1
|
Däster K, Hench J, Diepenbruck M, Volkmann K, Rouchon A, Palafox M, Miragaya JG, Preca BT, Kurzeder C, Weber WP, Bentires-Alj M, Soysal SD, Muenst S. BRCA promoter methylation in triple-negative breast cancer is preserved in xenograft models and represents a potential therapeutic marker for PARP inhibitors. Breast Cancer Res Treat 2024:10.1007/s10549-024-07502-8. [PMID: 39392573 DOI: 10.1007/s10549-024-07502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Most triple-negative breast cancers (TNBC) are sporadic in nature and often associated with dysfunction of the BRCA1 or BRCA2 genes. Since somatic BRCA mutations are rare in breast cancer (BC), this dysfunction frequently is the result of BRCA promoter methylation. Despite the phenotypic similarities of these tumors to those with germline or somatic BRCA mutation, the evidence of response to PARP inhibitors is unclear. METHODS We analyzed the prevalence of BRCA promoter methylation in 29 BC metastases through the well-established Illumina Infinium EPIC Human Methylation Bead Chip. In cases with BRCA methylation, the xenograft of the same tumor was tested. Additionally, we compared BC xenografts with an identified BRCA methylation to their matched primary tumors and subsequently investigated the efficacy of PARP inhibitors on tumor organoids from a BRCA2 promoter-methylated BC. RESULTS BRCA2 promotor hypermethylation was identified in one pleural metastasis of a young patient as well as in the xenograft tissue. We also identified five more xenograft models with BRCA2 promotor hypermethylation. Analysis of one matched primary tumor confirmed the same BRCA2 methylation. PARP inhibitor treatment of tumor organoids derived from the BRCA2 methylated xenograft tumor tissue of the young patient showed a significant decline in cell viability, similar to organoids with somatic BRCA1 mutation, while having no effect on organoids with BRCA1 wildtype. CONCLUSION BRCA promotor hypermethylation seems to be a rare event in metastatic BC but is preserved in subsequent xenograft models and might represent an attractive therapeutic marker for PARP inhibitors.
Collapse
Affiliation(s)
- Kavitha Däster
- Breast Center Zurich, Zurich, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Jürgen Hench
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Maren Diepenbruck
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katrin Volkmann
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adelin Rouchon
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marta Palafox
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jorge Gomez Miragaya
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bogdan Tiberius Preca
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Kurzeder
- University of Basel, Basel, Switzerland
- Breast Center, University Hospital Basel, Basel, Switzerland
| | - Walter Paul Weber
- University of Basel, Basel, Switzerland
- Breast Center, University Hospital Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Savas Deniz Soysal
- University of Basel, Basel, Switzerland
- Praxis Chirurgie Im Zentrum, Basel, Switzerland
| | - Simone Muenst
- University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
3
|
Xu L, Liddell B, Nesic K, Geissler F, Ashwood L, Wakefield M, Scott C, Waddell N, Kondrashova O. High-level tumour methylation of BRCA1 and RAD51C is required for homologous recombination deficiency in solid cancers. NAR Cancer 2024; 6:zcae033. [PMID: 39055334 PMCID: PMC11270467 DOI: 10.1093/narcan/zcae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
In ovarian and breast cancer, promoter methylation of BRCA1 or RAD51C is a promising biomarker for PARP inhibitor response, as high levels lead to homologous recombination deficiency (HRD). Yet the extent and role of such methylation in other cancers is not clear. This study comprehensively investigated promoter methylation of eight homologous recombination repair genes across 23 solid cancer types. Here, we showed that BRCA1 methylated cancers were associated with reduced gene expression, loss of heterozygosity (LOH), TP53 mutations and genomic features of HRD. We identified BRCA1 methylation in 3% of the copy-number high subtype of endometrial cancer, and as a rare event in six other cancer types, including lung squamous cell, pancreatic, bladder and stomach cancer. RAD51C promoter methylation was widespread across multiple cancer types, but HRD features were only observed for cases which contained high-level tumour methylation and LOH of RAD51C. While RAD51C methylation was frequent in stomach adenocarcinoma (6%) and low-grade glioma (2.5%), it was mostly detected at a low tumour level, suggestive of heterozygous methylation, and was associated with CpG island methylator phenotype. Our findings indicate that high-level tumour methylation of BRCA1 and RAD51C should be explored as a PARP inhibitor biomarker across multiple cancers.
Collapse
Affiliation(s)
- Lijun Xu
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Brett Liddell
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Franziska Geissler
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lauren M Ashwood
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola Waddell
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Ye C, Zhao Z, Lai P, Chen C, Jian F, Liang H, Guo Q. Strategies for the detection of site-specific DNA methylation and its application, opportunities and challenges in the field of electrochemical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5496-5508. [PMID: 39051422 DOI: 10.1039/d4ay00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various biological processes. Aberrant DNA methylation is closely associated with the onset of diseases, and the specific localization of methylation sites in the genome offers further insight into the connection between methylation and diseases. Currently, there are numerous methods available for site-specific methylation detection. Electrochemical biosensors have garnered significant attention due to their distinct advantages, such as rapidity, simplicity, high sensitivity, low cost, and the potential for miniaturization. In this paper, we present a systematic review of the primary sensing strategies utilized in the past decade for analyzing site-specific methylation and their applications in electrochemical sensors, from a novel perspective focusing on the localization analysis of site-specific methylation. These strategies include bisulfite treatment, restriction endonuclease treatment, other sensing strategies, and deamination without direct bisulfite treatment. We hope that this paper can offer ideas and references for establishing site-specific methylation electrochemical analysis in clinical practice.
Collapse
Affiliation(s)
- Chenliu Ye
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Zhibin Zhao
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Penghui Lai
- The Second Hospital of Longyan, Longyan 364000, China
| | - Chunmei Chen
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Fumei Jian
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Haiying Liang
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Qiongying Guo
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| |
Collapse
|
5
|
Ye BJ, Li DF, Li XY, Hao JL, Liu DJ, Yu H, Zhang CD. Methylation synthetic lethality: Exploiting selective drug targets for cancer therapy. Cancer Lett 2024; 597:217010. [PMID: 38849016 DOI: 10.1016/j.canlet.2024.217010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.
Collapse
Affiliation(s)
- Bing-Jie Ye
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Fei Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Hang Yu
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
6
|
Saleem MA, Mustafa MS. Promoter Hypermethylation of the BRCA1 Gene as a Novel Biomarker for Prostate Cancer. Cureus 2024; 16:e66467. [PMID: 39246954 PMCID: PMC11380563 DOI: 10.7759/cureus.66467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) is recognized as one of the most common malignancies that greatly affects the male population globally. Breast cancer gene 1 (BRCA1) is an important tumor suppressor gene that plays a central role in the maintenance of genomic integrity by promoting the repair of double-strand breaks of DNA. Here, we present a pilot study to examine the promoter methylation and gene expression of the BRCA1 gene in patients with PCa in Erbil governorate, Iraq. The collection of samples took place in Erbil City, Iraq, specifically at Rizgary Hospital, PAR Hospital, and Al-Mufti's private laboratory. A total of 40 tissue samples were collected from age-matched individuals, comprising 30 pathologically confirmed PCa cases and 10 normal prostatic tissue taken from individuals who, during diagnosis, were found to be negative for PCa. Data on demographic and clinical information, such as pathological stage, age, and prostate-specific antigen (PSA) level, were gathered from the medical records. The impact of the promoter methylation was forecasted using the DNA bisulfite conversion technique and methyl-specific PCR (MSP) with specific primers for the BRCA1 promoter region. The assessment of BRCA1 expression was conducted using quantitative real-time PCR (qPCR). Among the 30 patients examined, 76.6% (23 cases) were found to have BRCA1 promoter methylation, and none of the normal tissues appeared to have DNA methylation. BRCA1 promoter methylation was positively associated with the advanced stage of disease (p=0.01) and Gleason score (p=0.007). The analysis revealed a significant downregulation of the BRCA1 gene expression in methylated tumor samples as compared to non-methylated tumors and normal tissues, suggesting the role of epigenetic silencing. To the best of our knowledge, this is the first study investigating methylation status and level of BRCA1 mRNA transcripts among PCa patients in Iraq. Our findings suggest that promoter hypermethylation of the BRCA1 gene could serve as a viable biomarker for PCa, marking a significant discovery.
Collapse
Affiliation(s)
- Mohammed A Saleem
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| | - Mustafa S Mustafa
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| |
Collapse
|
7
|
Srivastava A, Ahmad R, Yadav K, Siddiqui S, Trivedi A, Misra A, Mehrotra S, Ahmad B, Ali Khan M. An update on existing therapeutic options and status of novel anti-metastatic agents in breast cancer: Elucidating the molecular mechanisms underlying the pleiotropic action of Withania somnifera (Indian ginseng) in breast cancer attenuation. Int Immunopharmacol 2024; 136:112232. [PMID: 38815352 DOI: 10.1016/j.intimp.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Major significant advancements in pharmacology and drug technology have been made to heighten the impact of cancer therapies, improving the life expectancy of subjects diagnosed with malignancy. Statistically, 99% of breast cancers occur in women while 0.5-1% occur in men, the female gender being the strongest breast cancer risk factor. Despite several breakthroughs, breast cancer continues to have a worldwide impact and is one of the leading causes of mortality. Additionally, resistance to therapy is a crucial factor enabling cancer cell persistence and resurgence. As a result, the search and discovery of novel modulatory agents and effective therapies capable of controlling tumor progression and cancer cell proliferation is critical. Withania somnifera (L.) Dunal (WS), commonly known as Indian ginseng, has long been used traditionally for the treatment of several ailments in the Indian context. Recently, WS and its phytoconstituents have shown promising anti-breast cancer properties and, as such, can be employed as prophylactic as well as therapeutic adjuncts to the main line of breast cancer treatment. The present review is an attempt to explore and provide experimental evidences in support of the prophylactic and therapeutic potential of WS in breast cancer, along with a deeper insight into the multiple molecular mechanisms and novel targets through which it acts against breast and other hormonally-induced cancers viz. ovarian, uterine and cervical. This exploration might prove crucial in providing better understanding of breast cancer progression and metastasis and its use as an adjunct in improving disease prognosis and therapeutic outcome.
