1
|
Design Strategies and Precautions for Using Vaccinia Virus in Tumor Virotherapy. Vaccines (Basel) 2022; 10:vaccines10091552. [PMID: 36146629 PMCID: PMC9504998 DOI: 10.3390/vaccines10091552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Oncolytic virotherapy has emerged as a novel form of cancer immunotherapy. Oncolytic viruses (OVs) can directly infect and lyse the tumor cells, and modulate the beneficial immune microenvironment. Vaccinia virus (VACV) is a promising oncolytic vector because of its high safety, easy gene editing, and tumor intrinsic selectivity. To further improve the safety, tumor-targeting ability, and OV-induced cancer-specific immune activation, various approaches have been used to modify OVs. The recombinant oncolytic VACVs with deleting viral virulence factors and/or arming various therapeutic genes have displayed better therapeutic effects in multiple tumor models. Moreover, the combination of OVs with other cancer immunotherapeutic approaches, such as immune checkpoint inhibitors and CAR-T cells, has the potential to improve the outcome in cancer patients. This will open up new possibilities for the application of OVs in cancer treatment, especially for personalized cancer therapies.
Collapse
|
2
|
Capripoxvirus vectors for vaccine development. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Stellberger T, Haase M, Guertler P, Stockmar I, Busch U, Baiker A. Characterization of Recombinant Vaccinia Viruses by MLPA Technology. APPLIED BIOSAFETY 2014. [DOI: 10.1177/153567601401900304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Maren Haase
- Bavarian Health and Food Safety Authority, Oberschleißheim, Bavaria, Germany
| | - Patrick Guertler
- Bavarian Health and Food Safety Authority, Oberschleißheim, Bavaria, Germany
| | - Iris Stockmar
- Bavarian Health and Food Safety Authority, Oberschleißheim, Bavaria, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleißheim, Bavaria, Germany
| | - Armin Baiker
- Bavarian Health and Food Safety Authority, Oberschleißheim, Bavaria, Germany
| |
Collapse
|
4
|
O'Brien S, Thomas RM, Wertheim GB, Zhang F, Shen H, Wells AD. Ikaros imposes a barrier to CD8+ T cell differentiation by restricting autocrine IL-2 production. THE JOURNAL OF IMMUNOLOGY 2014; 192:5118-29. [PMID: 24778448 DOI: 10.4049/jimmunol.1301992] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naive CD4(+) T cells require signals from the TCR and CD28 to produce IL-2, expand, and differentiate. However, these same signals are not sufficient to induce autocrine IL-2 production by naive CD8(+) T cells, which require cytokines provided by other cell types to drive their differentiation. The basis for failed autocrine IL-2 production by activated CD8(+) cells is unclear. We find that Ikaros, a transcriptional repressor that silences IL-2 in anergic CD4(+) T cells, also restricts autocrine IL-2 production by CD8(+) T cells. We find that CD8(+) T cell activation in vitro in the absence of exogenous cytokines and CD4 help leads to marked induction of Ikaros, a known repressor of the Il2 gene. Naive murine CD8 T cells haplo-insufficient for Ikzf1 failed to upregulate Ikaros, produced autocrine IL-2, and differentiated in an IL-2-dependent manner into IFN-γ-producing CTLs in response to TCR/CD28 stimulation alone. Furthermore, Ikzf1 haplo-insufficient CD8(+) T cells were more effective at controlling Listeria infection and B16 melanoma growth in vivo, and they could provide help to neighboring, non-IL-2-producing cells to differentiate into IFN-γ-producing effectors. Therefore, by repressing autocrine IL-2 production, Ikaros ensures that naive CD8(+) T cells remain dependent on licensing by APCs and CD4(+) T cells, and it may therefore act as a cell-intrinsic safeguard against inappropriate CTL differentiation and immunopathology.
Collapse
Affiliation(s)
- Shaun O'Brien
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rajan M Thomas
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and
| | - Fuqin Zhang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and
| |
Collapse
|
5
|
Walline CC, Deffit SN, Wang N, Guindon LM, Crotzer VL, Liu J, Hollister K, Eisenlohr LC, Brutkiewicz RR, Kaplan MH, Blum JS. Virus-encoded ectopic CD74 enhances poxvirus vaccine efficacy. Immunology 2013; 141:531-9. [PMID: 24205828 DOI: 10.1111/imm.12210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VV) has been used globally as a vaccine to eradicate smallpox. Widespread use of this viral vaccine has been tempered in recent years because of its immuno-evasive properties, with restrictions prohibiting VV inoculation of individuals with immune deficiencies or atopic skin diseases. VV infection is known to perturb several pathways for immune recognition including MHC class II (MHCII) and CD1d-restricted antigen presentation. MHCII and CD1d molecules associate with a conserved intracellular chaperone, CD74, also known as invariant chain. Upon VV infection, cellular CD74 levels are significantly reduced in antigen-presenting cells, consistent with the observed destabilization of MHCII molecules. In the current study, the ability of sustained CD74 expression to overcome VV-induced suppression of antigen presentation was investigated. Viral inhibition of MHCII antigen presentation could be partially ameliorated by ectopic expression of CD74 or by infection of cells with a recombinant VV encoding murine CD74 (mCD74-VV). In contrast, virus-induced disruptions in CD1d-mediated antigen presentation persisted even with sustained CD74 expression. Mice immunized with the recombinant mCD74-VV displayed greater protection during VV challenge and more robust anti-VV antibody responses. Together, these observations suggest that recombinant VV vaccines encoding CD74 may be useful tools to improve CD4⁺ T-cell responses to viral and tumour antigens.
