science, Scielo, Medline and Google Scholar, as well as searching for references cited by journals. The time frame covered the period between 1964 and January 2022. The observed studies have shown that the usual antiviral therapies are not able to interfere with the viruses in their latent state, however, they can interfere with the adhesion and fusion of viral particles or the production of proteins, which play an important role in viral epidemiology and control, particularly in the initial moment and in the reactivation. Lysine is an amino acid that can interfere mainly in the formation of capsid proteins and DNA by a competitive antagonism with amino acid arginine, which is an essential amino acid for some viruses and also by promoting the increase of arginase, increasing the catabolism of arginine. Although there is evidence of the importance of L-lysine in viral control, more studies are needed, with a view to new antiviral therapies.
Collapse
Affiliation(s)
- Maria Cristina Pedrazini
- Department of Biosciences, Piracicaba Dental School, FOP, UNICAMP, Campinas, São Paulo State, Brazil.,Department of Dental Sciences, São Leopoldo Mandic Research Center Campinas, São Paulo State, Brazil
| | - Mariliza Henrique da Silva
- Department of Infectology Diagnosis, IST/AIDS State Program, ITD/AIDS Reference and Training Center, São Paulo, São Paulo State, Brazil
| | - Francisco Carlos Groppo
- Department of Biosciences, Piracicaba Dental School, FOP, UNICAMP, Campinas, São Paulo State, Brazil
| |
Collapse
|
9
|
Saliev T, Fakhradiyev I, Tanabayeva S, Assanova Y, Toishybek D, Kazybayeva A, Tanabayev B, Sikhymbaev M, Alimbayeva A, Toishibekov Y. "Radio-Protective Effect of Aminocaproic Acid in Human Spermatozoa". Int J Radiat Biol 2022; 98:1462-1472. [PMID: 35021023 DOI: 10.1080/09553002.2022.2027540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The negative effects of ionizing radiation on organs and the reproductive system are well known and documented. Exposure to gamma radiation can lead to oligospermia, azoospermia and DNA damage. Up to date, there is no effective pharmaceutical compound for protecting the male reproductive system and sperm. OBJECTIVE This study aimed at investigating the ability of Ɛ-aminocaproic acid (EACA) to prevent the damage of human spermatozoa and DNA induced by ionizing radiation. MATERIALS AND METHODS Sperm samples were obtained from healthy volunteers (35 men; 31.50 ± 7.34 years old). There were 4 experimental groups: 1) control group (CG), 2) group exposed to maximal radiation dose 67.88 mGy (RMAX), 3) low-dose radiation (minimal) 22.62 mGy (RMIN), and 4) group treated with radiation (67.88 mGy) and EACA (dose 50 ng/ml). Sperm motility, viability, and DNA damage were assessed. RESULTS We observed a significant decrease in total sperm motility of the RMAX group compared to CG (p < 0.05). Sperm viability in the RMAX group was also reduced in comparison to the control (p < 0.05). A significant increase in DNA fragmentation was detected in the RMAX group. The results demonstrated that the treatment of sperm with EACA led to a decrease in the fragmentation of the sperm DNA (compared to the RMAX group) (p < 0.05). CONCLUSION The results indicate that EACA effectively protects human spermatozoa from DNA damage induced by ionizing radiation. Treatment of spermatozoa with EACA led to the preservation of cell motility, viability, and DNA integrity upon radiation exposure.