Collapse
Affiliation(s)
- Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Sudhir Mehrotra
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Bilal Ahmad
- Research Cell, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow 226003, UP., India.
| |
Collapse
|
8
|
Alves LF, da Silva IN, de Mello DC, Fuziwara CS, Guil S, Esteller M, Geraldo MV. Epigenetic Regulation of DLK1-DIO3 Region in Thyroid Carcinoma. Cells 2024; 13:1001. [PMID: 38920632 PMCID: PMC11201930 DOI: 10.3390/cells13121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Non-coding RNAs (ncRNAs) have emerged as pivotal regulators in cellular biology, dispelling their former perception as 'junk transcripts'. Notably, the DLK1-DIO3 region harbors numerous ncRNAs, including long non-coding RNAs (lncRNAs) and over 50 microRNA genes. While papillary thyroid cancer showcases a pervasive decrease in DLK1-DIO3-derived ncRNA expression, the precise mechanisms driving this alteration remain elusive. We hypothesized that epigenetic alterations underlie shifts in ncRNA expression during thyroid cancer initiation and progression. This study aimed to elucidate the epigenetic mechanisms governing DLK1-DIO3 region expression in this malignancy. We have combined the analysis of DNA methylation by bisulfite sequencing together with that of histone modifications through ChIP-qPCR to gain insights into the epigenetic contribution to thyroid cancer in cell lines representing malignancies with different genetic backgrounds. Our findings characterize the region's epigenetic signature in thyroid cancer, uncovering distinctive DNA methylation patterns, particularly within CpG islands on the lncRNA MEG3-DMR, which potentially account for its downregulation in tumors. Pharmacological intervention targeting DNA methylation combined with histone deacetylation restored ncRNA expression. These results contribute to the understanding of the epigenetic mechanisms controlling the DLK1-DIO3 region in thyroid cancer, highlighting the combined role of DNA methylation and histone marks in regulating the locus' expression.
Collapse
Affiliation(s)
- Letícia F. Alves
- Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain; (L.F.A.)
| | - Isabelle N. da Silva
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Sao Paulo 13083-863, Brazil
| | - Diego C. de Mello
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Cesar S. Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain; (L.F.A.)
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain; (L.F.A.)
| | - Murilo V. Geraldo
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Sao Paulo 13083-863, Brazil
| |
Collapse
|
9
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
10
|
Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D’Argenio V. The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences. Biomolecules 2024; 14:568. [PMID: 38785975 PMCID: PMC11117673 DOI: 10.3390/biom14050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR amplification. As a consequence, long-read sequencers, called third-generation sequencing (TGS), have been developed, promising to overcome NGS. Starting from the first prototype, TGS has progressively ameliorated its chemistries by improving both read length and base-calling accuracy, as well as simultaneously reducing the costs/base. Based on these premises, TGS is showing its potential in many fields, including the analysis of difficult-to-sequence genomic regions, structural variations detection, RNA expression profiling, DNA methylation study, and metagenomic analyses. Protocol standardization and the development of easy-to-use pipelines for data analysis will enhance TGS use, also opening the way for their routine applications in diagnostic contexts.
Collapse
Affiliation(s)
- Carmela Scarano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Gennaro Di Bonito
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Angela Secondino
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
11
|
Wu S, Yao X, Sun W, Jiang K, Hao J. Exploration of poly (ADP-ribose) polymerase inhibitor resistance in the treatment of BRCA1/2-mutated cancer. Genes Chromosomes Cancer 2024; 63:e23243. [PMID: 38747337 DOI: 10.1002/gcc.23243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.
Collapse
Affiliation(s)
- Shuyi Wu
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Xuanjie Yao
- The Fourth Clinical Medical College, Zhejiang Chinese Medicine University, HangZhou, China
| | - Weiwei Sun
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Kaitao Jiang
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| | - Jie Hao
- School of Life Sciences, Zhejiang Chinese Medicine University, HangZhou, China
| |
Collapse
|
12
|
Mao J, Ni J, Chu L, Chu X, Xu D, Yang X, Zhu Z. Pamiparib as consolidation treatment after concurrent chemoradiotherapy of limited-stage small cell lung cancer: a single-arm, open-label phase 2 trial. Radiat Oncol 2024; 19:47. [PMID: 38610031 PMCID: PMC11010395 DOI: 10.1186/s13014-024-02437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is highly invasive with poor prognosis, and its treatment has historically been hindered due to the absence of targetable driver genomic alterations. However, the high genomic instability and replication stress in SCLC have made poly(ADP-ribose) polymerases (PARPs) inhibitors a focus of research. Pamiparib is an orally available PARP1/2 inhibitor with high selectivity, strong PARP trapping activity, and excellent brain penetration. Utilizing pamiparib as consolidation maintenance therapy in limited-stage SCLC holds promise for improving survival outcomes and offering a viable therapeutic approach. METHODS This single-arm, open-label phase II trial will enroll patients aged 18-75 years with histologically/cytologically confirmed, limited-stage SCLC who have not progressed following definitive platinum-based cCRT and have an ECOG PS of 0 or 1. Patients will be excluded if they have histologically confirmed mixed SCLC or NSCLC, or have undergone previous tumor resection, or can be treated with surgery or stereotactic body radiation therapy/stereotactic ablative radiation therapy. Participants will receive pamiparib 40 mg twice daily every 3 weeks within 2 to 6 weeks after cCRT for up to 1 year or until disease progression according to RECIST v1.1. The primary endpoint is the 1-year progression-free survival (PFS) rate assessed by investigators per RECIST v1.1. Secondary endpoints include PFS, objective response rate, and duration of response assessed by investigators per RECIST 1.1, overall survival, time to distant metastasis, and safety. DISCUSSION The study will provide valuable data on the feasibility, safety, and effectiveness of pamiparib as a consolidation therapy after cCRT in patients with LS-SCLC. The correlation between molecular typing or gene expression profile of the disease and curative response will be further explored. TRIAL REGISTRATION NCT05483543 at clinicaltrials.gov.
Collapse
Affiliation(s)
- Jiuang Mao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Dayu Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
- Institute of Thoracic Oncology, Fudan University, 270 Dongan Road, Shanghai, 200032, China.
| |
Collapse
|
13
|
Moulton C, Murri A, Benotti G, Fantini C, Duranti G, Ceci R, Grazioli E, Cerulli C, Sgrò P, Rossi C, Magno S, Di Luigi L, Caporossi D, Parisi A, Dimauro I. The impact of physical activity on promoter-specific methylation of genes involved in the redox-status and disease progression: A longitudinal study on post-surgery female breast cancer patients undergoing medical treatment. Redox Biol 2024; 70:103033. [PMID: 38211440 PMCID: PMC10821067 DOI: 10.1016/j.redox.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Arianna Murri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Gianmarco Benotti
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Claudia Cerulli
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| |
Collapse
|
14
|
Bagheri M, Lee MK, Muller KE, Miller TW, Pattabiraman DR, Christensen BC. Alteration of DNA methyltransferases by eribulin elicits broad DNA methylation changes with potential therapeutic implications for triple-negative breast cancer. Epigenomics 2024; 16:293-308. [PMID: 38356412 PMCID: PMC10910603 DOI: 10.2217/epi-2023-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options. Eribulin, a chemotherapeutic drug, induces epigenetic changes in cancer cells, suggesting a unique mechanism of action. Materials & methods: MDA-MB 231 cells were treated with eribulin and paclitaxel, and the samples from 53 patients treated with neoadjuvant eribulin were compared with those from 14 patients who received the standard-of-care treatment using immunohistochemistry. Results: Eribulin treatment caused significant DNA methylation changes in drug-tolerant persister TNBC cells, and it also elicited changes in the expression levels of epigenetic modifiers (DNMT1, TET1, DNMT3A/B) in vitro and in primary TNBC tumors. Conclusion: These findings provide new insights into eribulin's mechanism of action and potential biomarkers for predicting TNBC treatment response.
Collapse
Affiliation(s)
- Meisam Bagheri
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kristen E Muller
- Dartmouth Cancer Center, Lebanon, NH 03756, USA
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon NH 03756, USA
| | - Todd W Miller
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Lebanon, NH 03756, USA
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Diwakar R Pattabiraman
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
15
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Omotesho QA, Escamilla A, Pérez-Ruiz E, Frecha CA, Rueda-Domínguez A, Barragán I. Epigenetic targets to enhance antitumor immune response through the induction of tertiary lymphoid structures. Front Immunol 2024; 15:1348156. [PMID: 38333212 PMCID: PMC10851080 DOI: 10.3389/fimmu.2024.1348156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.