Collapse
Affiliation(s)
- Crystal C Walline
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lauterbach H, Pätzold J, Kassub R, Bathke B, Brinkmann K, Chaplin P, Suter M, Hochrein H. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity. Front Immunol 2013; 4:251. [PMID: 23986761 PMCID: PMC3753717 DOI: 10.3389/fimmu.2013.00251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/10/2013] [Indexed: 12/15/2022] Open
Abstract
Modified vaccinia Ankara (MVA) is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70) early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression) was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated cytotoxic T-lymphocytes (CTLs) also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality, and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.
Collapse
Affiliation(s)
- Henning Lauterbach
- Department of Research Immunology, Bavarian Nordic GmbH , Martinsried , Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12:269-81. [PMID: 22437939 PMCID: PMC6292222 DOI: 10.1038/nri3191] [Citation(s) in RCA: 1241] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy based on the adoptive transfer of naturally occurring or gene-engineered T cells can mediate tumour regression in patients with metastatic cancer. Here, we discuss progress in the use of adoptively transferred T cells, focusing on how they can mediate tumour cell eradication. Recent advances include more accurate targeting of antigens expressed by tumours and the associated vasculature, and the successful use of gene engineering to re-target T cells before their transfer into the patient. We also describe how new research has helped to identify the particular T cell subsets that can most effectively promote tumour eradication.
Collapse
Affiliation(s)
- Nicholas P Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
8
|
Abstract
Vaccinia virus (VACV) is arguably the most successful live biotherapeutic agent because of its critical role in the eradication of smallpox, one of the most deadly diseases in human history. VACV has been exploited as an oncolytic therapeutic agent for cancer since 1922. This virus selectively infects and destroys tumor cells, while sparing normal cells, both in cell cultures and in animal models. A certain degree of therapeutic efficacy also has been demonstrated in patients with different types of cancer. In recent years, several strategies have been successfully developed to further improve its tumor selectivity and antitumor efficacy. Oncolytic VACVs carrying imaging genes represent a new treatment strategy that combines tumor site-specific therapeutics with diagnostics (theranostics).
Collapse
Affiliation(s)
- Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA; Genelux Corporation, San Diego Science Center, 3030 Bunker Hill Street, Suite 310, San Diego, CA 92109, USA
| | - Aladar A Szalay
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Biochemistry & Institute for Molecular Infection Biology, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Department of Radiation Oncology, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DAA. The development and function of regulatory T cells. Cell Mol Life Sci 2009; 66:2603-22. [PMID: 19390784 PMCID: PMC2715449 DOI: 10.1007/s00018-009-0026-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/17/2009] [Accepted: 03/27/2009] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Tregs) are a critical subset of T cells that mediate peripheral tolerance. There are two types of Tregs: natural Tregs, which develop in the thymus, and induced Tregs, which are derived from naive CD4(+) T cells in the periphery. Tregs utilize a variety of mechanisms to suppress the immune response. While Tregs are critical for the peripheral maintenance of potential autoreactive T cells, they can also be detrimental by preventing effective anti-tumor responses and sterilizing immunity against pathogens. In this review, we will discuss the development of natural and induced Tregs as well as the role of Tregs in a variety of disease settings and the mechanisms they utilize for suppression.
Collapse
Affiliation(s)
- Creg J. Workman
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Andrea L. Szymczak-Workman
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Lauren W. Collison
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Dario A. A. Vignali
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| |
Collapse
|
10
|
Chen PW, Ksander BR. Termination of Systemic Immunity in the Presence of Intraocular Tumors: Influence of Ocular Immune Privilege on Tumor Vaccines. Curr Eye Res 2009; 31:43-55. [PMID: 16421019 DOI: 10.1080/02713680500477339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ocular immune privilege preserves the visual axis by preventing the induction of sight-threatening nonspecific inflammation. Although privilege is essential for maintaining visual integrity, intraocular tumors exploit the privileged environment and grow progressively within the anterior chamber of the eye. Recently, a large number of laboratories have constructed genetically engineered tumor cell vaccines that express high levels of costimulatory signals. These vaccines are designed to bypass the normal pathways of T-cell activation and directly activate CD8+ tumor-specific T cells. In the following series of experiments, we determined whether a tumor cell vaccine that uses costimulatory signals (CD80 and IL-12) is capable of eliminating tumors within the immune-privileged anterior chamber. As expected, vaccine-immunized mice rejected subcutaneous flank tumors (a non-privileged site). However, the vaccine failed to protect mice from even a small number of tumor cells transplanted into the immune-privileged anterior chamber. Surprisingly, immunized mice that were simultaneously challenged with subcutaneous and anterior chamber tumors were unable to eliminate tumors at either site. The failure of systemic protective immunity coincided with the loss of tumor-specific delayed hypersensitivity and cytotoxic T cells. We conclude that tumor cell vaccines that induce complete protection against tumors in non-immune-privileged sites fail to protect against the same tumor within an ocular immune-privileged site. Moreover, a tumor that escapes elimination within the eye can terminate systemic protective immunity that is induced by the tumor cell vaccine.
