1
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Taher WM, Abdulameer SJ, Abosaooda M, Fadhil AA. Peptide-Based Therapeutics in Cancer Therapy. Mol Biotechnol 2024; 66:2679-2696. [PMID: 37768503 DOI: 10.1007/s12033-023-00873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
A monster called cancer is still one of the most challenging human problems and one of the leading causes of death in the world. Different types of treatment methods are used for cancer therapy; however, there are challenges such as high cost and harmful side effects in using these methods. Recent years have witnessed a surge in the development of therapeutic peptides for a wide range of diseases, notably cancer. Peptides are preferred over antibiotics, radiation therapy, and chemotherapy in the treatment of cancer due to a number of aspects, including flexibility, easy modification, low immunogenicity, and inexpensive cost of production. The use of therapeutic peptides in cancer treatment is a novel and intriguing strategy. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity, small dimensions, good biocompatibility, and simplicity of modification. Target specificity and minimal toxicity are benefits of therapeutic peptides. Additionally, peptides can be used to design antigens or adjuvants for vaccine development. Here, types of therapeutic peptides for cancer therapy will be discussed, such as peptide-based cancer vaccines and tumor-targeting peptides (TTP) and cell-penetrating peptides (CPP).
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Lubna R Al-Ameer
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
3
|
Katopodi T, Petanidis S, Grigoriadou E, Anestakis D, Charalampidis C, Chatziprodromidou I, Floros G, Eskitzis P, Zarogoulidis P, Koulouris C, Sevva C, Papadopoulos K, Roulia P, Mantalovas S, Dagher M, Karakousis AV, Varsamis N, Vlassopoulos K, Theodorou V, Mystakidou CM, Katsios NI, Farmakis K, Kosmidis C. Immune Specific and Tumor-Dependent mRNA Vaccines for Cancer Immunotherapy: Reprogramming Clinical Translation into Tumor Editing Therapy. Pharmaceutics 2024; 16:455. [PMID: 38675116 PMCID: PMC11053579 DOI: 10.3390/pharmaceutics16040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Extensive research into mRNA vaccines for cancer therapy in preclinical and clinical trials has prepared the ground for the quick development of immune-specific mRNA vaccines during the COVID-19 pandemic. Therapeutic cancer vaccines based on mRNA are well tolerated, and are an attractive choice for future cancer immunotherapy. Ideal personalized tumor-dependent mRNA vaccines could stimulate both humoral and cellular immunity by overcoming cancer-induced immune suppression and tumor relapse. The stability, structure, and distribution strategies of mRNA-based vaccines have been improved by technological innovations, and patients with diverse tumor types are now being enrolled in numerous clinical trials investigating mRNA vaccine therapy. Despite the fact that therapeutic mRNA-based cancer vaccines have not yet received clinical approval, early clinical trials with mRNA vaccines as monotherapy and in conjunction with checkpoint inhibitors have shown promising results. In this review, we analyze the most recent clinical developments in mRNA-based cancer vaccines and discuss the optimal platforms for the creation of mRNA vaccines. We also discuss the development of the cancer vaccines' clinical research, paying particular attention to their clinical use and therapeutic efficacy, which could facilitate the design of mRNA-based vaccines in the near future.
Collapse
Affiliation(s)
- Theodora Katopodi
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
| | - Savvas Petanidis
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Eirini Grigoriadou
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
| | - Doxakis Anestakis
- Department of Anatomy, Medical School, University of Cyprus, Nicosia 1678, Cyprus; (D.A.); (C.C.)
| | | | | | - George Floros
- Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece;
| | - Panagiotis Eskitzis
- Department of Obstetrics, University of Western Macedonia, 50100 Kozani, Greece;
| | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Charilaos Koulouris
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Christina Sevva
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Konstantinos Papadopoulos
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Panagiota Roulia
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Stylianos Mantalovas
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Marios Dagher
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Alexandros Vasileios Karakousis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | | | - Konstantinos Vlassopoulos
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Vasiliki Theodorou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Chrysi Maria Mystakidou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Nikolaos Iason Katsios
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Konstantinos Farmakis
- Pediatric Surgery Clinic, General Hospital of Thessaloniki “G. Gennimatas”, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece;
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| |
Collapse
|
4
|
Kenoosh HA, Pallathadka H, Hjazi A, Al-Dhalimy AMB, Zearah SA, Ghildiyal P, Al-Mashhadani ZI, Mustafa YF, Hizam MM, Elawady A. Recent advances in mRNA-based vaccine for cancer therapy; bench to bedside. Cell Biochem Funct 2024; 42:e3954. [PMID: 38403905 DOI: 10.1002/cbf.3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
The messenger RNA (mRNA) vaccines have progressed from a theoretical concept to a clinical reality over the last few decades. Compared to conventional vaccination methods, these vaccines have a number of benefits, such as substantial potency, rapid growth, inexpensive production, and safe administration. Nevertheless, their usefulness was restricted up to now due to worries about the erratic and ineffective circulation of mRNA in vivo. Thankfully, these worries have largely been allayed by recent technological developments, which have led to the creation of multiple mRNA vaccination platforms for cancer and viral infections. The mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. The paper will examine the present status of mRNA vaccine technology and suggest future paths for the advancement and application of this exciting vaccine platform as a common therapeutic choice.