Collapse
Affiliation(s)
- Quadri Ajibola Omotesho
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Escamilla
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Sport Education, University of Malaga, Malaga, Spain
| | - Elisabeth Pérez-Ruiz
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Cecilia A. Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Civil Hospital, Malaga, Spain
| | - Antonio Rueda-Domínguez
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Isabel Barragán
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Lumpp T, Stößer S, Fischer F, Hartwig A, Köberle B. Role of Epigenetics for the Efficacy of Cisplatin. Int J Mol Sci 2024; 25:1130. [PMID: 38256203 PMCID: PMC10816946 DOI: 10.3390/ijms25021130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The clinical utility of the chemotherapeutic agent cisplatin is restricted by cancer drug resistance, which is either intrinsic to the tumor or acquired during therapy. Epigenetics is increasingly recognized as a factor contributing to cisplatin resistance and hence influences drug efficacy and clinical outcomes. In particular, epigenetics regulates gene expression without changing the DNA sequence. Common types of epigenetic modifications linked to chemoresistance are DNA methylation, histone modification, and non-coding RNAs. This review provides an overview of the current findings of various epigenetic modifications related to cisplatin efficacy in cell lines in vitro and in clinical tumor samples. Furthermore, it discusses whether epigenetic alterations might be used as predictors of the platinum agent response in order to prevent avoidable side effects in patients with resistant malignancies. In addition, epigenetic targeting therapies are described as a possible strategy to render cancer cells more susceptible to platinum drugs.
Collapse
Affiliation(s)
| | | | | | | | - Beate Köberle
- Department Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (T.L.); (S.S.); (F.F.); (A.H.)
| |
Collapse
|
18
|
Kaleem M, Kayali A, Sheikh RA, Kuerban A, Hassan MA, Almalki NAR, Al-Abbasi FA, Anwar F, Omran Z, Alhosin M. In Vitro and In Vivo Preventive Effects of Thymoquinone against Breast Cancer: Role of DNMT1. Molecules 2024; 29:434. [PMID: 38257347 PMCID: PMC10819256 DOI: 10.3390/molecules29020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women and is a major cause of female cancer-related deaths. BC is a multifactorial disease caused by the dysregulation of many genes, raising the need to find novel drugs that function by targeting several signaling pathways. The antitumoral drug thymoquinone (TQ), found in black seed oil, has multitargeting properties against several signaling pathways. This study evaluated the inhibitory effects of TQ on the MCF7 and T47D human breast cancer cell lines and its antitumor activity against BC induced by a single oral dose (65 mg/kg) of 7,12-dimethylbenzanthracene (DMBA) in female rats. The therapeutic activity was evaluated in DMBA-treated rats who received oral TQ (50 mg/kg) three times weekly. TQ-treated MCF7 and T47D cells showed concentration-dependent inhibition of cell proliferation and induction of apoptosis. TQ also decreased the expression of DNA methyltransferase 1 (DNMT1) in both cancer cell types. In DMBA-treated animals, TQ inhibited the number of liver and kidney metastases. These effects were associated with a reduction in DNMT1 mRNA expression. These results indicate that TQ has protective effects against breast carcinogens through epigenetic mechanisms involving DNMT1 inhibition.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Asaad Kayali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Ryan A. Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
| | - Mohammed A. Hassan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Department of Pharmacy, College of Medicine and Health Sciences, Hadhramout University, Mukalla P.O. Box 8892, Yemen
| | - Naif Abdullah R. Almalki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
| | - Ziad Omran
- King Abdullah International Medical Research Center, King Saud Bin Abdelaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
- King Abdulaziz Medical City, Ministry of National Guards-Health Affairs, Jeddah 21423, Saudi Arabia
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Roy P, Kandel R, Sawant N, Singh KP. Estrogen-induced reactive oxygen species, through epigenetic reprogramming, causes increased growth in breast cancer cells. Mol Cell Endocrinol 2024; 579:112092. [PMID: 37858609 DOI: 10.1016/j.mce.2023.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Despite the progress made in cancer diagnosis and treatment, breast cancer remains the second leading cause of cancer-related death among the women. Exposure to elevated levels of endogenous estrogen or environmental estrogenic chemicals is an important risk factor for breast cancer. Estrogen metabolites and ROS generated during estrogen metabolism are known to play a critical role in estrogen carcinogenesis. However, the molecular mechanisms through which estrogen-induced ROS regulate gene expression is not clear. Epigenetic changes of DNA methylation and histone modifications are known to regulate genes expression. Therefore, the objective of this study was to evaluate whether estrogen-induced ROS, through aberrant expression of epigenetic regulatory genes and epigenetic reprogramming, causes growth of breast cancer cells. Estrogen responsive MCF-7 and T47D human breast cancer cells were exposed to natural estrogen 17 beta-estradiol (E2) and synthetic estrogen Diethylstilbestrol (DES) both alone and in combination with antioxidant N-acetyl cysteine. Effects of NAC-mediated scavenging of estrogen-induced ROS on cell growth, gene expression, and histone modifications were measured. The result of MTT and cell cycle analysis revealed significant abrogation of E2 and DES-induced growth by scavenging ROS through NAC. E2 and DES caused significant changes in expression of epigenetic regulatory genes for DNA methylation and histone modifications as well as changes in both gene activating and repressive marks in the Histone H3. NAC restored the expression of epigenetic regulatory genes and changes in histone marks. Novel findings of this study suggest that estrogen can induce growth of breast cancer cells through ROS-dependent regulation of epigenetic regulatory genes and epigenetic reprogramming of histone marks.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ramji Kandel
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neha Sawant
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
20
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
21
|
Chatterjee P, Karn R, Isaac AE, Ray S. Unveiling the vulnerabilities of synthetic lethality in triple-negative breast cancer. Clin Transl Oncol 2023; 25:3057-3072. [PMID: 37079210 DOI: 10.1007/s12094-023-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most invasive molecular subtype of breast cancer (BC), accounting for about nearly 15% of all BC cases reported annually. The absence of the three major BC hormone receptors, Estrogen (ER), Progesterone (PR), and Human Epidermal Growth Factor 2 (HER2) receptor, accounts for the characteristic "Triple negative" phraseology. The absence of these marked receptors makes this cancer insensitive to classical endocrine therapeutic approaches. Hence, the available treatment options remain solemnly limited to only conventional realms of chemotherapy and radiation therapy. Moreover, these therapeutic regimes are often accompanied by numerous treatment side-effects that account for early distant metastasis, relapse, and shorter overall survival in TNBC patients. The rigorous ongoing research in the field of clinical oncology has identified certain gene-based selective tumor-targeting susceptibilities, which are known to account for the molecular fallacies and mutation-based genetic alterations that develop the progression of TNBC. One such promising approach is synthetic lethality, which identifies novel drug targets of cancer, from undruggable oncogenes or tumor-suppressor genes, which cannot be otherwise clasped by the conventional approaches of mutational analysis. Herein, a holistic scientific review is presented, to undermine the mechanisms of synthetic lethal (SL) interactions in TNBC, the epigenetic crosstalks encountered, the role of Poly (ADP-ribose) polymerase inhibitors (PARPi) in inducing SL interactions, and the limitations faced by the lethal interactors. Thus, the future predicament of synthetic lethal interactions in the advancement of modern translational TNBC research is assessed with specific emphasis on patient-specific personalized medicine.
Collapse
Affiliation(s)
| | - Rohit Karn
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Arnold Emerson Isaac
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Smita Ray
- Department of Botany, Bethune College, Kolkata, West Bengal, 700006, India.
| |
Collapse
|
22
|
Garg V, Oza AM. Treatment of Ovarian Cancer Beyond PARP Inhibition: Current and Future Options. Drugs 2023; 83:1365-1385. [PMID: 37737434 PMCID: PMC10581945 DOI: 10.1007/s40265-023-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer death. Improved understanding of the biologic pathways and introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) during the last decade have changed the treatment landscape. This has improved outcomes, but unfortunately half the women with ovarian cancer still succumb to the disease within 5 years of diagnosis. Pathways of resistance to PARPi and chemotherapy have been studied extensively, but there is an unmet need to overcome treatment failure and improve outcome. Major mechanisms of PARPi resistance include restoration of homologous recombination repair activity, alteration of PARP function, stabilization of the replication fork, drug efflux, and activation of alternate pathways. These resistant mechanisms can be targeted to sensitize the resistant ovarian cancer cells either by rechallenging with PARPi, overcoming resistance mechanism or bypassing resistance pathways. Augmenting the PARPi activity by combining it with other targets in the DNA damage response pathway, antiangiogenic agents and immune checkpoint inhibitors can potentially overcome the resistance mechanisms. Methods to bypass resistance include targeting non-cross-resistant pathways acting independent of homologous recombination repair (HRR), modulating tumour microenvironment, and enhancing drug delivery systems such as antibody drug conjugates. In this review, we will discuss the first-line management of ovarian cancer, resistance mechanisms and potential strategies to overcome these.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- , 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
23
|
Agostini M, Traldi P, Hamdan M. Mass Spectrometry-Based Proteomics: Analyses Related to Drug-Resistance and Disease Biomarkers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1722. [PMID: 37893440 PMCID: PMC10608342 DOI: 10.3390/medicina59101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry-based proteomics is a key player in research efforts to characterize aberrant epigenetic alterations, including histone post-translational modifications and DNA methylation. Data generated by this approach complements and enrich datasets generated by genomic, epigenetic and transcriptomics approaches. These combined datasets can provide much-needed information on various mechanisms responsible for drug resistance, the discovery and validation of potential biomarkers for different diseases, the identification of signaling pathways, and genes and enzymes to be targeted by future therapies. The increasing use of high-resolution, high-accuracy mass spectrometers combined with more refined protein labeling and enrichment procedures enhanced the role of this approach in the investigation of these epigenetic modifications. In this review, we discuss recent MS-based studies, which are contributing to current research efforts to understand certain mechanisms behind drug resistance to therapy. We also discuss how these MS-based analyses are contributing to biomarkers discovery and validation.
