1
|
Oliveira JSE, Gomes JMG, Costa JDA, Oliveira LLD, Alfenas RDCG. Increased calcium intake from skimmed milk in energy-restricted diets reduces glycation markers in adults with type 2 diabetes and overweight: A secondary analysis of a randomized clinical trial. Nutr Res 2024; 127:40-52. [PMID: 38861793 DOI: 10.1016/j.nutres.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
The effect of calcium (Ca) on glycation markers is unknown. We hypothesized that increased Ca intake from skimmed milk associated with an energy-restricted diet intake will reduce glycation markers. This reduction will be associated with a greater improvement in markers of metabolic control in adults with type 2 diabetes, overweight, and low habitual Ca intake (<600 mg/d). In this secondary data analysis based on a crossover clinical trial, 14 adults were allocated into 2 groups: high calcium (shake containing 700 mg Ca/day) or low calcium (shake with 6.4 mg Ca/day), for 12 consecutive weeks per session. Energy-restricted diets were also prescribed (-500 kcal/d, 800 mg of dietary Ca/d) to all participants. Advanced glycation end products (AGEs), soluble receptor for AGEs (sRAGE), glycemic control, and lipid profile were assessed at baseline and after 12 weeks. High-calcium serum AGE concentrations and AGE/sRAGE ratio were lower at the end of the study. ΔAGE and ΔAGE/sRAGE ratio were both positively associated with Δtriglycerides, Δtotal cholesterol, Δtriglyceride-glucose index and variations, and Δvisceral adiposity index. ΔAGE/sRAGE was positively associated with Δfructosamine and Δhigh-density lipoprotein-cholesterol, and negatively associated with male sex. Consumption of approximately 1200 mg/day of calcium (3 servings of skim milk) reduced serum AGEs concentrations and the AGE/sRAGE ratio in individuals with diabetes. In general, positive changes in glycation markers are associated with lipid profile, insulin resistance, and adiposity markers worsening. ΔAGEs/ΔsRAGE ratio seems to be a better marker of metabolic status than ΔAGEs and ΔsRAGE alone. Registered in ClinicalTrials.gov (NCT02377076).
Collapse
Affiliation(s)
- Julia Silva E Oliveira
- Departamento de Nutricao e Saude, Universidade Federal de Viçosa, 36570-900, Vicosa, Minas Gerais, Brazil.
| | - Júnia Maria Geraldo Gomes
- Instituto Federal de Educacao, Ciencia e Tecnologia do Sudeste de Minas Gerais, 36205-018, Barbacena, Minas Gerais, Brazil
| | - Jorge de Assis Costa
- Departamento de Ciencia Humana e Línguas, Universidade Estadual de Minas Gerais, 36500-000, Uba, Minas Gerais, Brazil
| | | | | |
Collapse
|
2
|
de Hart NM, Petrocelli JJ, Nicholson RJ, Yee EM, Ferrara PJ, Bastian ED, Ward LS, Petersen BL, Summers SA, Drummond MJ. Palmitate-Induced Inflammation and Myotube Atrophy in C2C12 Cells Are Prevented by the Whey Bioactive Peptide, Glycomacropeptide. J Nutr 2023; 153:2915-2928. [PMID: 37652286 PMCID: PMC10731921 DOI: 10.1016/j.tjnut.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Metabolic diseases are often associated with muscle atrophy and heightened inflammation. The whey bioactive compound, glycomacropeptide (GMP), has been shown to exhibit anti-inflammatory properties and therefore may have potential therapeutic efficacy in conditions of skeletal muscle inflammation and atrophy. OBJECTIVES The purpose of this study was to determine the role of GMP in preventing lipotoxicity-induced myotube atrophy and inflammation. METHODS C2C12 myoblasts were differentiated to determine the effect of GMP on atrophy and inflammation and to explore its mechanism of action in evaluating various anabolic and catabolic cellular signaling nodes. We also used a lipidomic analysis to evaluate muscle sphingolipid accumulation with the various treatments. Palmitate (0.75 mM) in the presence and absence of GMP (5 μg/mL) was used to induce myotube atrophy and inflammation and cells were collected over a time course of 6-24 h. RESULTS After 24 h of treatment, GMP prevented the palmitate-induced decrease in the myotube area and myogenic index and the increase in the TLR4-mediated inflammatory genes tumor necrosis factor-α and interleukin 1β. Moreover, phosphorylation of Erk1/2, and gene expression of myostatin, and the E3 ubiquitin ligases, FBXO32, and MuRF1 were decreased with GMP treatment. GMP did not alter palmitate-induced ceramide or diacylglycerol accumulation, muscle insulin resistance, or protein synthesis. CONCLUSIONS In summary, GMP prevented palmitate-induced inflammation and atrophy in C2C12 myotubes. The GMP protective mechanism of action in muscle cells during lipotoxic stress may be related to targeting catabolic signaling associated with cellular stress and proteolysis but not protein synthesis.
