1
|
McGovern JA, Shafiee A, Wagner F, Lahr CA, Landgraf M, Meinert C, Williams ED, Russell PJ, Clements JA, Loessner D, Holzapfel BM, Risbridger GP, Hutmacher DW. Humanization of the Prostate Microenvironment Reduces Homing of PC3 Prostate Cancer Cells to Human Tissue-Engineered Bone. Cancers (Basel) 2018; 10:cancers10110438. [PMID: 30428629 PMCID: PMC6265886 DOI: 10.3390/cancers10110438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/12/2023] Open
Abstract
The primary tumor microenvironment is inherently important in prostate cancer (PCa) initiation, growth and metastasis. However, most current PCa animal models are based on the injection of cancer cells into the blood circulation and bypass the first steps of the metastatic cascade, hence failing to investigate the influence of the primary tumor microenvironment on PCa metastasis. Here, we investigated the spontaneous metastasis of PC3 human PCa cells from humanized prostate tissue, containing cancer-associated fibroblasts (CAFs) and prostate lymphatic and blood vessel endothelial cells (BVECs), to humanized tissue-engineered bone constructs (hTEBCs) in NOD-SCID IL2Rγnull (NSG) mice. The hTEBC formed a physiologically mature organ bone which allowed homing of metastatic PCa cells. Humanization of prostate tissue had no significant effect on the tumor burden at the primary site over the 4 weeks following intraprostatic injection, yet reduced the incidence and burden of metastases in the hTEBC. Spontaneous PCa metastases were detected in the lungs and spleen with no significant differences between the humanized and non-humanized prostate groups. A significantly greater metastatic tumor burden was observed in the liver when metastasis occurred from the humanized prostate. Together, our data suggests that the presence of human-derived CAFs and BVECs in the primary PCa microenvironment influences selectively the metastatic and homing behavior of PC3 cells in this model. Our orthotopic and humanized PCa model developed via convergence of cancer research and tissue engineering concepts provides a platform to dissect mechanisms of species-specific PCa bone metastasis and to develop precision medicine strategies.
Collapse
Affiliation(s)
- Jacqui A McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | - Abbas Shafiee
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- The University of Queensland (UQ), Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Ferdinand Wagner
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Lindwurmstraße 4, 80337 Munich, Germany.
| | - Christoph A Lahr
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | - Marietta Landgraf
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | - Christoph Meinert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Pamela J Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Daniela Loessner
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Boris M Holzapfel
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Brettreichstraße 11, 97072 Wuerzburg, Germany.
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 2800, Australia.
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| |
Collapse
|
3
|
Khanna A, Patil R, Deshmukh A. Assessment of the potential of pathological stains in human prostate cancer. J Clin Diagn Res 2014; 8:124-8. [PMID: 24596742 DOI: 10.7860/jcdr/2014/7002.3938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Incidence of prostate cancer in India is relatively low compared to the western countries. Nevertheless, an increase by 1% yearly has been recorded in the last three years, thereby making early diagnosis of prostate cancer crucial for controlling its incidence. Differentiating between benign and malignant lesions has been a diagnostic dilemma, especially in prostate pathology. This is compounded by unavailability of modern tests in certain regions of developing nations. METHODS A cohort of one hundred seventy six prostatomegaly patients used in the current study was obtained both retrospectively and prospectively at the Jawaharlal Nehru Medical College, Sawangi, Wardha, Maharashtra, India. Details of the patients were recorded which included their age. The samples were then cut into 5 sections, each of 5micron thickness. One section was preserved and the other 4 sections were subjected to Hematoxylin and Eosin (H and E), Periodic Acid-Schiff (PAS), Alcian Blue and AgNOR stains. Degree of differentiation was estimated and correlated with the Gleason score and the outcome of the stainings. RESULTS Majority of benign prostatic hyperplasia and all primary carcinoma patients were in their sixth to eighth decade of life. While all the benign lesions were negative, 6 out of 9 primary prostate carcinomas were positive for Alcian Blue stain. Majority of both benign and malignant lesions were positive for Periodic Acid Schiff (PAS) stain. In terms of Argyrophilic Nucleolar Organiser Region (AgNOR) count per nucleus, the value in benign lesions was observed to be half the count observed in malignant lesions per nucleus. CONCLUSION Although the potential use of the orthodox stains individually may not serve the purpose to differentiate between benign and malignant lesions, together they may have the potential to identify relatively more malignant cases. This may be helpful especially in low socio-economic countries and rural areas where molecular based tests may not yet be available.
Collapse
Affiliation(s)
- Anchit Khanna
- Adult Cancer Program, Lowy Cancer Centre and Prince of Wales Hospital, UNSW Medicine, University of New South Wales , Sydney, Australia
| | - Rani Patil
- Department of Pathology, Jawaharlal Nehru Medical College , Wardha, Maharashtra, India
| | - Abhay Deshmukh
- Department of Surgery, Jawaharlal Nehru Medical College , Wardha, Maharashtra, India
| |
Collapse
|
4
|
Teodoro AJ, Oliveira FL, Martins NB, Maia GDA, Martucci RB, Borojevic R. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines. Cancer Cell Int 2012; 12:36. [PMID: 22866768 PMCID: PMC3492052 DOI: 10.1186/1475-2867-12-36] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/24/2012] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED BACKGROUND Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound's action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. METHODS Human cell lines were treated with lycopene (1-5 μM) for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL) and by DAPI. RESULTS Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7) after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145) when cells were treated with lycopene. CONCLUSIONS Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent.
Collapse
Affiliation(s)
- Anderson Junger Teodoro
- Laboratory of Nutritional Biochemistry, Program of Food and Nutrition, UNIRIO, Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
5
|
Bonfil RD, Sabbota A, Nabha S, Bernardo MM, Dong Z, Meng H, Yamamoto H, Chinni SR, Lim IT, Chang M, Filetti LC, Mobashery S, Cher ML, Fridman R. Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism-based selective gelatinase inhibitor. Int J Cancer 2006; 118:2721-6. [PMID: 16381009 DOI: 10.1002/ijc.21645] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastasis to the bone is a major clinical complication in patients with prostate cancer (PC). However, therapeutic options for treatment of PC bone metastasis are limited. Gelatinases are members of the matrix metalloproteinase (MMP) family and have been shown to play a key role in PC metastasis. Herein, we investigated the effect of SB-3CT, a covalent mechanism-based MMP inhibitor with high selectivity for gelatinases, in an experimental model of PC bone metastases. Intraperitoneal (i.p.) treatment with SB-3CT (50 mg/kg) inhibited intraosseous growth of human PC3 cells within the marrow of human fetal femur fragments previously implanted in SCID mice, as demonstrated by histomorphometry and Ki-67 immunohistochemistry. The anti-osteolytic effect of SB-3CT was confirmed by radiographic images. Treatment with SB-3CT also reduced intratumoral vascular density and bone degradation in the PC3 bone tumors. A direct inhibition of bone marrow endothelial cell invasion and tubule formation in Matrigel by SB-3CT in vitro was also demonstrated. The use of the highly selective gelatinase inhibitors holds the promise of effective intervention of metastases of PC to the bone.
Collapse
Affiliation(s)
- R Daniel Bonfil
- Department of Urology, Wayne State University School of Medicine and The Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|