Collapse
Affiliation(s)
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy; (M.A.); (M.H.)
| | | |
Collapse
|
24
|
Pook D, Geynisman DM, Carles J, de Braud F, Joshua AM, Pérez-Gracia JL, Llácer Pérez C, Shin SJ, Fang B, Barve M, Maruzzo M, Bracarda S, Kim M, Kerloeguen Y, Gallo JD, Maund SL, Harris A, Huang KC, Poon V, Sutaria DS, Gurney H. A Phase Ib, Open-label Study Evaluating the Safety and Efficacy of Ipatasertib plus Rucaparib in Patients with Metastatic Castration-resistant Prostate Cancer. Clin Cancer Res 2023; 29:3292-3300. [PMID: 37339186 DOI: 10.1158/1078-0432.ccr-22-2585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/29/2022] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE To report the safety and efficacy of ipatasertib (AKT inhibitor) combined with rucaparib (PARP inhibitor) in patients with metastatic castration-resistant prostate cancer (mCRPC) previously treated with second-generation androgen receptor inhibitors. PATIENTS AND METHODS In this two-part phase Ib trial (NCT03840200), patients with advanced prostate, breast, or ovarian cancer received ipatasertib (300 or 400 mg daily) plus rucaparib (400 or 600 mg twice daily) to assess safety and identify a recommended phase II dose (RP2D). A part 1 dose-escalation phase was followed by a part 2 dose-expansion phase in which only patients with mCRPC received the RP2D. The primary efficacy endpoint was prostate-specific antigen (PSA) response (≥50% reduction) in patients with mCRPC. Patients were not selected on the basis of tumor mutational status. RESULTS Fifty-one patients were enrolled (part 1 = 21; part 2 = 30). Ipatasertib 400 mg daily plus rucaparib 400 mg twice daily was the selected RP2D, received by 37 patients with mCRPC. Grade 3/4 adverse events occurred in 46% (17/37) of patients, with one grade 4 adverse event (anemia, deemed related to rucaparib) and no deaths. Adverse events leading to treatment modification occurred in 70% (26/37). The PSA response rate was 26% (9/35), and the objective response rate per Response Criteria in Solid Tumors (RECIST) 1.1 was 10% (2/21). Median radiographic progression-free survival per Prostate Cancer Working Group 3 criteria was 5.8 months [95% confidence interval (CI), 4.0-8.1], and median overall survival was 13.3 months (95% CI, 10.9-not evaluable). CONCLUSIONS Ipatasertib plus rucaparib was manageable with dose modification but did not demonstrate synergistic or additive antitumor activity in previously treated patients with mCRPC.
Collapse
Affiliation(s)
- David Pook
- Cabrini Monash University Department of Medical Oncology, Cabrini Health, Malvern, Victoria, Australia
| | - Daniel M Geynisman
- Medical Oncology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Joan Carles
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Filippo de Braud
- Oncologia Medica, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Anthony M Joshua
- Kinghorn Cancer Centre, Saint Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | | | - Casilda Llácer Pérez
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Bruno Fang
- Astera Cancer Care, East Brunswick, New Jersey
| | - Minal Barve
- Mary Crowley Cancer Research Center, Dallas, Texas
| | - Marco Maruzzo
- Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sergio Bracarda
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | - Adam Harris
- Genentech Inc, South San Francisco, California
| | | | - Victor Poon
- Genentech Inc, South San Francisco, California
| | | | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Oubaddou Y, Oukabli M, Fenniche S, Elktaibi A, Elochi MR, Al Bouzidi A, Qmichou Z, Dakka N, Diorio C, Richter A, Bakri Y, Ameziane El Hassani R. BRCA1 Promoter Hypermethylation in Malignant Breast Tumors and in the Histologically Normal Adjacent Tissues to the Tumors: Exploring Its Potential as a Biomarker and Its Clinical Significance in a Translational Approach. Genes (Basel) 2023; 14:1680. [PMID: 37761820 PMCID: PMC10530732 DOI: 10.3390/genes14091680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The hypermethylation status of the promoter region of the breast cancer 1 (BRCA1), a well-known tumor suppressor gene, has been extensively investigated in the last two decades as a potential biomarker for breast cancer. In this retrospective study, we investigated the prevalence of BRCA1 promoter methylation in 84 human breast tissues, and we correlated this epigenetic silencing with the clinical and histopathological parameters of breast cancer. We used methylation-specific PCR (MSP) to analyze BRCA1 promoter hypermethylation in 48 malignant breast tumors (MBTs), 15 normal adjacent tissues (NATs), and 21 benign breast lesions (BBLs). The results showed that BRCA1 promoter hypermethylation was higher in MBTs (20/48; 41.67%) and NATs (7/15; 46.67%) compared to BBLs (4/21; 19.05%). The high percentage of BRCA1 hypermethylation in the histologically normal adjacent tissues to the tumors (NATs) suggests the involvement of this epigenetic silencing as a potential biomarker of the early genomic instability in NATs surrounding the tumors. The detection of BRCA1 promoter hypermethylation in BBLs reinforces this suggestion, knowing that a non-negligible rate of benign breast lesions was reported to evolve into cancer. Moreover, our results indicated that the BRCA1 promoter hypermethylated group of MBTs exhibited higher rates of aggressive features, as indicated by the SBR III grade (14/19; 73.68%), elevated Ki67 levels (13/16; 81.25%), and Her2 receptor overexpression (5/20; 25%). Finally, we observed a concordance (60%) in BRCA1 promoter hypermethylation status between malignant breast tumors and their paired histologically normal adjacent tissues. This study highlights the role of BRCA1 promoter hypermethylation as a potential useful biomarker of aggressiveness in MBTs and as an early marker of genomic instability in both histological NATs and BBLs.
Collapse
Affiliation(s)
- Yassire Oubaddou
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco; (Y.O.); (S.F.); (N.D.); (Y.B.)
| | - Mohamed Oukabli
- Service of Anatomical Pathology, Military Hospital of Instruction Mohammed V (HMIMV-R), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10001, Morocco; (M.O.); (A.E.); (M.R.E.)
| | - Salma Fenniche
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco; (Y.O.); (S.F.); (N.D.); (Y.B.)
| | - Abderrahim Elktaibi
- Service of Anatomical Pathology, Military Hospital of Instruction Mohammed V (HMIMV-R), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10001, Morocco; (M.O.); (A.E.); (M.R.E.)
| | - Mohamed Reda Elochi
- Service of Anatomical Pathology, Military Hospital of Instruction Mohammed V (HMIMV-R), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10001, Morocco; (M.O.); (A.E.); (M.R.E.)
| | | | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat 10001, Morocco;
| | - Nadia Dakka
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco; (Y.O.); (S.F.); (N.D.); (Y.B.)
| | - Caroline Diorio
- Cancer Research Center, CHU de Québec—Université Laval Research Center, Oncology Division, Québec, QC G1R 3S3, Canada;
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
| | - Antje Richter
- Institute for Genetics, University Giessen, 35392 Giessen, Germany;
| | - Youssef Bakri
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco; (Y.O.); (S.F.); (N.D.); (Y.B.)
| | - Rabii Ameziane El Hassani
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco; (Y.O.); (S.F.); (N.D.); (Y.B.)
| |
Collapse
|
26
|
Garg V, Oza AM. Assessment of Homologous Recombination Deficiency in Ovarian Cancer. Clin Cancer Res 2023; 29:2957-2960. [PMID: 37347464 DOI: 10.1158/1078-0432.ccr-23-0563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Accurately assessing homologous recombination deficiency (HRD) to use as a predictive biomarker is an area of intense research in ovarian cancer. Validated assays have demonstrated utility in determining maintenance therapy following platinum sensitive chemotherapy. Novel functional assays promise the potential to reflect HRD in real time and predict response to PARP inhibitors. See related articles by Pikkusaari et al., p. 3110 and Blanc-Durand et al., p. 3124.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Blanc-Durand F, Tang R, Pommier M, Nashvi M, Cotteret S, Genestie C, Le Formal A, Pautier P, Michels J, Kfoury M, Hervé R, Mengue S, Wafo E, Elies A, Miailhe G, Uzan J, Rouleau E, Leary A. Clinical Relevance of BRCA1 Promoter Methylation Testing in Patients with Ovarian Cancer. Clin Cancer Res 2023; 29:3124-3129. [PMID: 37067532 DOI: 10.1158/1078-0432.ccr-22-3328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
PURPOSE Homologous recombination deficiency (HRD) is closely related to PARP inhibitor (PARPi) benefit in ovarian cancer. The capacity of BRCA1 promoter methylation to predict prognosis and HRD status remains unclear. We aimed to correlate BRCA1 promoter methylation levels in patients with high-grade ovarian cancer to HRD status and clinical behavior to assess its clinical relevance. EXPERIMENTAL DESIGN This is a retrospective monocentric analysis of patients centrally tested for genomic instability score (GIS) by MyChoice CDx (Myriad Genetics). The detection of BRCA1 promoter methylation and quantification of methylation levels were performed by quantitative droplet digital PCR methodology. High BRCA1 methylation was defined as ≥70% and deemed to be associated with homozygous silencing. RESULTS Of 100 patients, 11% harbored a deleterious BRCA1/2 mutation. GIS was considered positive (score ≥ 42) for 52 patients and negative for 48 patients. Using a 70% cutoff, 19% (15/79) of BRCA wild-type ovarian cancer had high BRCA1 methylation levels. All of the highly methylated tumors were classified as HRD, achieving a positive predictive value of 100%. We detected 14% (11/79) low-methylated tumors (1%-69%), and all of them were also classified as HRD. Mean GIS was 61.5 for BRCAmut, 66.4 for high-BRCAmeth, 58.9 for low-BRCAmeth, and 33.3 for BRCAwt unmethylated (P < 0.001). Low methylation levels detected in samples previously exposed to chemotherapy appeared to be associated with poor outcome post-platinum. CONCLUSIONS Patients with ovarian cancer with high levels of BRCA1 hypermethylation are very likely to have high GIS and therefore represent good candidates for PARPi treatment. These results may be highly relevant to other tumor types for HRD prediction. See related commentary by Garg and Oza, p. 2957.
