1
|
Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity. PLoS One 2014; 9:e96466. [PMID: 24802641 PMCID: PMC4011753 DOI: 10.1371/journal.pone.0096466] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/09/2014] [Indexed: 12/21/2022] Open
Abstract
We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2−-generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.
Collapse
|
2
|
Yuditskaya S, Suffredini AF, J Kato G. The proteome of sickle cell disease: insights from exploratory proteomic profiling. Expert Rev Proteomics 2010; 7:833-48. [PMID: 21142886 PMCID: PMC3068560 DOI: 10.1586/epr.10.88] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The expanding realm of exploratory proteomics has added a unique dimension to the study of the complex pathophysiology involved in sickle cell disease. A review of proteomic studies published on sickle cell erythrocytes and plasma shows trends of upregulation of antioxidant proteins, an increase in cytoskeletal defects, an increase in protein repair and turnover components, a decrease in lipid raft proteins and apolipoprotein dysregulation. Many of these findings are consistent with the pathophysiology of sickle cell disease, including high oxidant burden, resulting in damage to cytoskeletal and other proteins, and erythrocyte rigidity. More unexpected findings, such as a decrease in lipid raft components and apolipoprotein dysregulation, offer previously unexplored targets for future investigation and potential therapeutic intervention. Exploratory proteomic profiling is a valuable source of hypothesis generation for the cellular and molecular pathophysiology of sickle cell disease.
Collapse
Affiliation(s)
| | | | - Gregory J Kato
- Critical Care Medicine Department, Clinical Center, MD, USA
- Sickle Cell Vascular Disease Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, 9000 Rockville Pike, MSC 1476, Building 10-CRC, Room 5-5140, Bethesda, MD 20892-1476, USA
| |
Collapse
|
3
|
Cho CS, Kato GJ, Yang SH, Bae SW, Lee JS, Gladwin MT, Rhee SG. Hydroxyurea-induced expression of glutathione peroxidase 1 in red blood cells of individuals with sickle cell anemia. Antioxid Redox Signal 2010; 13:1-11. [PMID: 19951064 PMCID: PMC2935334 DOI: 10.1089/ars.2009.2978] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chronic redox imbalance in erythrocytes of individuals with sickle cell disease (SCD) contributes to oxidative stress and likely underlies common etiologies of hemolysis. We measured the amounts of six antioxidant enzymes-SOD1, catalase, glutathione peroxidase 1 (GPx1), as well as peroxiredoxins (Prxs) I, II, and VI-in red blood cells (RBCs) of SCD patients and control subjects. The amounts of SOD1 and Prx VI were reduced by about 17% and 20%, respectively, in SCD RBCs compared with control cells. The amounts of Prx II and GPx1 did not differ between SCD and normal RBCs. However, about 18% of Prx II was inactivated in SCD RBCs as a result of oxidation to sulfinic Prx II, whereas inactive Prx II was virtually undetectable in control cells. Furthermore, GPx1 activity was reduced by about 33% in SCD RBCs, and the loss of activity was correlated with hemolysis in SCD patients. RBCs from SCD patients taking hydroxyurea demonstrated 90% higher GPx1 activity than did those from untreated SCD patients, with no differences seen for the other catalytic antioxidants. Hydroxyurea induced GPx1 expression in multiple cultured cell lines in a manner dependent on both p53 and NO-cGMP signaling pathways. GPx1 expression represents a previously unrecognized potential benefit of hydroxyurea treatment in SCD patients.