Collapse
Affiliation(s)
- Peter W Chen
- Department of Ophthalmology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9057, USA.
| | | |
Collapse
|
11
|
Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 2009; 26:6508-28. [PMID: 18838097 PMCID: PMC7131726 DOI: 10.1016/j.vaccine.2008.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/21/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
Collapse
|
12
|
Harrop R, John J, Carroll MW. Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev 2006; 58:931-47. [PMID: 17030074 DOI: 10.1016/j.addr.2006.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/10/2006] [Indexed: 12/11/2022]
Abstract
To date cancer vaccines have yet to show efficacy in a phase III trial. However, the clinical benefit seen with monoclonal antibody mediated therapies (e.g., Herceptin) has provided proof of principle that immune responses directed against tumour-associated antigens could have therapeutic potential. The failure of past cancer vaccine trials is likely due to several factors including the inappropriate choice of tumour antigen, use of an unoptimised antigen delivery system or vaccination schedule or selection of the wrong patient group. Any one of these variables could potentially result in the induction of an immune response of insufficient magnitude to deliver clinical benefit. Live recombinant viral vaccines have been used in the development of cancer immunotherapy approaches for the past 10 years. Though such vectors are self-adjuvanted and offer the ability to express multiple tumour-associated antigens (TAAs) along with an array of immune co-factors, arguably, they have yet to demonstrate convincing efficacy in pivotal clinical trials. However, in recent years, more coordinated studies have revealed mechanisms to optimise current vectors and have lead to the development of new advantageous vector systems. In this review, we highlight that live recombinant viral vectors provide a versatile and effective antigen delivery system and describe the optimal properties of an effective viral vector. Additionally, we discuss the advantages and disadvantages of the panel of recombinant viral systems currently available to cancer vaccinologists and how they can work in synergy in heterologous prime boost protocols and with other treatment modalities.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica (U.K.) Ltd., Oxford Science Park, Oxford, OX4 4GA U.K
| | | | | |
Collapse
|
13
|
Abstract
PANVAC-VF is a vaccine regimen composed of a priming dose of recombinant vaccinia virus and booster doses of recombinant fowlpox virus expressing carcinoembryonic antigen, mucin-1 and a triad of costimulatory molecules (TRICOM), which include B7.1, intercellular adhesion molecule-1 and leukocyte function-associated antigen-3. Vaccination is administered by subcutaneous injection followed by 4 days of local recombinant adjuvant granulocyte-macrophage colony-stimulating factor at the vaccination site. The vaccine has been developed for patients with advanced pancreatic cancer and has now entered a randomized Phase III clinical trial. This review will describe the background of recombinant poxvirus technology for tumor vaccine development, detail the key preclinical studies supporting the regimen, review the clinical trials supporting the current Phase III study, and highlight the key challenges and future obstacles to successful implementation of PANVAC-VF for pancreatic cancer.
Collapse
|
14
|
Abaitua F, Rodríguez JR, Garzón A, Rodríguez D, Esteban M. Improving recombinant MVA immune responses: Potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-gamma. Virus Res 2006; 116:11-20. [PMID: 16214252 DOI: 10.1016/j.virusres.2005.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 07/22/2005] [Accepted: 08/22/2005] [Indexed: 11/23/2022]
Abstract
Recombinants based on vaccinia virus vectors, especially on the highly attenuated modified vaccinia virus Ankara (MVA) strain, are now being tested in clinical trials for safety and immunogenicity, using prime/boost heterologous regimes of vaccination. Due to the limited replication capacity of MVA, it is necessary to develop procedures that can enhance the specific cellular immune responses to the recombinant antigen delivered by the MVA vector. In this investigation, we have characterized the systemic immune responses in BALB/c mice using interferon-gamma (IFN-gamma) or interleukin-12 (IL-12) in an adjuvant-like manner elicited by MVA recombinants or naked DNA vectors expressing one of those cytokines in combination with the human immunodeficiency virus type 1 (HIV-1) envelope (Env) as antigen. In infected mice, virus gene expression in splenocytes and levels of cytokines IFN-gamma and IL-12 in serum were maximal by 6h post-infection (hpi) with MVA recombinants expressing IFN-gamma (MVAIFN-gamma) or IL-12 (MVAIL-12). In the infected animals, co-expression of HIV-1 env (MVAENV) and either IFN-gamma or IL-12 from MVA recombinants produced a two and three-fold increase of anti-env CD8+ T cell response, respectively. When priming was carried out with DNA vectors expressing HIV-1 env and either IFN-gamma or IL-12, the magnitude of the specific anti-env CD8+ T cell stimulation after MVAENV booster was further enhanced. Our findings revealed that IFN-gamma or IL-12 can be used to potentiate the cellular immune response to HIV-1 env, when delivered either from a single MVA recombinant or from a DNA vector. The increment of the CD8+ T cell response was higher in a DNA/MVA prime/boost protocol. Thus, the immune response of MVA vectors can be improved with the co-delivery of the cytokines IFN-gamma or IL-12.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adjuvants, Immunologic/genetics