Collapse
Affiliation(s)
- Félix Blanc-Durand
- Medical Oncology Department, Gynecology Unit, Institut Gustave Roussy, Villejuif, France
| | - Roseline Tang
- Cancer Genetics Unit, Department of Biology and Pathology, Institut Gustave Roussy, Villejuif, France
| | - Margaux Pommier
- Cancer Genetics Unit, Department of Biology and Pathology, Institut Gustave Roussy, Villejuif, France
| | - Marzieh Nashvi
- Cancer Genetics Unit, Department of Biology and Pathology, Institut Gustave Roussy, Villejuif, France
| | - Sophie Cotteret
- Cancer Genetics Unit, Department of Biology and Pathology, Institut Gustave Roussy, Villejuif, France
| | - Catherine Genestie
- Pathology Unit, Department of Biology and Pathology, Institut Gustave Roussy, Villejuif, France
| | | | - Patricia Pautier
- Medical Oncology Department, Gynecology Unit, Institut Gustave Roussy, Villejuif, France
| | - Judith Michels
- Medical Oncology Department, Gynecology Unit, Institut Gustave Roussy, Villejuif, France
| | - Maria Kfoury
- Medical Oncology Department, Gynecology Unit, Institut Gustave Roussy, Villejuif, France
| | - Robert Hervé
- Oncology Unit, Centre Hospitalier Polynesie Francaise, Papeete, French Polynesia
| | - Sylvie Mengue
- Oncology Unit, Centre Hospitalier Polynesie Francaise, Papeete, French Polynesia
| | - Estelle Wafo
- Gynecology Unit, Centre Hospitalier Intercommunal Creteil, Créteil, France
| | - Antoine Elies
- Gynecology Unit, Centre Hospitalier Intercommunal Creteil, Créteil, France
| | - Gregoire Miailhe
- Gynecology Unit, Groupe Hospitalier Est Francilien, Jossigny, France
| | - Jennifer Uzan
- Gynecology Unit, Groupe Hospitalier Est Francilien, Jossigny, France
| | - Etienne Rouleau
- Cancer Genetics Unit, Department of Biology and Pathology, Institut Gustave Roussy, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Villejuif, France
| | - Alexandra Leary
- Medical Oncology Department, Gynecology Unit, Institut Gustave Roussy, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
28
|
Matsas A, Stefanoudakis D, Troupis T, Kontzoglou K, Eleftheriades M, Christopoulos P, Panoskaltsis T, Stamoula E, Iliopoulos DC. Tumor Markers and Their Diagnostic Significance in Ovarian Cancer. Life (Basel) 2023; 13:1689. [PMID: 37629546 PMCID: PMC10455076 DOI: 10.3390/life13081689] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Ovarian cancer (OC) is characterized by silent progression and late-stage diagnosis. It is critical to detect and accurately diagnose the disease early to improve survival rates. Tumor markers have emerged as valuable tools in the diagnosis and management of OC, offering non-invasive and cost-effective options for screening, monitoring, and prognosis. PURPOSE This paper explores the diagnostic importance of various tumor markers including CA-125, CA15-3, CA 19-9, HE4,hCG, inhibin, AFP, and LDH, and their impact on disease monitoring and treatment response assessment. METHODS Article searches were performed on PubMed, Scopus, and Google Scholar. Keywords used for the searching process were "Ovarian cancer", "Cancer biomarkers", "Early detection", "Cancer diagnosis", "CA-125","CA 15-3","CA 19-9", "HE4","hCG", "inhibin", "AFP", "LDH", and others. RESULTS HE4, when combined with CA-125, shows improved sensitivity and specificity, particularly in early-stage detection. Additionally, hCG holds promise as a prognostic marker, aiding treatment response prediction and outcome assessment. Novel markers like microRNAs, DNA methylation patterns, and circulating tumor cells offer potential for enhanced diagnostic accuracy and personalized management. Integrating these markers into a comprehensive panel may improve sensitivity and specificity in ovarian cancer diagnosis. However, careful interpretation of tumor marker results is necessary, considering factors such as age, menopausal status, and comorbidities. Further research is needed to validate and refine diagnostic algorithms, optimizing the clinical significance of tumor markers in ovarian cancer management. In conclusion, tumor markers such as CA-125, CA15-3, CA 19-9, HE4, and hCG provide valuable insights into ovarian cancer diagnosis, monitoring, and prognosis, with the potential to enhance early detection.
Collapse
Affiliation(s)
- Alkis Matsas
- Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Stefanoudakis
- Second Department of Obstetrics and Gynecology, Medical School, “Aretaieion” University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodore Troupis
- Department of Anatomy, Faculty of Health Sciences, Medical School, National and Kapodistrian University of Athens, MikrasAsias Str. 75, 11627 Athens, Greece
| | - Konstantinos Kontzoglou
- Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, Medical School, “Aretaieion” University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, Medical School, “Aretaieion” University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Panoskaltsis
- Second Department of Obstetrics and Gynecology, Medical School, “Aretaieion” University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios C. Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
29
|
Chapdelaine AG, Sun G. Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer. Biomolecules 2023; 13:1207. [PMID: 37627272 PMCID: PMC10452226 DOI: 10.3390/biom13081207] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous group of breast cancers characterized by their lack of estrogen receptors, progesterone receptors, and the HER2 receptor. They are more aggressive than other breast cancer subtypes, with a higher mean tumor size, higher tumor grade, the worst five-year overall survival, and the highest rates of recurrence and metastasis. Developing targeted therapies for TNBC has been a major challenge due to its heterogeneity, and its treatment still largely relies on surgery, radiation therapy, and chemotherapy. In this review article, we review the efforts in developing targeted therapies for TNBC, discuss insights gained from these efforts, and highlight potential opportunities going forward. Accumulating evidence supports TNBCs as multi-driver cancers, in which multiple oncogenic drivers promote cell proliferation and survival. In such multi-driver cancers, targeted therapies would require drug combinations that simultaneously block multiple oncogenic drivers. A strategy designed to generate mechanism-based combination targeted therapies for TNBC is discussed.
Collapse
Affiliation(s)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
30
|
Ma Q, Zhao M, Long B, Li H. Super-enhancer-associated gene CAPG promotes AML progression. Commun Biol 2023; 6:622. [PMID: 37296281 PMCID: PMC10256737 DOI: 10.1038/s42003-023-04973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, the barrier of refractory and drug resistance has yet to be conquered in the clinical. Abnormal gene expression and epigenetic changes play an important role in pathogenesis and treatment. A super-enhancer is an epigenetic modifier that promotes pro-tumor genes and drug resistance by activating oncogene transcription. Multi-omics integrative analysis identifies the super-enhancer-associated gene CAPG and its high expression level was correlated with poor prognosis in AML. CAPG is a cytoskeleton protein but has an unclear function in AML. Here we show the molecular function of CAPG in regulating NF-κB signaling pathway by proteomic and epigenomic analysis. Knockdown of Capg in the AML murine model resulted in exhausted AML cells and prolonged survival of AML mice. In conclusion, SEs-associated gene CAPG can contributes to AML progression through NF-κB.
Collapse
Affiliation(s)
- Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
31
|
Santarosa M, Baldazzi D, Armellin M, Maestro R. In Silico Identification of a BRCA1:miR-29:DNMT3 Axis Involved in the Control of Hormone Receptors in BRCA1-Associated Breast Cancers. Int J Mol Sci 2023; 24:9916. [PMID: 37373065 DOI: 10.3390/ijms24129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Germline inactivating mutations in the BRCA1 gene lead to an increased lifetime risk of ovarian and breast cancer (BC). Most BRCA1-associated BC are triple-negative tumors (TNBC), aggressive forms of BC characterized by a lack of expression of estrogen and progesterone hormone receptors (HR) and HER2. How BRCA1 inactivation may favor the development of such a specific BC phenotype remains to be elucidated. To address this question, we focused on the role of miRNAs and their networks in mediating BRCA1 functions. miRNA, mRNA, and methylation data were retrieved from the BRCA cohort of the TCGA project. The cohort was divided into a discovery set (Hi-TCGA) and a validation set (GA-TCGA) based on the platform used for miRNA analyses. The METABRIC, GSE81002, and GSE59248 studies were used as additional validation data sets. BCs were differentiated into BRCA1-like and non-BRCA1-like based on an established signature of BRCA1 pathway inactivation. Differential expression of miRNAs, gene enrichment analysis, functional annotation, and methylation correlation analyses were performed. The miRNAs downregulated in BRCA1-associated BC were identified by comparing the miRNome of BRCA1-like with non-BRCA1-like tumors from the Hi-TCGA discovery cohort. miRNAs:gene-target anticorrelation analyses were then performed. The target genes of miRNAs downregulated in the Hi-TCGA series were enriched in the BRCA1-like tumors from the GA-TCGA and METABRIC validation data sets. Functional annotation of these genes revealed an over-representation of several biological processes ascribable to BRCA1 activity. The enrichment of genes related to DNA methylation was particularly intriguing, as this is an aspect of BRCA1 functions that has been poorly explored. We then focused on the miR-29:DNA methyltransferase network and showed that the miR-29 family, which was downregulated in BRCA1-like tumors, was associated with poor prognosis in these BCs and inversely correlated with the expression of the DNA methyltransferases DNMT3A and DNMT3B. This, in turn, correlated with the methylation extent of the promoter of HR genes. These results suggest that BRCA1 may control the expression of HR via a miR-29:DNMT3:HR axis and that disruption of this network may contribute to the receptor negative phenotype of tumors with dysfunctional BRCA1.