Collapse
Affiliation(s)
- Chun-Seok Cho
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seodaemun-gu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
4
|
Oxidative and nitrosative stress in the metastatic microenvironment. Cancers (Basel) 2010; 2:274-304. [PMID: 24281071 PMCID: PMC3835079 DOI: 10.3390/cancers2020274] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/02/2010] [Accepted: 03/25/2010] [Indexed: 12/17/2022] Open
Abstract
Metastases that are resistant to conventional therapies are the main cause of most cancer-related deaths in humans. Tumor cell heterogeneity, which associates with genomic and phenotypic instability, represents a major problem for cancer therapy. Additional factors, such as the attack of immune cells or organ-specific microenvironments, also influence metastatic cell behavior and the response to therapy. Interaction of cancer and endothelial cells in capillary beds, involving mechanical contact and transient adhesion, is a critical step in the initiation of metastasis. This interaction initiates a cascade of activation pathways that involves cytokines, growth factors, bioactive lipids and reactive oxygen and nitrogen species (ROS and RNS) produced by either the cancer cell or the endothelium. Vascular endothelium-derived NO and H2O2 are cytotoxic for the cancer cells, but also help to identify some critical molecular targets that appear essential for survival of invasive metastatic cell subsets. Surviving cancer cells that extravasate and start colonization of an organ or tissue can still be attacked by macrophages and be influenced by specific intraorgan microenvironment conditions. At all steps; from the primary tumor until colonization of a distant organ; metastatic cells undergo a dynamic process of constant adaptations that may lead to the survival of highly resistant malignant cell subsets. In this sequence of molecular events both ROS and RNS play key roles.
Collapse
|
5
|
GHATPANDE SWATIS, CHOUDHARY PANKAJK, QUINN CHARLEST, GOODMAN STEVENR. Pharmaco-proteomic study of hydroxyurea-induced modifications in the sickle red blood cell membrane proteome. Exp Biol Med (Maywood) 2008; 233:1510-7. [PMID: 18849548 PMCID: PMC4260454 DOI: 10.3181/0805-s-149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hydroxyurea (HU) is an effective oral drug for the management of homozygous sickle cell anemia (SS) in part because it increases fetal hemoglobin (HbF) levels within sickle red blood cells (RBCs) and thus reduces sickling. However, results from the Multicenter Study of HU suggested that clinical symptoms often improved before a significant increase in HbF levels occurred. This indicated that HU may be acting through the modification of additional cellular mechanisms that are yet to be identified. Hence, in this study, we focused on the analysis of the sickle RBC membrane proteome +/- HU treatment. 2D-DIGE (Two Dimensional Difference In-Gel Electrophoresis) technology and tandem mass spectrometry has been used to determine quantitative differences between sickle cell membrane proteins in the presence and absence of a clinically relevant concentration of HU. In vitro protein profiling of 13 sickle RBC membrane samples +/- 50 muM HU identified 10 statistically significant protein spots. Of these, the most remarkable class of proteins to show a statistically significant increase was the anti-oxidant enzymes-catalase, thioredoxin peroxidase and biliver-din reductase and the chaperonin containing TCP1 complex assisting in the folding of RBC cytoskeletal proteins. Interestingly, catalase immunoblots showed an increase in the acidic forms of the enzyme within sickle RBC membranes on incubation with 50 muM HU. We further identified this modification in catalase to be phosphorylation and demonstrated that HU exposed SS RBC membranes showed a 2-fold increase in tyrosine phosphorylation of catalase as compared to counterparts not exposed to HU. These results present an attractive model for HU-induced post-translational modification and potential activation of catalase in mature sickle RBCs. These findings also identify protein targets of HU other than fetal hemoglobin and enhance the understanding of the drug mechanism.