Collapse
Affiliation(s)
- Naomi Mmp de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Elena M Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Patrick J Ferrara
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Eric D Bastian
- Dairy West Innovation Partnerships, Twin Falls, ID, United States
| | - Loren S Ward
- Glanbia Nutritionals Research, Twin Falls, ID, United States
| | | | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Micah J Drummond
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
3
|
Hughes A, Francis T, Marjoram L, Rooney JH, Ellison-Hughes G, Pollock R, Curtis MJ, Cape A, Larsen M, Phillips BE, Atherton PJ, Smith K, Witard OC. The effect of combined β-lactoglobulin supplementation and resistance exercise training prior to limb immobilisation on muscle protein synthesis rates in healthy young adults: study protocol for a randomised controlled trial. Trials 2023; 24:401. [PMID: 37312095 DOI: 10.1186/s13063-023-07329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND The decline in skeletal muscle mass experienced following a short-term period (days to weeks) of muscle disuse is mediated by impaired rates of muscle protein synthesis (MPS). Previous RCTs of exercise or nutrition prehabilitation interventions designed to mitigate disuse-induced muscle atrophy have reported limited efficacy. Hence, the aim of this study is to investigate the impact of a complex prehabilitation intervention that combines β-lactoglobulin (a novel milk protein with a high leucine content) supplementation with resistance exercise training on disuse-induced changes in free-living integrated rates of MPS in healthy, young adults. METHODS/DESIGN To address this aim, we will recruit 24 healthy young (18-45 years) males and females to conduct a parallel, double-blind, 2-arm, randomised placebo-controlled trial. The intervention group will combine a 7-day structured resistance exercise training programme with thrice daily dietary supplementation with 23 g of β-lactoglobulin. The placebo group will combine the same training programme with an energy-matched carbohydrate (dextrose) control. The study protocol will last 16 days for each participant. Day 1 will be a familiarisation session and days 2-4 will be the baseline period. Days 5-11 represent the 'prehabilitation period' whereby participants will combine resistance training with their assigned dietary supplementation regimen. Days 12-16 represent the muscle disuse-induced 'immobilisation period' whereby participants will have a single leg immobilised in a brace and continue their assigned dietary supplementation regimen only (i.e. no resistance training). The primary endpoint of this study is the measurement of free-living integrated rates of MPS using deuterium oxide tracer methodology. Measurements of MPS will be calculated at baseline, over the 7-day prehabilitation period and over the 5-day immobilisation period separately. Secondary endpoints include measurements of muscle mass and strength that will be collected on days 4 (baseline), 11 (end of prehabilitation) and 16 (end of immobilisation). DISCUSSION This novel study will establish the impact of a bimodal prehabilitation strategy that combines ß-lactoglobulin supplementation and resistance exercise training in modulating MPS following a short-term period of muscle disuse. If successful, this complex intervention may be translated to clinical practice with application to patients scheduled to undergo, for example, hip or knee replacement surgery. TRIAL REGISTRATION NCT05496452. Registered on August 10, 2022. PROTOCOL VERSION 16-12-2022/1.
Collapse
Affiliation(s)
- Alix Hughes
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Thomas Francis
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Lindsey Marjoram
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Jessica H Rooney
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | | | - Ross Pollock
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Michael J Curtis
- School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Angela Cape
- Clinical Trials Unit, King's College London, London, UK
| | | | | | | | - Kenneth Smith
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
| |
Collapse
|
4
|
Li QZ, Zhou ZR, Hu CY, Li XB, Chang YZ, Liu Y, Wang YL, Zhou XW. Recent advances of bioactive proteins/polypeptides in the treatment of breast cancer. Food Sci Biotechnol 2023; 32:265-282. [PMID: 36619215 PMCID: PMC9808697 DOI: 10.1007/s10068-022-01233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Proteins do not only serve as nutrients to fulfill the demand for food, but also are used as a source of bioactive proteins/polypeptides for regulating physical functions and promoting physical health. Female breast cancer has the highest incidence in the world and is a serious threat to women's health. Bioactive proteins/polypeptides exert strong anti-tumor effects and exhibit inhibition of multiple breast cancer cells. This review discussed the suppressing effects of bioactive proteins/polypeptides on breast cancer in vitro and in vivo, and their mechanisms of migration and invasion inhibition, apoptosis induction, and cell cycle arrest. This may contribute to providing a basis for the development of bioactive proteins/polypeptides for the treatment of breast cancer. Graphical abstract
Collapse
Affiliation(s)
- Qi-Zhang Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Ze-Rong Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Cui-Yu Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Xian-Bin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Yu-Zhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Yu-Liang Wang
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|