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/biosynthesis
- DNA, Viral
- Female
- Gene Products, env/genetics
- Gene Products, env/immunology
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV-1/immunology
- Immunization, Secondary
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-12/genetics
- Interleukin-12/immunology
- Mice
- Mice, Inbred BALB C
- Models, Animal
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Fernando Abaitua
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Shen Y, Senzer N, Nemunaitis J. Individualised cancer therapeutics: dream or reality? Therapeutics construction. Expert Opin Biol Ther 2005; 5:1427-41. [PMID: 16255647 DOI: 10.1517/14712598.5.11.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The analysis of DNA microarray and proteomic data, and the subsequent integration into functional expression sets, provides a circuit map of the hierarchical cellular networks responsible for sustaining the viability and environmental competitiveness of cancer cells, that is, their robust systematics. These technologies can be used to 'snapshot' the unique patterns of molecular derangements and modified interactions in cancer, and allow for strategic selection of therapeutics that best match the individual profile of the tumour. This review highlights technology that can be used to selectively disrupt critical molecular targets and describes possible vehicles to deliver the synthesised molecular therapeutics to the relevant cellular compartments of the malignant cells. RNA interference (RNAi) involves a group of evolutionarily conserved gene silencing mechanisms in which small sequences of double-stranded RNA or intrinsic antisense RNA trigger mRNA cleavage or translational repression, respectively. Although RNAi molecules can be synthesised to 'silence' virtually any gene, even if upregulated, a mechanism for selective delivery of RNAi effectors to sites of malignant disease remains challenging. The authors will discuss gene-modified conditionally replicating viruses as candidate vehicles for the delivery of RNAi.
Collapse
Affiliation(s)
- Yuqiao Shen
- Mary Crowley Medical Research Center, Dallas, TX 75201, USA
| | | | | |
Collapse
|
16
|
Tsang KY, Palena C, Yokokawa J, Arlen PM, Gulley JL, Mazzara GP, Gritz L, Yafal AG, Ogueta S, Greenhalgh P, Manson K, Panicali D, Schlom J. Analyses of recombinant vaccinia and fowlpox vaccine vectors expressing transgenes for two human tumor antigens and three human costimulatory molecules. Clin Cancer Res 2005; 11:1597-607. [PMID: 15746065 DOI: 10.1158/1078-0432.ccr-04-1609] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The poor immunogenicity of tumor antigens and the antigenic heterogeneity of tumors call for vaccine strategies to enhance T-cell responses to multiple antigens. Two antigens expressed noncoordinately on most human carcinomas are carcinoembryonic antigen (CEA) and MUC-1. We report here the construction and characterization of two viral vector vaccines to address these issues. EXPERIMENTAL DESIGN The two viral vectors analyzed are the replication-competent recombinant vaccinia virus (rV-) and the avipox vector, fowlpox (rF-), which is replication incompetent in mammalian cells. Each vector encodes the transgenes for three human costimulatory molecules (B7-1, ICAM-1, and LFA-3, designated TRICOM) and the CEA and MUC-1 transgenes (which also contain agonist epitopes). The vectors are designated rV-CEA/MUC/TRICOM and rF-CEA/MUC/TRICOM. RESULTS Each of the vectors is shown to be capable of faithfully expressing all five transgenes in human dendritic cells (DC). DCs infected with either vector are shown to activate both CEA- and MUC-1-specific T-cell lines to the same level as DCs infected with CEA-TRICOM or MUC-1-TRICOM vectors. Thus, no evidence of antigenic competition between CEA and MUC-1 was observed. Human DCs infected with rV-CEA/MUC/TRICOM or rF-CEA/MUC/TRICOM are also shown to be capable of generating both MUC-1- and CEA-specific T-cell lines; these T-cell lines are in turn shown to be capable of lysing targets pulsed with MUC-1 or CEA peptides as well as human tumor cells endogenously expressing MUC-1 and/or CEA. CONCLUSION These studies provide the rationale for the clinical evaluation of these multigene vectors in patients with a range of carcinomas expressing MUC-1 and/or CEA.
Collapse
Affiliation(s)
- Kwong Y Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Murphy A, Westwood JA, Teng MWL, Moeller M, Darcy PK, Kershaw MH. Gene modification strategies to induce tumor immunity. Immunity 2005; 22:403-14. [PMID: 15845446 DOI: 10.1016/j.immuni.2005.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 11/23/2022]
Abstract
The immune system provides an attractive option for use in cancer therapy. Our increasing understanding of the molecular events important in the generation of an effective immune response presents us with the opportunity to manipulate key genes to boost the immune response against cancer. Genetic modification is being employed to enhance a range of immune processes including antigen presentation, activation of specific T cells, and localization of immune effectors to tumors. In this review, we describe how many diverse cell types, including dendritic cells, T cells, and tumor cells, are being modified with a variety of genes, including those encoding antigens, cytokines, and chemokines, in order to enhance tumor immunity.