Collapse
Affiliation(s)
- Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Davide Baldazzi
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Michela Armellin
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
32
|
Al-Moghrabi N, Al-Showimi M, Al-Yousef N, AlOtai L. MicroRNA-155-5p, Reduced by Curcumin-Re-Expressed Hypermethylated BRCA1, Is a Molecular Biomarker for Cancer Risk in BRCA1-methylation Carriers. Int J Mol Sci 2023; 24:ijms24109021. [PMID: 37240365 DOI: 10.3390/ijms24109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Constitutional BRCA1-methylation is a cancer risk factor for breast (BC) and ovarian (OC) cancer. MiR-155, regulated by BRCA1, is a multifunctional microRNA that plays a crucial role in the immune system. The present study assessed the modulation of miR-155-5p expression in peripheral white blood cells (WBCs) of BC and OC patients and cancer-free (CF) BRCA1-methylation female carriers. Additionally, we investigated the potential of curcumin to suppress miR-155-5p in BRCA1-deficient breast cancer cell lines. MiR-155-5p expression was measured using a stem-loop RT-qPCR method. Gene expression levels were determined using qRT-PCR and immunoblotting. MiR-155-5p was more highly expressed in the BRCA1-hypermethylated HCC-38 and UACC-3199 BC cell lines than in the BRCA1-mutated (HCC-1937) and WT BRCA1 (MDA-MB-321) cell lines. Curcumin suppressed miR-155-5p in the HCC-38 cells but not in the HCC-1937 cells via the re-expression of BRCA1. Elevated levels of miR-155-5p were detected in patients with non-aggressive and localized breast tumors and in patients with late-stage aggressive ovarian tumors, as well as in CF BRCA1-methylation carriers. Notably, IL2RG levels were reduced in the OC and CF groups but not in the BC group. Together, our findings suggest opposing effects of WBC miR-155-5p, according to the cell and cancer type. In addition, the results point to miR-155-5p as a candidate biomarker of cancer risk among CF-BRCA1-methylation carriers.
Collapse
Affiliation(s)
- Nisreen Al-Moghrabi
- Cancer Epigenetics Section, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Maram Al-Showimi
- Cancer Epigenetics Section, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Nujoud Al-Yousef
- Cancer Epigenetics Section, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Lamya AlOtai
- Department of Life Sciences, College of Science & General Studies, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
33
|
Yao H, Li H, Wang J, Wu T, Ning W, Diao K, Wu C, Wang G, Tao Z, Zhao X, Chen J, Sun X, Liu XS. Copy number alteration features in pan-cancer homologous recombination deficiency prediction and biology. Commun Biol 2023; 6:527. [PMID: 37193789 DOI: 10.1038/s42003-023-04901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
Homologous recombination deficiency (HRD) renders cancer cells vulnerable to unrepaired double-strand breaks and is an important therapeutic target as exemplified by the clinical efficacy of poly ADP-ribose polymerase (PARP) inhibitors as well as the platinum chemotherapy drugs applied to HRD patients. However, it remains a challenge to predict HRD status precisely and economically. Copy number alteration (CNA), as a pervasive trait of human cancers, can be extracted from a variety of data sources, including whole genome sequencing (WGS), SNP array, and panel sequencing, and thus can be easily applied clinically. Here we systematically evaluate the predictive performance of various CNA features and signatures in HRD prediction and build a gradient boosting machine model (HRDCNA) for pan-cancer HRD prediction based on these CNA features. CNA features BP10MB[1] (The number of breakpoints per 10MB of DNA is 1) and SS[ > 7 & <=8] (The log10-based size of segments is greater than 7 and less than or equal to 8) are identified as the most important features in HRD prediction. HRDCNA suggests the biallelic inactivation of BRCA1, BRCA2, PALB2, RAD51C, RAD51D, and BARD1 as the major genetic basis for human HRD, and may also be applied to effectively validate the pathogenicity of BRCA1/2 variants of uncertain significance (VUS). Together, this study provides a robust tool for cost-effective HRD prediction and also demonstrates the applicability of CNA features and signatures in cancer precision medicine.
Collapse
Affiliation(s)
- Huizi Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Ning
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kaixuan Diao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenxu Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guangshuai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ziyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangyu Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoqin Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
34
|
Song K, Artibani M. The role of DNA methylation in ovarian cancer chemoresistance: A narrative review. Health Sci Rep 2023; 6:e1235. [PMID: 37123549 PMCID: PMC10140645 DOI: 10.1002/hsr2.1235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Background and Aims Ovarian cancer (OC) is the most lethal gynecological cancer. In 2018, it was responsible for over 180,000 deaths worldwide. The high mortality rate is the culmination of a lack of early diagnosis and high rates of chemotherapy resistance, which is synonymous with disease recurrence. Over the last two decades, an increasingly significant role of epigenetic mechanisms, in particular DNA methylation, has emerged. This review will discuss several of the most significant genes whose hypo/hypermethylation profiles are associated with chemoresistance. Aside from functionally elucidating and evaluating these epimutations, this review will discuss recent trials of DNA methyltransferase inhibitors (DNMTi). Finally, we will propose future directions that could enhance the feasibility of utilizing these candidate epimutations as clinical biomarkers. Methods To perform this review, a comprehensive literature search based on our keywords was conducted across the online databases PubMed and Google Scholar for identifying relevant studies published up until August 2022. Results Epimutations affecting MLH1, MSH2, and Ras-association domain family 1 isoform A (DNA damage repair and apoptosis); ATP-binding cassette subfamily B member 1 and methylation-controlled J (drug export); secreted frizzled-related proteins (Wnt/β-catenin signaling), neurocalcin delta (calcium and G protein-coupled receptor signaling), and zinc finger protein 671 all have potential as biomarkers for chemoresistance. However, specific uncertainties relating to these epimutations include histotype-specific differences, intrinsic versus acquired chemoresistance, and the interplay with complete surgical debulking. DNMTi for chemoresistant OC patients has shown some promise; however, issues surrounding their efficacy and dose-limiting toxicities remain; a personalized approach is required to maximize their effectiveness. Conclusion Establishing a panel of aberrantly methylated chemoresistance-related genes to predict chemoresponsiveness and patients' suitability to DNMTi could significantly reduce OC recurrence, while improving DNMTi therapy viability. To achieve this, a large-scale prospective genome-wide DNA methylation profile study that spans different histotypes, includes paired samples (before and after chemotherapy), and integrates transcriptomic and methylomic analysis, is warranted.
Collapse
Affiliation(s)
- Kaiyang Song
- Green Templeton CollegeUniversity of OxfordOxfordUK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordOxfordUK
| |
Collapse
|
35
|
de Jong VMT, Pruntel R, Steenbruggen TG, Bleeker FE, Nederlof P, Hogervorst FBL, Linn SC. Identifying the BRCA1 c.-107A > T variant in Dutch patients with a tumor BRCA1 promoter hypermethylation. Fam Cancer 2023; 22:151-154. [PMID: 36112334 PMCID: PMC10020283 DOI: 10.1007/s10689-022-00314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
An inherited single nucleotide variant (SNV) in the 5'UTR of the BRCA1 gene c.-107A > T was identified to be related to BRCA1 promoter hypermethylation and a hereditary breast and ovarian cancer phenotype in two UK families. We investigated whether this BRCA1 variant was also present in a Dutch cohort of breast and ovarian cancer patients with tumor BRCA1 promoter hypermethylation. We selected all breast and ovarian cancer cases that tested positive for tumor BRCA1 promoter hypermethylation at the Netherlands Cancer Institute and Sanger sequenced the specific mutation in the tumor DNA. In total, we identified 193 tumors with BRCA1 promoter hypermethylation in 178 unique patients. The wild-type allele was identified in 100% (193/193) of sequenced tumor samples. In a large cohort of 178 patients, none had tumors harboring the previously identified c.-107A > T SNV in BRCA1. We therefore can conclude that the germline SNV is not pervasive in patients with tumor BRCA1 promoter hypermethylation.
Collapse
Affiliation(s)
- Vincent M T de Jong
- Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, Netherlands
| | - Roelof Pruntel
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tessa G Steenbruggen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Fonnet E Bleeker
- Department of Clinical Genetics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Petra Nederlof
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frans B L Hogervorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, Netherlands.
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
36
|
Villegas-Ruíz V, Medina-Vera I, Arellano-Perdomo P, Castillo-Villanueva A, Galván-Diaz CA, Paredes-Aguilera R, Rivera-Luna R, Juárez-Méndez S. Low Expression of BRCA1 as a Potential Relapse Predictor in B-Cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2023; 45:e167-e173. [PMID: 36730467 DOI: 10.1097/mph.0000000000002595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/21/2022] [Indexed: 02/04/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the most common childhood hematological malignancy worldwide. Treatment outcomes have improved dramatically in recent years; despite this, relapse is still a problem, and the potential molecular explanation for this remains an important field of study. We performed microarray and single-cell RNA-Seq data mining, and we selected significant data with a P -value<0.05. We validated BRCA1 gene expression by means of quantitative (reverse transcription-polymerase chain reaction.) We performed statistical analysis and considered a P -value<0.05 significant. We identified the overexpression of breast cancer 1, early onset (BRCA1; P -value=2.52 -134 ), by means of microarray analysis. Moreover, the normal distribution of BRCA1 expression in healthy bone marrow. In addition, we confirmed the increases in BRCA1 expression using real-time (reverse transcription-polymerase chain reaction and determined that it was significantly reduced in patients with relapse ( P -values=0.026). Finally, we identified that the expression of the BRCA1 gene could predict early relapse ( P -values=0.01). We determined that low expression of BRCA1 was associated with B-cell acute lymphoblastic leukemia relapse and could be a potential molecular prognostic marker.