Collapse
Affiliation(s)
- SWATI S. GHATPANDE
- Department of Molecular and Cell Biology, University of
Texas at Dallas, Richardson, Texas 75083-0688
| | - PANKAJ K. CHOUDHARY
- Department of Mathematical Sciences and Statistics,
University of Texas at Dallas, Richardson, Texas 75083-0688
| | - CHARLES T. QUINN
- Department of Pediatrics, Division of Pediatric
Hematology-Oncology, University of Texas Southwestern Medical Center at Dallas and
Children’s Medical Center of Dallas, Dallas, Texas 75390-9063
| | - STEVEN R. GOODMAN
- Department of Molecular and Cell Biology, University of
Texas at Dallas, Richardson, Texas 75083-0688
- Department of Cell Biology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
6
|
Abstract
The glutathione (GSH) content of cancer cells is particularly relevant in regulating mutagenic mechanisms, DNA synthesis, growth, and multidrug and radiation resistance. In malignant tumors, as compared with normal tissues, that resistance associates in most cases with higher GSH levels within these cancer cells. Thus, approaches to cancer treatment based on modulation of GSH should control possible growth-associated changes in GSH content and synthesis in these cells. Despite the potential benefits for cancer therapy of a selective GSH-depleting strategy, such a methodology has remained elusive up to now. Metastatic spread, not primary tumor burden, is the leading cause of cancer death. For patient prognosis to improve, new systemic therapies capable of effectively inhibiting the outgrowth of seeded tumor cells are needed. Interaction of metastatic cells with the vascular endothelium activates local release of proinflammatory cytokines, which act as signals promoting cancer cell adhesion, extravasation, and proliferation. Recent work shows that a high percentage of metastatic cells with high GSH levels survive the combined nitrosative and oxidative stresses elicited by the vascular endothelium and possibly by macrophages and granulocytes. ?-Glutamyl transpeptidase overexpression and an inter-organ flow of GSH (where the liver plays a central role), by increasing cysteine availability for tumor GSH synthesis, function in combination as a metastatic-growth promoting mechanism. The present review focuses on an analysis of links among GSH, adaptive responses to stress, molecular mechanisms of invasive cancer cell survival and death, and sensitization of metastatic cells to therapy. Experimental evidence shows that acceleration of GSH efflux facilitates selective GSH depletion in metastatic cells.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of Valencia, Valencia, Spain.
| | | | | |
Collapse
|
7
|
Ortega A, Carretero J, Obrador E, Estrela JM. Tumoricidal activity of endothelium-derived NO and the survival of metastatic cells with high GSH and Bcl-2 levels. Nitric Oxide 2008; 19:107-14. [DOI: 10.1016/j.niox.2008.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/10/2008] [Accepted: 04/16/2008] [Indexed: 12/28/2022]
|
8
|
Liu J, Zhang X, Yang F, Li T, Wei D, Ren Y. Antimetastatic effect of a lipophilic ascorbic acid derivative with antioxidation through inhibition of tumor invasion. Cancer Chemother Pharmacol 2005; 57:584-90. [PMID: 16075276 DOI: 10.1007/s00280-005-0073-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/04/2005] [Indexed: 01/03/2023]
Abstract
PURPOSE Ascorbic acid (AA), the natural antioxidant, has been demonstrated to exert an antimetastatic action; however, AA is quite unstable in physiological condition. The aim of the present study is to investigate the stability, the antioxidation and the antimetastatic effects of three lipophilic AA derivatives in vitro as well as in vivo. METHODS The 95D cells were treated with ascorbic acid-2-O-phosphate-6-O-laureate (AA2P6L), ascorbic acid-2-O-phosphate-6-O-myristate (AA2P6M) and ascorbic acid-2-O-phosphate-6-O-stearate (AA2P6S). AA derivatives' stability in medium under cell culture condition, in the presence and in the absence of 95D cells, was assessed by high-performance liquid chromatography assay. Cell viability and intracellular oxidative stress were measured by MTT assay and CDCFH assay, respectively. Wound healing assay and cell adhesion assay were used to investigate the antimetastatic activities against 95D cells in vitro, and the C57BL/6 mice model was used to evaluate the antimetastatic action in vivo. RESULTS All the three AA derivatives exhibited excellent stability, significantly different from AA. Results of MTT assay showed that IC(50) values of the cytotoxicity of those AA derivatives, namely AA2P6L, AA2P6M and AA2P6S, were 38.46, 28 and 22.97 microg/ml, while the CDCFH assay indicated that EC(50) values of antioxidant effects on 95D cells were 31.12, 33.51 and 38.31 microg/ml, respectively. Through the ratio of IC(50) vs EC(50) for AA derivatives, AA2P6L was demonstrated to be the most effective AA derivative, which retained the antioxidant ability as well as low cytotoxicity. AA2P6L dose-dependently inhibited 95D cells' migration and adhesion, by 50% at the concentration of 20 and 57 microg/ml, respectively. In the animal experiment, intraperitoneal administration of 75 mg/kg AA2P6L decreased the number of metastatic nodules by 62% and elevated the survival rate of C57BL/6 mice about onefold compared to the control group. CONCLUSION AA2P6L, a lipophilic AA derivative with antioxidation, is shown to be a potent antimetastatic agent through the inhibition of tumor invasion. These results support future investigations on the feasibility of cancer chemotherapy with AA2P6L.