Collapse
Affiliation(s)
- Amanda Murphy
- Cancer Immunology Program, Peter MacCullum Cancer Center, East Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Shen Y, Nemunaitis J. Fighting Cancer with Vaccinia Virus: Teaching New Tricks to an Old Dog. Mol Ther 2005; 11:180-95. [PMID: 15668130 DOI: 10.1016/j.ymthe.2004.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/22/2004] [Indexed: 11/22/2022] Open
Abstract
Vaccinia virus has played a huge part in human beings' victory over smallpox. With smallpox being eradicated and large-scale vaccination stopped worldwide, vaccinia has assumed a new role in our fight against another serious threat to human health: cancer. Recent advances in molecular biology, virology, immunology, and cancer genetics have led to the design of novel cancer therapeutics based on vaccinia virus backbones. With the ability to infect efficiently a wide range of host cells, a genome that can accommodate large DNA inserts and express multiple genes, high immunogenicity, and cytoplasmic replication without the possibility of chromosomal integration, vaccinia virus has become the platform of many exploratory approaches to treat cancer. Vaccinia virus has been used as (1) a delivery vehicle for anti-cancer transgenes, (2) a vaccine carrier for tumor-associated antigens and immunoregulatory molecules in cancer immunotherapy, and (3) an oncolytic agent that selectively replicates in and lyses cancer cells.
Collapse
Affiliation(s)
- Yuqiao Shen
- Mary Crowley Medical Research Center, 1717 Main Street, 60th Floor, Dallas, TX 75201, USA
| | | |
Collapse
|
19
|
Kwak H, Mustafa W, Speirs K, Abdool AJ, Paterson Y, Isaacs SN. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion. Virology 2004; 322:337-48. [PMID: 15110531 DOI: 10.1016/j.virol.2004.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 08/18/2003] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus.
Collapse
Affiliation(s)
- Heesun Kwak
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA
| | | | | | | | | | | |
Collapse
|
20
|
Legrand FA, Verardi PH, Jones LA, Chan KS, Peng Y, Yilma TD. Induction of potent humoral and cell-mediated immune responses by attenuated vaccinia virus vectors with deleted serpin genes. J Virol 2004; 78:2770-9. [PMID: 14990697 PMCID: PMC353749 DOI: 10.1128/jvi.78.6.2770-2779.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus (VV) has been effectively utilized as a live vaccine against smallpox as well as a vector for vaccine development and immunotherapy. Increasingly there is a need for a new generation of highly attenuated and efficacious VV vaccines, especially in light of the AIDS pandemic and the threat of global bioterrorism. We therefore developed recombinant VV (rVV) vaccines that are significantly attenuated and yet elicit potent humoral and cell-mediated immune responses. B13R (SPI-2) and B22R (SPI-1) are two VV immunomodulating genes with sequence homology to serine protease inhibitors (serpins) that possess antiapoptotic and anti-inflammatory properties. We constructed and characterized rVVs that have the B13R or B22R gene insertionally inactivated (vDeltaB13R and vDeltaB22R) and coexpress the vesicular stomatitis virus glycoprotein (v50DeltaB13R and v50DeltaB22R). Virulence studies with immunocompromised BALB/cBy nude mice indicated that B13R or B22R gene deletion decreases viral replication and significantly extends time of survival. Viral pathogenesis studies in immunocompetent CB6F(1) mice further demonstrated that B13R or B22R gene inactivation diminishes VV virulence, as measured by decreased levels of weight loss and limited viral spread. Finally, rVVs with B13R and B22R deleted elicited potent humoral, T-helper, and cytotoxic T-cell immune responses, revealing that the observed attenuation did not reduce immunogenicity. Therefore, inactivation of immunomodulating genes such as B13R or B22R represents a general method for enhancing the safety of rVV vaccines while maintaining a high level of immunogenicity. Such rVVs could serve as effective vectors for vaccine development and immunotherapy.
Collapse
Affiliation(s)
- Fatema A Legrand
- International Laboratory of Molecular Biology for Tropical Disease Agents, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
21
|
Aspden K, Passmore JA, Tiedt F, Williamson AL. Evaluation of lumpy skin disease virus, a capripoxvirus, as a replication-deficient vaccine vector. J Gen Virol 2003; 84:1985-1996. [PMID: 12867628 DOI: 10.1099/vir.0.19116-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lumpy skin disease virus (LSDV), a capripoxvirus with a host range limited to ruminants, was evaluated as a replication-deficient vaccine vector for use in non-ruminant hosts. By using the rabies virus glycoprotein (RG) as a model antigen, it was demonstrated that recombinant LSDV encoding the rabies glycoprotein (rLSDV-RG) was able to express RG in both permissive (ruminant) and non-permissive (non-ruminant) cells. The recombinant LSDV, however, replicated to maturity only in permissive but not in non-permissive cells. Recombinant LSDV-RG was assessed for its ability to generate immunity against RG in non-ruminant hosts (rabbits and mice). Rabbits inoculated with rLSDV-RG produced rabies virus (RV) neutralizing antibodies at levels twofold higher than those reported by the WHO to be protective. BALB/c mice immunized with rLSDV-RG elicited levels of RV-specific cellular immunity (T-cell proliferation) comparable with those of mice immunized with a commercial inactivated rabies vaccine (Verorab; Pasteur Merieux). Most importantly, mice immunized with rLSDV-RG were protected from an aggressive intracranial rabies virus challenge.