Collapse
|
37
|
Chu DT, Ngo AD, Wu CC. Epigenetics in cancer development, diagnosis and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:73-92. [PMID: 37225325 DOI: 10.1016/bs.pmbts.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cancer is a dangerous disease and one of the leading causes of death in the world. In 2020, there were nearly 10 million cancer deaths and approximately 20 million new cases. New cases and deaths from cancer are expected to increase further in the coming years. To have a deeper insight into the mechanism of carcinogenesis, epigenetics studies have been published and received much attention from scientists, doctors, and patients. Among alterations in epigenetics, DNA methylation and histone modification are studied by many scientists. They have been reported to be a major contributor in tumor formation and are involved in metastasis. From the understanding of DNA methylation and histone modification, effective, accurate and cost-effective methods for diagnosis and screening of cancer patients have been introduced. Furthermore, therapeutic approaches and drugs targeting altered epigenetics have also been clinically studied and have shown positive results in combating tumor progression. Several cancer drugs that rely on DNA methylation inactivation or histone modification have been approved by the FDA for the treatment of cancer patients. In summary, epigenetics changes such as DNA methylation or histone modification are take part in tumor growth, and they also have great prospect to study diagnostic and therapeutic methods of this dangerous disease.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
38
|
Clinical Utility of Genomic Tests Evaluating Homologous Recombination Repair Deficiency (HRD) for Treatment Decisions in Early and Metastatic Breast Cancer. Cancers (Basel) 2023; 15:cancers15041299. [PMID: 36831640 PMCID: PMC9954086 DOI: 10.3390/cancers15041299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most frequently occurring cancer worldwide. With its increasing incidence, it is a major public health problem, with many therapeutic challenges such as precision medicine for personalized treatment. Thanks to next-generation sequencing (NGS), progress in biomedical technologies, and the use of bioinformatics, it is now possible to identify specific molecular alterations in tumor cells-such as homologous recombination deficiencies (HRD)-enabling us to consider using DNA-damaging agents such as platinum salts or PARP inhibitors. Different approaches currently exist to analyze impairment of the homologous recombination pathway, e.g., the search for specific mutations in homologous recombination repair (HRR) genes, such as BRCA1/2; the use of genomic scars or mutational signatures; or the development of functional tests. Nevertheless, the role and value of these different tests in breast cancer treatment decisions remains to be clarified. In this review, we summarize current knowledge on the clinical utility of genomic tests, evaluating HRR deficiency for treatment decisions in early and metastatic breast cancer.
Collapse
|
39
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
40
|
Keyvani V, Kheradmand N, Navaei ZN, Mollazadeh S, Esmaeili SA. Epidemiological trends and risk factors of gynecological cancers: an update. Med Oncol 2023; 40:93. [PMID: 36757546 DOI: 10.1007/s12032-023-01957-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Abstract
Gynecological cancers, the most common cancer among women worldwide, disrupt the function of women's reproductive system, significantly impacting the quality of life. The epidemiological patterns of gynecological cancers differ in various regions and alter over time. The main challenge to deal with women's cancers is focusing on potential plans to improve patient outcomes. The epidemiology and general risk elements of gynecological cancers are important in the management of these cancers, so all of the reported risk factors in gynecological cancers have been evaluated in the present review. Due to the role of gynecological cancers in women's health, preventive measures and modifiable lifestyles together with early detection in high-risk groups are effective strategies that can reduce mortality rates. This review summarizes the epidemiology and global risk factors of gynecological cancers alongside others to better management of these malignancies and improve the quality of life in the affected patients.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Nasrpour Navaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed Pharmacother 2023; 158:114090. [PMID: 36493696 DOI: 10.1016/j.biopha.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in breast cancer-associated 1 (BRCA1) increase the lifetime risk of developing breast cancer by up to 51% over the risk of the general population. Many aspects of this multifunctional protein have been revealed, including its essential role in homologous recombination repair, E3 ubiquitin ligase activity, transcriptional regulation, and apoptosis. Although most studies have focused on BRCA1 deficiency due to mutations, only a minority of patients carry BRCA1 mutations. A recent study has suggested an expanded definition of BRCA1 deficiency with reduced BRCA1 levels, which accounts for almost half of all triple-negative breast cancer (TNBC) patients. Reduced BRCA1 levels can result from epigenetic modifications or increased proteasomal degradation. In this review, we discuss how this knowledge of BRCA1 function and regulation of BRCA1 protein stability can help overcome the challenges encountered in the clinic and advance current treatment strategies for BRCA1-related breast cancer patients, especially focusing on TNBC.
Collapse
Affiliation(s)
- Eun Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gil-Im Mun
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
42
|
Yu S, Cao S, He S, Zhang K. Locus-Specific Detection of DNA Methylation: The Advance, Challenge, and Perspective of CRISPR-Cas Assisted Biosensors. SMALL METHODS 2023; 7:e2201624. [PMID: 36609885 DOI: 10.1002/smtd.202201624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation is one of the epigenetic characteristics that result in heritable and revisable phenotype changes but without sequence changes in DNA. Aberrant methylation occurring at a specific locus was reported to be associated with cancers, insulin resistance, obesity, Alzheimer's disease, Parkinson's disease, etc. Therefore, locus-specific DNA methylation can serve as a valuable biomarker for disease diagnosis and therapy. Recently, Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are applied to develop biosensors for DNA, ribonucleic acid, proteins, and small molecules detection. Because of their highly specific binding ability and signal amplification capacity, CRISPR-Cas assisted biosensor also serve as a potential tool for locus-specific detection of DNA methylation. In this perspective, based on the detection principle, a detailed classification and comprehensive discussion of recent works about the latest advances in locus-specific detection of DNA methylation using CRISPR-Cas systems are provided. Furthermore, current challenges and future perspectives of CRISPR-based locus-specific detection of DNA methylation are outlined.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Sitian He
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| |
Collapse
|
43
|
An Optimized CoBRA Method for the Microfluidic Electrophoresis Detection of Breast Cancer Associated RASSF1 Methylation. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010007. [PMID: 36648833 PMCID: PMC9844460 DOI: 10.3390/biotech12010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Although breast cancer screening assays exist, many are inaccessible and have high turnaround times, leaving a significant need for better alternatives. Hypermethylation of tumor suppressor genes is a common epigenetic marker of breast cancer. Methylation tends to occur most frequently in the promoter and first exon regions of genes. Preliminary screening tests are crucial for informing patients whether they should pursue more involved testing. We selected RASSF1, previously demonstrated to be aberrantly methylated in liquid biopsies from breast cancer patients, as our gene of interest. Using CoBRA as our method for methylation quantification, we designed unique primer sets that amplify a portion of the CpG island spanning the 5' end of the RASSF1 first exon. We integrated the CoBRA approach with a microfluidics-based electrophoresis quantification system (LabChip) and optimized the assay such that insightful results could be obtained without post-PCR purification or concentration, two steps traditionally included in CoBRA assays. Circumventing these steps resulted in a decreased turnaround time and mitigated the laboratory machinery and reagent requirements. Our streamlined technique has an estimated limit of detection of 9.1 ng/μL of input DNA and was able to quantify methylation with an average error of 4.3%.
Collapse
|
44
|
Wu Y, Xu S, Cheng S, Yang J, Wang Y. Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status. J Ovarian Res 2023; 16:6. [PMID: 36611214 PMCID: PMC9826575 DOI: 10.1186/s13048-023-01094-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
As a kind of gynecological tumor, ovarian cancer is not as common as cervical cancer and breast cancer, but its malignant degree is higher. Despite the increasingly mature treatment of ovarian cancer, the five-year survival rate of patients is still less than 50%. Based on the concept of synthetic lethality, poly (ADP- ribose) polymerase (PARP) inhibitors target tumor cells with defects in homologous recombination repair(HRR), the most significant being the target gene Breast cancer susceptibility genes(BRCA). PARP inhibitors capture PARP-1 protein at the site of DNA damage to destroy the original reaction, causing the accumulation of PARP-DNA nucleoprotein complexes, resulting in DNA double-strand breaks(DSBs) and cell death. PARP inhibitors have been approved for the treatment of ovarian cancer for several years and achieved good results. However, with the widespread use of PARP inhibitors, more and more attention has been paid to drug resistance and side effects. Therefore, further research is needed to understand the mechanism of PARP inhibitors, to be familiar with the adverse reactions of the drug, to explore the markers of its efficacy and prognosis, and to deal with its drug resistance. This review elaborates the use of PARP inhibitors in ovarian cancer.