Collapse
Affiliation(s)
- Jianwen Liu
- School of Pharmacy, East China University of Science and Technology, Mailbox 268, 130 Meilong Road, Shanghai, 200237, P.R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Carretero J, Obrador E, Esteve JM, Ortega A, Pellicer JA, Sempere FV, Estrela JM. Tumoricidal activity of endothelial cells. Inhibition of endothelial nitric oxide production abrogates tumor cytotoxicity induced by hepatic sinusoidal endothelium in response to B16 melanoma adhesion in vitro. J Biol Chem 2001; 276:25775-82. [PMID: 11313348 DOI: 10.1074/jbc.m101148200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mechanism of NO- and H(2)O(2)-induced tumor cytotoxicity was examined during B16 melanoma (B16M) adhesion to the hepatic sinusoidal endothelium (HSE) in vitro. We used endothelial nitric-oxide synthetase gene disruption and N(G)-nitro-l-arginine methyl ester-induced inhibition of nitric-oxide synthetase activity to study the effect of HSE-derived NO on B16M cell viability. Extracellular H(2)O(2) was removed by exogenous catalase. H(2)O(2) was not cytotoxic in the absence of NO. However, NO-induced tumor cytotoxicity was increased by H(2)O(2) due to the formation of potent oxidants, likely ( small middle dot)OH and (-)OONO radicals, via a trace metal-dependent process. B16M cells cultured to low density (LD cells), with high GSH content, were more resistant to NO and H(2)O(2) than B16M cells cultured to high density (HD cells; with approximately 25% of the GSH content found in LD cells). Resistance of LD cells decreased using buthionine sulfoximine, a specific GSH synthesis inhibitor, whereas resistance increased in HD cells using GSH ester, which delivers free intracellular GSH. Because NO and H(2)O(2) were particularly cytotoxic in HD cells, we investigated the enzyme activities that degrade H(2)O(2). NO and H(2)O(2) caused an approximately 75% (LD cells) and a 60% (HD cells) decrease in catalase activity without affecting the GSH peroxidase/GSH reductase system. Therefore, B16M resistance to the HSE-induced cytotoxicity appears highly dependent on GSH and GSH peroxidase, which are both required to eliminate H(2)O(2). In agreement with this fact, ebselen, a GSH peroxidase mimic, abrogated the increase in NO toxicity induced by H(2)O(2).
Collapse
Affiliation(s)
- J Carretero
- Departamento de Fisiologia, Universidad de Valencia, and the Servicio de Anatomia Patológica, Hospital Universitario La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Carretero J, Obrador E, Anasagasti MJ, Martin JJ, Vidal-Vanaclocha F, Estrela JM. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin Exp Metastasis 2000; 17:567-74. [PMID: 10845555 DOI: 10.1023/a:1006725226078] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
B16 melanoma (B16M) was used to study the relationship between glutathione (GSH) metabolism and the metastatic activity of malignant cells. GSH content increased in B16M cells during the initial period of exponential growth in vitro, to reach a maximum of 37 +/- 3 nmol/10(6) cells 12 h after plating, and then gradually decreased to control values (10 +/- 2 nmol/10(6) cells) when cultures approached confluency. On the contrary, glutathione disulphide (GSSG) levels (0.5 +/- 0.2 nmol/10(6) cells) and the rate of glutathione efflux (GSH + GSSG) (2.5 +/- 0.4 nmol/10(6) cells per h) remained constant as B16M grew. Changes in enzyme activities involved in GSH synthesis or the glutathione redox cycle did not explain shifts in the glutathione status (GSH/GSSG). However, two facts contributed to explain why GSH levels changed within B16M cells: a) high intracellular levels of GSH induced a feed-back inhibition of its own synthesis in B16M cells from cultures with low cellular density (LD cells); b) transport of cyst(e)ine, whose availability is the major rate-limiting step for GSH synthesis, was limited by cell-cell contact in cultures with high cellular density (HD cells). Intrasplenic injection of B16M cells with high GSH content (exponentially-growing cultures) showed higher metastatic activity in the liver than cells with low GSH content (cells at confluency). However, when low GSH-content cells (HD cells) were incubated in the presence of GSH ester, which rapidly enters the cell and delivers free GSH, their metastatic activity significantly increased. Our results demonstrate that changes in GSH content regulate the metastatic behaviour of B16M cells.