Collapse
Affiliation(s)
- Kate Aspden
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Jo-Ann Passmore
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Friedrich Tiedt
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Anna-Lise Williamson
- National Health Laboratory Service, University of Cape Town, Observatory 7925, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
22
|
Felipe PD, Izquierdo M. Construction and characterization of pentacistronic retrovirus vectors. J Gen Virol 2003; 84:1281-1285. [PMID: 12692295 DOI: 10.1099/vir.0.18998-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The picornavirus foot-and-mouth disease virus 2A sequence was combined with three different internal ribosome entry segments to construct and characterize three independent pentacistronic retroviruses of different sizes. Efficient co-expression of the five proteins was successful and titres obtained for these pentacistronic virus vectors (final genome size approximately 7.9 kb) were comparable to those of vector systems with shorter genomes. Other vectors constructed that exceeded the genome length of the wild-type virus suffered frequent deletions.
Collapse
Affiliation(s)
- Pablo de Felipe
- Departamento de Bioquímica y Biología Molecular-Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Facultad de Ciencias, Cantoblanco, 28049 Madrid, Spain
| | - Marta Izquierdo
- Departamento de Bioquímica y Biología Molecular-Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Facultad de Ciencias, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
23
|
Hodge JW, Grosenbach DW, Schlom J. Vector-based delivery of tumor-associated antigens and T-cell co-stimulatory molecules in the induction of immune responses and anti-tumor immunity. CANCER DETECTION AND PREVENTION 2003; 26:275-91. [PMID: 12430632 DOI: 10.1016/s0361-090x(02)00095-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has now been demonstrated in both experimental models and recent clinical trials that certain "self" antigens, which are functionally non-immunogenic in the host, can become immunogenic if presented to the immune system in a certain way. Here, we describe recombinant vaccines and vaccine strategies that have been developed to induce and potentiate T-cell responses of the host to such self-antigens. These strategies include: (a) the use of recombinant poxvirus vectors in which the tumor-associated antigen (TAA) is inserted as a transgene. Recombinant vaccinia vaccines and recombinant avipox (replication-defective) vaccines have been employed to break tolerance to a self-antigen; (b) the use of diversified prime and boost strategies using different vaccines; and (c) the insertion of multiple T-cell co-stimulatory molecules into recombinant poxvirus vectors, along with the TAA gene, to enhance T-cell immune responses to the TAA and induce anti-tumor immunity.
Collapse
Affiliation(s)
- James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
24
|
Hodge JW, Tsang KY, Poole DJ, Schlom J. General keynote: vaccine strategies for the therapy of ovarian cancer. Gynecol Oncol 2003; 88:S97-104; discussion S110-3. [PMID: 12586096 DOI: 10.1006/gyno.2002.6694] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | | | | | | |
Collapse
|
25
|
Myers KA, Ryan MG, Stern PL, Shaw DM, Embleton MJ, Kingsman SM, Carroll MW. Targeting immune effector molecules to human tumor cells through genetic delivery of 5T4-specific scFv fusion proteins. Cancer Gene Ther 2002; 9:884-96. [PMID: 12386827 DOI: 10.1038/sj.cgt.7700513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Indexed: 11/09/2022]
Abstract
Although several clinical trials have shown beneficial effects by targeting tumor-associated antigens (TAAs) with monoclonal antibodies, a number of issues, including poor penetration of the tumor mass and human antimouse antibody responses, remain. The use of recombinant single-chain Fv (scFv) fragments has the potential to address these and other issues while allowing the addition of different effector functions. To develop therapeutic strategies that recruit both humoral and cellular arms of the immune response, we have constructed chimeric proteins linking either the human IgG1 Fc domain or the extracellular domain of murine B7.1 to a scFv specific for the oncofetal glycoprotein, 5T4. This TAA is expressed by a wide variety of carcinomas and is associated with metastasis and poorer clinical outcome. We have engineered retroviral constructs that produce fusion proteins able to interact simultaneously with both 5T4-positive cells and with the receptor/ligands of the immune effector moieties. Genetic delivery through a murine leukemia virus vector to 5T4-positive tumor cells results in the secreted scFv fusion protein binding to the cell surface. Furthermore, the scFv-HIgG1 fusion protein is able to direct lysis of 5T4-expressing human tumor cell lines through antibody-dependent cell cytotoxicity, indicating its potential as a gene therapy for human cancers.