Collapse
Affiliation(s)
- Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Ildar Fakhradiyev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Shynar Tanabayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Yelena Assanova
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan
| | - Dinmukhamed Toishybek
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan.,Embryo Technology Labs, Almaty, Kazakhstan
| | - Aigul Kazybayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.,Clinic of Reproduction and Anti Age, Almaty, Kazakhstan
| | | | - Marat Sikhymbaev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | - Yerzhan Toishibekov
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan.,Embryo Technology Labs, Almaty, Kazakhstan
| |
Collapse
|
10
|
Balfoort BM, Buijs MJN, Ten Asbroek ALMA, Bergen AAB, Boon CJF, Ferreira EA, Houtkooper RH, Wagenmakers MAEM, Wanders RJA, Waterham HR, Timmer C, van Karnebeek CD, Brands MM. A review of treatment modalities in gyrate atrophy of the choroid and retina (GACR). Mol Genet Metab 2021; 134:96-116. [PMID: 34340878 DOI: 10.1016/j.ymgme.2021.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022]
Abstract
UNLABELLED Gyrate atrophy of the choroid and retina (GACR) is a rare inborn error of amino acid metabolism caused by bi-allelic variations in OAT. GACR is characterised by vision decline in early life eventually leading to complete blindness, and high plasma ornithine levels. There is no curative treatment for GACR, although several therapeutic modalities aim to slow progression of the disease by targeting different steps within the ornithine pathway. No international treatment protocol is available. We systematically collected all international literature on therapeutic interventions in GACR to provide an overview of published treatment effects. METHODS Following the PRISMA guidelines, we conducted a systematic review of the English literature until December 22nd 2020. PubMed and Embase databases were searched for studies related to therapeutic interventions in patients with GACR. RESULTS A total of 33 studies (n = 107 patients) met the inclusion criteria. Most studies were designed as case reports (n = 27) or case series (n = 4). No randomised controlled trials or large cohort studies were found. Treatments applied were protein-restricted diets, pyridoxine supplementation, creatine or creatine precursor supplementation, l-lysine supplementation, and proline supplementation. Protein-restricted diets lowered ornithine levels ranging from 16.0-91.2%. Pyridoxine responsiveness was reported in 30% of included mutations. Lysine supplementation decreased ornithine levels with 21-34%. Quality assessment showed low to moderate quality of the articles. CONCLUSIONS Based primarily on case reports ornithine levels can be reduced by using a protein restricted diet, pyridoxine supplementation (variation-dependent) and/or lysine supplementation. The lack of pre-defined clinical outcome measures and structural follow-up in all included studies impeded conclusions on clinical effectiveness. Future research should be aimed at 1) Unravelling the OAT biochemical pathway to identify other possible pathologic metabolites besides ornithine, 2) Pre-defining GACR specific clinical outcome measures, and 3) Establishing an international historical cohort.
Collapse
Affiliation(s)
- Berith M Balfoort
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Mark J N Buijs
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Anneloor L M A Ten Asbroek
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Arthur A B Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Centre, 2333, ZA, Leiden, the Netherlands
| | - Elise A Ferreira
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Margreet A E M Wagenmakers
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Corrie Timmer
- Department Endocrinology and Metabolism Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands
| | - Clara D van Karnebeek
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands; Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marion M Brands
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Cynober L, Bier DM, Stover P, Kadowaki M, Morris SM, Elango R, Smriga M. Proposals for Upper Limits of Safe Intake for Methionine, Histidine, and Lysine in Healthy Humans. J Nutr 2020; 150:2606S-2608S. [PMID: 33000163 DOI: 10.1093/jn/nxaa231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Based on research presented during the 10th Amino Acid Assessment Workshop, no observed adverse effect levels (NOAELs) for supplemental methionine at 46 mg/(kg·d) (∼3.2 g/d), for supplemental histidine at 8.0 g/d, and for supplemental lysine at 6.0 g/d have been proposed. These NOAELs are relevant to healthy adults and are applicable only to high-purity amino acids administered in fortified foods or dietary supplements. Because individuals are exposed to the above supplemental amino acids in the context of complex combinations of essential amino acids or individually in dietary supplements for various physiologic benefits, such as body fat reduction, skin conditioning, mental energy increase, or herpes simplex treatments, the above safety recommendations will make an important contribution to regulatory and nutritional practices.
Collapse
Affiliation(s)
- Luc Cynober
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Clinical Chemistry Laboratory, Cochin Hospital, AP-HP, Paris, France.,Biological Nutrition Laboratory and EA 4466, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | - Dennis M Bier
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Stover
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Texas A&M AgriLife, College Station, TX, USA
| | - Motoni Kadowaki
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Department of Engineering, Niigata Institute of Technology, Niigata, Japan
| | - Sidney M Morris
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Rajavel Elango
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Miro Smriga
- International Council for Amino Acid Science (ICAAS), Brussels, Belgium
| |
Collapse
|