Collapse
Affiliation(s)
- J Carretero
- Dpto. Fisiología, Univ. Valencia, Fac. Medicina, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Smith TA, Titley JC. Uptake of glucose analogues by colonic tumour cells during growth and after treatment with hydroxyurea. Cancer Lett 1999; 141:85-91. [PMID: 10454247 DOI: 10.1016/s0304-3835(99)00075-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SW620 cells were grown in tissue culture flasks to various cell densities producing populations of cells with a range of proliferative indices. The uptake of the two glucose analogues, deoxy-D-glucose (DG) and 3-O-methylglucose (OMG) was determined and found to be associated with S-phase fraction. The strong correlation between DG and OMG uptakes suggested that proliferation-related changes in transmembrane transport accounted for the association with S-phase fraction. Treatment of SW620 cells with the cell cycle inhibitor hydroxyurea was found to increase the uptake of DG and OMG in a time-dependent manner.
Collapse
Affiliation(s)
- T A Smith
- Department of Nuclear Medicine, Royal Marsden NHS Trust and Institute of Cancer Research, Sutton, Surrey, UK.
| | | |
Collapse
|
12
|
Eskenazi AE, Powers J, Pinkas J, Oesterreich S, Fuqua SA, Frantz CN. Induction of heat shock protein 27 by hydroxyurea and its relationship to experimental metastasis. Clin Exp Metastasis 1998; 16:283-90. [PMID: 9568646 DOI: 10.1023/a:1006553127695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Treatment of tumor cells with hydroxyurea (HU) has been shown to increase the experimental metastatic potential of these cells. We have previously described the induction of stress proteins (antioxidants) by HU in B16 murine melanoma cells and their relationship to the metastatic process. We have now investigated the induction by HU of another set of stress proteins, the heat shock proteins, and their role in experimental metastasis. HU markedly increased the cellular content of heat shock protein (hsp) 27 but not of hsp 90, 72/73, or 60 as measured by immunoblotting. The induction of hsp27 protein was preceded by a specific increase in hsp27 mRNA. Furthermore, HU-treated cells were more thermotolerant. To investigate the functional role of hsp27, human hsp27 cDNA was constitutively overexpressed in B16 cells at levels seen in HU-treated cells. In separate experiments, we induced a global increase in hsps by heat shock. Neither the hsp27 transfectants nor the heat-shocked cells demonstrated an increase in their experimental metastatic capacity. We conclude that hsp27 protein is increased by HU by the specific induction of hsp27 mRNA in B16 melanoma cells but increased hsp27 protein is not responsible for the increase in experimental metastasis. Since high levels of hsp27 are associated with metastatic disease in breast and ovarian cancers, but not in our experimental system, the functional role of hsp27 in metastasis requires further study.
Collapse
Affiliation(s)
- A E Eskenazi
- Department of Pediatrics and the Marlene and Stuart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore 21201, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Malins DC, Polissar NL, Gunselman SJ. Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proc Natl Acad Sci U S A 1996; 93:2557-63. [PMID: 8637913 PMCID: PMC39836 DOI: 10.1073/pnas.93.6.2557] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hydroxyl radical damage in metastatic tumor DNA was elucidated in women with breast cancer, and a comparison was made with nonmetastatic tumor DNA. The damage was identified by using statistical models of modified base and Fourier transform-infrared spectral data. The modified base models revealed a greater than 2-fold increase in hydroxyl radical damage in the metastatic tumor DNA compared with the nonmetastatic tumor DNA. The metastatic tumor DNA also exhibited substantially greater base diversity than the nonmetastatic DNA, and a progression of radical-induced base damage was found to be associated with the growth of metastatic tumors. A three-dimensional plot of principal components from factor analysis, derived from infrared spectral data, also showed that the metastatic tumor DNA was substantially more diverse than the tightly grouped nonmetastatic tumor DNA. These cohesive, independently derived findings suggest that the hydroxyl radical generates DNA phenotypes with various metastatic potentials that likely contribute to the diverse physiological properties and heterogeneity characteristic of metastatic cell populations.