Collapse
Affiliation(s)
- Kevin A Myers
- Oxford BioMedica (UK) Ltd., Medawar Centre, Oxford Science Park, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Bukreyev A, Belyakov IM. Expression of immunomodulating molecules by recombinant viruses: can the immunogenicity of live virus vaccines be improved? Expert Rev Vaccines 2002; 1:233-45. [PMID: 12901562 DOI: 10.1586/14760584.1.2.233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several obstacles exist for the development and use of live attenuated vaccines, including difficulty in achieving a proper balance between attenuation of viral replication and immunogenicity; inducing a strong T-helper 1 response in early life when the immune system is T helper 2 biased and immunization is sometimes associated with immunopathology and the immunosuppressive effect of maternal antibodies in infants. For some viral infections, the immune response to natural infection does not confer solid protection, complicating the task of vaccine development. The development of methods for generation of recombinant viruses provided new opportunities for improving the immunogenicity of live virus vaccine candidates, including the construction of viruses that express cytokines or other immunomodulating molecules. Depending on the choice of immunomodulating molecule, various stages of the immune response can be affected, such as antigen presentation or T-cell proliferation and differentiation. In addition to using the approach for development of viral live attenuated vaccines, it is currently being explored for the development of antitumor vaccines. For this type of vaccine, expression of tumor antigens and one or more immunomodulating molecules by one or several recombinant viruses has been proposed.
Collapse
Affiliation(s)
- Alexander Bukreyev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8007, USA.
| | | |
Collapse
|
27
|
Tamm I, Schumacher A, Karawajew L, Ruppert V, Arnold W, Nüssler AK, Neuhaus P, Dörken B, Wolff G. Adenovirus-mediated gene transfer of P16INK4/CDKN2 into bax-negative colon cancer cells induces apoptosis and tumor regression in vivo. Cancer Gene Ther 2002; 9:641-50. [PMID: 12136424 DOI: 10.1038/sj.cgt.7700480] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Indexed: 01/03/2023]
Abstract
The tumor-suppressor gene p16INK4/CDKN2 (p16) is a cyclin-dependent kinase (cdk) inhibitor and important cell cycle regulator. Here, we show that adenovirus-mediated gene transfer of p16 (AdCMV.p16) into colon cancer cells induces uncoupling of S phase and mitosis and subsequently apoptosis. Flow cytometric analysis revealed that cells infected with AdCMV.p16 showed an initial G2-like arrest followed by S phase without intervening mitosis (DNA >4N). Using microscopic analysis, deformed polyploid cells were detectable only in cells infected with AdCMV.p16 but not in control-infected cells. Subsequently, AdCMV.p16-infected polyploid cells underwent apoptosis, as assessed by AnnexinV staining and DNA fragmentation, suggesting that cell cycle dysregulation is upstream of the onset of apoptosis. Treatment of mice with subcutaneously transplanted tumors of colorectal cancer cells with AdCMV.p16 but not AdCMV.p53 resulted in significantly reduced tumor volume and prolonged survival. Using an orthotopic model of liver metastasis, we observed both reduced local tumor growth and secondary intrahepatic metastasis after AdCMV.p16 treatment. Importantly, induction of apoptosis in vitro and reduction of tumor growth in vivo by p16 was p53- as well as bax-independent because identical results were obtained using cancer cells, either wild type or mutant for p53 or bax. The studies suggest that an AdCMV.p16-based treatment may be especially effective in patients with bax-negative colon cancer where overexpression of p53 appears not to be of therapeutic value.
Collapse
Affiliation(s)
- Ingo Tamm
- Department of Hematology and Oncology, Charité, Campus Virchow, Humboldt University of Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wen XY, Mandelbaum S, Li ZH, Hitt M, Graham FL, Hawley TS, Hawley RG, Stewart AK. Tricistronic viral vectors co-expressing interleukin-12 (1L-12) and CD80 (B7-1) for the immunotherapy of cancer: preclinical studies in myeloma. Cancer Gene Ther 2001; 8:361-70. [PMID: 11477456 DOI: 10.1038/sj.cgt.7700321] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synergy between interleukin-12 (IL-12) and B7-1 (CD80) for cancer immunotherapy has previously been demonstrated in animal models of breast cancer, lymphoma, and multiple myeloma. With a view to human clinical application, tricistronic retroviral and adenovirus vectors co-expressing IL-12 (IL-12p40 plus IL-12p35) and CD80 were constructed by utilizing two internal ribosome entry site (IRES) sequences to link the three cDNAs. A murine stem cell virus (MSCV)-based retroviral vector (MSCV-hIL12.B7) utilized distinct IRES sequences from the encephalomyocarditis virus (EMCV) and the foot-and-mouth disease virus (FMCV), whereas Ad5-based adenovirus vectors contained transcriptional units with two EMCV IRES sequences under the control of murine (AdMh12.B7) or human (AdHh12.B7) cytomegalovirus promoters. AdMh12.B7 was found to consistently direct higher levels of IL-12 and CD80 expression than AdHh12.B7 following infection of a number of human tumor cell lines. In preclinical studies, the human myeloma cell line U266 was infected with MSCV-hIL12.B7 and a resulting clonal cell line, U/MSCV-h12.B7, was generated with stable expression of CD80 and secreting IL-12 at 1 ng/24 h/10(6) cells. By comparison, following AdMh12.B7 infection, 81% of infected U266 cells (U/AdMh12.B7) expressed CD80 and secreted IL-12 at 25-50 ng/24 h/10(6) cells. Both engineered myeloma cell lines stimulated enhanced allogeneic mixed lymphocyte proliferation and provoked increases in cytotoxic T-lymphocyte responses and gamma-interferon release from normal donor lymphocytes exposed to parental U266 cells. These results suggest potential clinical utility of AdMh12.B7 in immunotherapy strategies for the treatment of multiple myeloma and other cancers.