Collapse
Affiliation(s)
- Yongsong Wu
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China ,grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiani Yang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| | - Yu Wang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| |
Collapse
|
45
|
Khan F, Agarwal P, Gupta S, Maurya MK, Singh P, Agarwal A, Singh K, Sonkar AA, Goel MM. BRCA1 promoter methylation & its immunohistochemical correlation in sporadic breast cancer. Indian J Med Res 2023; 158:47-54. [PMID: 37602586 PMCID: PMC10550057 DOI: 10.4103/ijmr.ijmr_4605_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Indexed: 08/10/2023] Open
Abstract
Background & objectives Studies have shown that apart from hereditary breast carcinomas, breast cancer susceptibility gene 1 (BRCA1) mutations conferring to its loss are seen in sporadic breast carcinomas (SBC) as well. The aim of the present study was to assess BRCA1 methylation in females presenting at King George's Medical University, Lucknow, with SBC by both immunohistochemistry (IHC) and methylation PCR with respect to hormonal profile and various morphological prognostic parameters. The primary objective was to look for the association between BRCA1 protein expression and DNA promoter methylation. Methods 81 mastectomy specimens from SBC of invasive breast carcinoma (no special type) were included in this study. After a detailed morphological assessment, formalin fixed paraffin embedded tissue from a representative tumour area was selected for BRCA1 IHC by heat-mediated antigen retrieval under high pH and DNA extraction and further bisulphate treatment. BRCA1 was studied for methylation by methylated and unmethylated PCR-specific primers. Results BRCA1 promoter methylation was present in 42/81 (51.9%) participants, with significant BRCA1 protein loss (72.7%; P=0.002). A significant association between BRCA1 loss and hormonal profile was found (P=0.001); maximum in triple negative breast carcinoma (TNBC) (72%; 18/25). Most of the TNBC also harboured methylation (68%). Although not significant grade II and III tumours, lymph vascular invasion, ductal carcinoma in situ, and nodal metastasis (≥3) were seen in a higher percentage in methylated tumours. Mortality in SBC was significantly associated with BRCA1 loss (30.3%; P=0.024). Interpretation & conclusions Study results highlight the concept of "BRCAness" in SBC as well. Hence, we can confer that identification of BRCA1 loss in SBC can make it a perfect candidate for poly ADP-ribose polymerase inhibitors or cisplatin-based therapy like hereditary ones.
Collapse
Affiliation(s)
- Fatima Khan
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Preeti Agarwal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Malti Kumari Maurya
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Pooja Singh
- Department of Biotechnology, A.N. College, Magadh University, Bodh Gaya, Bihar, India
| | - Apoorva Agarwal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Kulranjan Singh
- Department of Endocrine Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Abhinav Arun Sonkar
- Department of General Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Madhu Mati Goel
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
46
|
Acuña-Ruiz A, Carrasco-López C, Santisteban P. Genomic and epigenomic profile of thyroid cancer. Best Pract Res Clin Endocrinol Metab 2023; 37:101656. [PMID: 35461756 DOI: 10.1016/j.beem.2022.101656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, and its incidence has been steadily increasing. Advances in sequencing have allowed analysis of the entire cancer genome, and has provided new information on the genetic lesions and modifications responsible for the onset, progression, dedifferentiation and metastasis of thyroid carcinomas. Moreover, integrated genomics has advanced our understanding of the development of cancer and its behavior, and has facilitated the identification of new genetic mutations and molecular pathways. The functional analysis of epigenetic modifications, such as DNA methylation, histone acetylation and non-coding RNAs, have contributed to define new regulatory mechanisms that control cell malignancy in thyroid cancer, especially aggressive forms. Here we review the most recent advances in genomics and epigenomics of thyroid cancer, which have resulted in a new classification and interpretation of the initiation and progression of thyroid tumors, providing new tools and opportunities for further investigation and for the clinical development of new treatment strategies.
Collapse
Affiliation(s)
- Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
47
|
Nikolaienko O, Lønning PE, Knappskog S. epialleleR: an R/Bioconductor package for sensitive allele-specific methylation analysis in NGS data. Gigascience 2022; 12:giad087. [PMID: 37919976 PMCID: PMC10622323 DOI: 10.1093/gigascience/giad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Low-level mosaic epimutations within the BRCA1 gene promoter occur in 5-8% of healthy individuals and are associated with a significantly elevated risk of breast and ovarian cancer. Similar events may also affect other tumor suppressor genes, potentially being a significant contributor to cancer burden. While this opens a new area for translational research, detection of low-level mosaic epigenetic events requires highly sensitive and robust methodology for methylation analysis. We here present epialleleR, a computational framework for sensitive detection, quantification, and visualization of mosaic epimutations in methylation sequencing data. Analyzing simulated and real data sets, we provide in-depth assessments of epialleleR performance and show that linkage to epihaplotype data is necessary to detect low-level methylation events. The epialleleR is freely available at https://github.com/BBCG/epialleleR and https://bioconductor.org/packages/epialleleR/ as an open-source R/Bioconductor package.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - Per Eystein Lønning
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Department of Oncology, Haukeland University Hospital, Bergen 5021, Norway
| | - Stian Knappskog
- K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Department of Oncology, Haukeland University Hospital, Bergen 5021, Norway
| |
Collapse
|
48
|
DNA methylation of the immediate upstream region of BRCA1 major transcription start sites is an independent favorable prognostic factor in patients with high-grade serous ovarian cancer. Gynecol Oncol 2022; 167:513-518. [PMID: 36253303 DOI: 10.1016/j.ygyno.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To establish a quantitative method to evaluate the DNA methylation level of an immediate upstream region of major BRCA1 transcriptional start sites (TSSs), and to investigate whether methylation of the region is a prognostic factor in high-grade serous ovarian cancer patients after neoadjuvant chemotherapy. METHODS Ninety-two FFPE samples of advanced high-grade serous ovarian cancers after neoadjuvant chemotherapy between 2011 and 2018 were used for mutation and methylation analysis. DNA methylation levels were assessed by pyrosequencing and DNA methylation microarray. An association between methylation level (or a mutation) and progression-free survival was assessed by Kaplan-Meier analysis. RESULT Major BRCA1 transcripts and CpG sites immediately upstream of their TSSs were identified, and a pyrosequencing method was developed. BRCA1 methylation, BRCA1/2 mutations, and a RAD51C mutation were detected in 17/79 (21.5%), 17/92 (18.5%), and 1/92 (1.1%) high-grade serious ovarian cancer samples. In univariate analysis, BRCA1 methylation and no residual tumor were associated with progression-free survival (BRCA1 methylation: P = 0.025, no residual tumor: P = 0.0026). Multivariate analysis showed that both BRCA1 methylation (P = 0.038, HR = 0.47, 95% CI: 0.21-0.96) and no residual tumor (P = 0.012, HR = 0.49, 95% CI: 0.28-0.85) were significant favorable prognostic factors. CONCLUSION A quantitative method to estimate the methylation level of the immediate upstream region of major BRCA1 TSSs was established. Methylation of the region of was an independent favorable prognostic factor in high-grade serous ovarian cancer patients.
Collapse
|
49
|
Gull N, Jones MR, Peng PC, Coetzee SG, Silva TC, Plummer JT, Reyes ALP, Davis BD, Chen SS, Lawrenson K, Lester J, Walsh C, Rimel BJ, Li AJ, Cass I, Berg Y, Govindavari JPB, Rutgers JKL, Berman BP, Karlan BY, Gayther SA. DNA methylation and transcriptomic features are preserved throughout disease recurrence and chemoresistance in high grade serous ovarian cancers. J Exp Clin Cancer Res 2022; 41:232. [PMID: 35883104 PMCID: PMC9327231 DOI: 10.1186/s13046-022-02440-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background Little is known about the role of global DNA methylation in recurrence and chemoresistance of high grade serous ovarian cancer (HGSOC). Methods We performed whole genome bisulfite sequencing and transcriptome sequencing in 62 primary and recurrent tumors from 28 patients with stage III/IV HGSOC, of which 11 patients carried germline, pathogenic BRCA1 and/or BRCA2 mutations. Results Landscapes of genome-wide methylation (on average 24.2 million CpGs per tumor) and transcriptomes in primary and recurrent tumors showed extensive heterogeneity between patients but were highly preserved in tumors from the same patient. We identified significant differences in the burden of differentially methylated regions (DMRs) in tumors from BRCA1/2 compared to non-BRCA1/2 carriers (mean 659 DMRs and 388 DMRs in paired comparisons respectively). We identified overexpression of immune pathways in BRCA1/2 carriers compared to non-carriers, implicating an increased immune response in improved survival (P = 0.006) in these BRCA1/2 carriers. Conclusion These findings indicate methylome and gene expression programs established in the primary tumor are conserved throughout disease progression, even after extensive chemotherapy treatment, and that changes in methylation and gene expression are unlikely to serve as drivers for chemoresistance in HGSOC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02440-z.
Collapse
|
50
|
Genome wide DNA methylation analysis identifies novel molecular subgroups and predicts survival in neuroblastoma. Br J Cancer 2022; 127:2006-2015. [PMID: 36175618 PMCID: PMC9681858 DOI: 10.1038/s41416-022-01988-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Neuroblastoma is the most common malignancy in infancy, accounting for 15% of childhood cancer deaths. Outcome for the high-risk disease remains poor. DNA-methylation patterns are significantly altered in all cancer types and can be utilised for disease stratification. METHODS Genome-wide DNA methylation (n = 223), gene expression (n = 130), genetic/clinical data (n = 213), whole-exome sequencing (n = 130) was derived from the TARGET study. Methylation data were derived from HumanMethylation450 BeadChip arrays. t-SNE was used for the segregation of molecular subgroups. A separate validation cohort of 105 cases was studied. RESULTS Five distinct neuroblastoma molecular subgroups were identified, based on genome-wide DNA-methylation patterns, with unique features in each, including three subgroups associated with known prognostic features and two novel subgroups. As expected, Cluster-4 (infant diagnosis) had significantly better 5-year progression-free survival (PFS) than the four other clusters. However, in addition, the molecular subgrouping identified multiple patient subsets with highly increased risk, most notably infant patients that do not map to Cluster-4 (PFS 50% vs 80% for Cluster-4 infants, P = 0.005), and allowed identification of subgroup-specific methylation differences that may reflect important biological differences within neuroblastoma. CONCLUSIONS Methylation-based clustering of neuroblastoma reveals novel molecular subgroups, with distinct molecular/clinical characteristics and identifies a subgroup of higher-risk infant patients.
Collapse
|