Collapse
Affiliation(s)
- D C Malins
- Molecular Epidemiology Program, Pacific Northwest Research Foundation, Seattle, Washington 98122, USA
| | | | | |
Collapse
|
14
|
Albertsson PA, Nannmark U, Johansson BR. Melanoma cell destruction in the microvasculature of perfused hearts is reduced by pretreatment with vitamin E. Clin Exp Metastasis 1995; 13:269-76. [PMID: 7606889 DOI: 10.1007/bf00133482] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Different mechanisms have been proposed to explain the rapid elimination of circulating malignant cells: interactions with circulating leukocytes, mechanical trauma induced by deformation, shear forces and tissue pressure variations. Based on earlier observations in an isolated heart perfusion model the present study was performed to test whether or not microvascular damage of malignant cells depends on their anti-oxidant status. Murine melanoma B16F10 cells, pretreated with 100 microM alpha-tocopherol (or solvent) for 48 h, were used. The cells were perfused into the coronary vasculature of isolated hearts from C57/BL6 mice. Passing cells were collected and their viability determined by Trypan Blue exclusion. The hearts were processed for electron microscopy and the frequency of ultrastructurally intact and damaged B16 cells trapped in capillaries was recorded. In filter perfusion experiments the effect of vitamin E pretreatment on the resistance of the melanoma cells to mechanical deformation was determined. Morphometrically, cell size and cell profile perimeter excess of the melanoma cells were computed. Vitamin E pretreatment increased perfused cell viability from 50% to 81%. Ultrastructurally 30% of the intracapillary vitamin E treated cells were damaged (plasmalemmal fragmentation or worse) as compared to 58% of control cells. These differences were statistically significant (P < 0.01) whereas no differences could be demonstrated in filterability, cell size, or cell surface excess. The data support the hypothesis that malignant cell destruction in the systemic microcirculation is at least partly dependent on an oxygen metabolite mediated process, the exact nature (e.g. superoxide, hydrogen peroxide, nitric oxide) of which remains to be determined.
Collapse
Affiliation(s)
- P A Albertsson
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | |
Collapse
|
15
|
Hansen D, Grafton T, Cross D, James S. Partial attenuation of hydroxyurea-induced embryotoxicity by deoxyribonucleotides in mouse and rat embryos treated in vitro. Toxicol In Vitro 1995; 9:11-9. [DOI: 10.1016/0887-2333(94)00192-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/1994] [Indexed: 10/17/2022]
|
16
|
Kundu N, Zhang S, Fulton AM. Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma. Clin Exp Metastasis 1995; 13:16-22. [PMID: 7820952 DOI: 10.1007/bf00144014] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have postulated that murine mammary tumor progression is fueled, in part, by tumor-associated macrophages that deliver sub-lethal oxidative stress to tumor cells. In the present study, we determined whether oxidative stress would affect murine mammary tumor cell attachment to laminin and fibronectin, critical functions in the metastatic process. Sublethal oxidative stress generated by exposure of cells to hydrogen peroxide (H2O2, 1-1000 microM/L) inhibited tumor cell attachment to immobilized laminin or fibronectin. This oxidant effect was blocked in the presence of catalase which removes H2O2. The inhibitory effect on attachment was rapid, with significant inhibition occurring at 5 min; total inhibition was achieved at 60 min with 1 mM H2O2. The oxidative stress effect was partially reversible at 20 h post-treatment and occurred at concentrations of H2O2 that do not adversely affect cell viability or growth. Pretreatment of tumor cells with H2O2 or hypoxanthanine and xanthine oxidase (to generate superoxide radical and H2O2) prior to intravenous injection, enhanced experimental lung tumor colony formation. The enhancement of experimental metastatic potential with enzyme-generated oxidative stress was completely reversed by catalase; the H2O2-mediated enhancement was only partially reversed with catalase. Thus, treatments that inhibit tumor cell attachment to extracellular matrix proteins in vitro enhance experimental metastasis in vivo.
Collapse
Affiliation(s)
- N Kundu
- University of Maryland Cancer Center, Baltimore
| | | | | |
Collapse
|