Collapse
Affiliation(s)
- X Y Wen
- Division of Hematology--Oncology, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gäken J, Jiang J, Daniel K, van Berkel E, Hughes C, Kuiper M, Darling D, Tavassoli M, Galea-Lauri J, Ford K, Kemeny M, Russell S, Farzaneh F. Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron. Gene Ther 2000; 7:1979-85. [PMID: 11175308 DOI: 10.1038/sj.gt.3301341] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transduction of cells with multiple genes, allowing their stable and co-ordinated expression, is difficult with the available methodologies. A method has been developed for expression of multiple gene products, as fusion proteins, from a single cistron. The encoded proteins are post-synthetically cleaved and processed into each of their constituent proteins as individual, biologically active factors. Specifically, linkers encoding cleavage sites for the Golgi expressed endoprotease, furin, have been incorporated between in-frame cDNA sequences encoding different secreted or membrane bound proteins. With this strategy we have developed expression vectors encoding multiple proteins (IL-2 and B7.1, IL-4 and B7.1, IL-4 and IL-2, IL-12 p40 and p35, and IL-12 p40, p35 and IL-2 ). Transduction and analysis of over 100 individual clones, derived from murine and human tumour cell lines, demonstrate the efficient expression and biological activity of each of the encoded proteins. Fusagene vectors enable the co-ordinated expression of multiple gene products from a single, monocistronic, expression cassette.
Collapse
Affiliation(s)
- J Gäken
- Immune Gene Therapy Programme, Department of Molecular Medicine, The Rayne Institute, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lohr F, Hu K, Haroon Z, Samulski TV, Huang Q, Beaty J, Dewhirst MW, Li CY. Combination treatment of murine tumors by adenovirus-mediated local B7/IL12 immunotherapy and radiotherapy. Mol Ther 2000; 2:195-203. [PMID: 10985949 DOI: 10.1006/mthe.2000.0114] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Failure of local tumor control still poses a problem for radiotherapy and translates into reduced survival. Combining radiation with chemotherapy or other newer modalities has shown promising results. Immunological approaches to tumor therapy have found renewed interest due to improved insight into mechanisms involved in the immune response to tumors. In this paper, we studied tumor growth delay after various combination regimens of locally injected adenovirus constitutively expressing IL12 and B7.1 (AdIL12/B7.1) and fractionated radiotherapy in two nonimmunogenic murine tumor models, 4T1 and B16.F10. Effects of radiation and virus infection on surface antigen expression in these tumor lines were assessed. Mechanisms of action of AdIL12/B7.1 were studied by conducting additional experiments with and without depletion of NK-cells and/or T-cells, and by cytotoxic T-lymphocyte assays, and immunohistochemical evaluation of tumor blood vessels. Both B7.1 and IL12 were effectively expressed in both irradiated and unirradiated 4T1 and B16.F10 tumor cells but did not add significantly to radiation-induced cell killing in vitro. However, local tumor infection by AdIL12/B7.1 after irradiation significantly increases the effectiveness of radiotherapy when applied after completion of radiotherapy. The mechanism appears to be complicated, involving a host of factors that included the ability of IL12 to activate T-cells and NK-cells and to inhibit angiogenesis and the ability of radiation to induce apoptosis or necrosis among tumor cells. These data support the combination of radiotherapy with adenovirus-mediated immunotherapy and suggest that the concept of adding genetic immunotherapy after radiotherapy in a combined regimen merits further study.
Collapse
Affiliation(s)
- F Lohr
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- H Hörig
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | | |
Collapse
|
32
|
Schneider J, Gilbert SC, Hannan CM, Dégano P, Prieur E, Sheu EG, Plebanski M, Hill AV. Induction of CD8+ T cells using heterologous prime-boost immunisation strategies. Immunol Rev 1999; 170:29-38. [PMID: 10566139 DOI: 10.1111/j.1600-065x.1999.tb01326.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the current challenges in vaccine design is the development of antigen delivery systems or vaccination strategies that induce high protective levels of CD8+ T cells. These cells are crucial for protection against certain tumours and intracellular pathogens such as the liver-stage parasite of malaria. A liver-stage malaria vaccine should therefore include CD8+ T-cell-inducing components. This review provides an overview of prime-boost immunisation strategies that result in protective CD8+ T-cell responses against malaria with an emphasis on work from our laboratory. Possible mechanisms explaining why heterologous prime-boost strategies, in particular boosting with replication-impaired recombinant poxviruses, are so effective are discussed.
Collapse
Affiliation(s)
- J Schneider
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, UK.
| | | | | | | | | | | | | | | |
Collapse
|