Collapse
Affiliation(s)
- Hadeel Ahmed Kenoosh
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Manar Mohammed Hizam
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Zhao J, Liao B, Gong L, Yang H, Li S, Li Y. Knowledge mapping of therapeutic cancer vaccine from 2013 to 2022: A bibliometric and visual analysis. Hum Vaccin Immunother 2023; 19:2254262. [PMID: 37728107 PMCID: PMC10512878 DOI: 10.1080/21645515.2023.2254262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The investigation of therapeutic cancer vaccines has been ongoing for the past century. Herein, we used VOSviewer and CiteSpace to perform the first global bibliometric analysis of the literature on therapeutic cancer vaccines from 2013 to 2022 aiming to explore the current status and potential research trends. The findings revealed a consistent upward trend in both publication counts and citations. The United States emerged as the leading contributor with the highest number of published papers. Additionally, the analysis of references and keywords indicated that therapeutic cancer vaccines have long been popular topics, whereas neoantigen vaccines, mRNA vaccines, combination strategies, and vaccine delivery systems are emerging research hotspots. This bibliometric study provides a comprehensive and important overview of the current knowledge and potential developments in therapeutic cancer vaccines from 2013 to 2022, which may serve as a valuable reference for scholars interested in further exploring this promising field.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Phase I Clinical Trial Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Bin Liao
- Department of Phase I Clinical Trial Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Li Gong
- Department of Phase I Clinical Trial Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Huiyao Yang
- Department of Phase I Clinical Trial Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Sha Li
- Department of Phase I Clinical Trial Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- Department of Phase I Clinical Trial Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
6
|
Wang QT, Liu YX, Wang J, Wang H. Advances in Cancer Nanovaccines: Harnessing Nanotechnology for Broadening Cancer Immune Response. ChemMedChem 2023; 18:e202200673. [PMID: 37088719 DOI: 10.1002/cmdc.202200673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Many advances have been made recently in the field of cancer immunotherapy, particularly with the development of treatments such as immune checkpoint inhibitors and adoptive cellular immunotherapy. The efficacy of immunotherapy is limited, however, owing to high levels of tumor heterogeneity and the immunosuppressive environments of advanced malignant tumors. Therefore, therapeutic anticancer vaccines have gradually become powerful tools for inducing valid antitumor immune responses and regulating the immune microenvironment. Tumor vaccines loaded in nanocarriers have become an indispensable delivery platform for tumor treatment because of their enhanced stability, targeting capability, and high level of safety. Through a unique design, cancer nanovaccines activate innate immunity and tumor-specific immunity simultaneously. For example, the design of cancer vaccines can incorporate strategies such as enhancing the stability and targeting of tumor antigens, combining effective adjuvants, cytokines, and immune microenvironment regulators, and promoting the maturation and cross-presentation of antigen-presenting cells (APCs). In this review, we discuss the design and preparation of nanovaccines for remodeling tumor antigen immunogenicity and regulating the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Qian-Ting Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yi-Xuan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| |
Collapse
|
7
|
Tagliamonte M, Cavalluzzo B, Mauriello A, Ragone C, Buonaguro FM, Tornesello ML, Buonaguro L. Molecular mimicry and cancer vaccine development. Mol Cancer 2023; 22:75. [PMID: 37101139 PMCID: PMC10131527 DOI: 10.1186/s12943-023-01776-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The development of cancer immunotherapeutic strategies relies on the identification and validation of optimal target tumor antigens, which should be tumor-specific as well as able to elicit a swift and potent anti-tumor immune response. The vast majority of such strategies are based on tumor associated antigens (TAAs) which are shared wild type cellular self-epitopes highly expressed on tumor cells. Indeed, TAAs can be used to develop off-the-shelf cancer vaccines appropriate to all patients affected by the same malignancy. However, given that they may be also presented by HLAs on the surface of non-malignant cells, they may be possibly affected by immunological tolerance or elicit autoimmune responses. MAIN BODY In order to overcome such limitations, analogue peptides with improved antigenicity and immunogenicity able to elicit a cross-reactive T cell response are needed. To this aim, non-self-antigens derived from microorganisms (MoAs) may be of great benefit.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Angela Mauriello
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Concetta Ragone
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori, IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori, IRCCS - "Fond G. Pascale", Naples, Italy
| | - Luigi Buonaguro
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori, IRCCS - "Fond. G. Pascale", Naples, Italy.
| |
Collapse
|
8
|
Rostamirad S, Daneshpour S, Mofid MR, Andalib A, Eskandariyan A, Mousavi S, Yousofi Darani H. Inhibition of mouse colon cancer growth following immunotherapy with a fraction of hydatid cyst fluid. Exp Parasitol 2023; 249:108501. [PMID: 36931383 DOI: 10.1016/j.exppara.2023.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Hydatid cyst is the larval stage of the tape worm Echinococcus granulosus which is located in human and livestock viscera. There are some scientific evidences indicating that parasitic infections induce antitumor activity against certain types of cancers. In this study, the effects of a fraction of hydatid cyst fluid on colon cancer tumor in BALB/c mice were investigated. MATERIALS AND METHODS In this experimental work six groups of mice were challenged with mouse colon cancer cells. 5 days later when the sign of tumor growth in mice was seen, group 1-4 were injected with hydatid cyst fluid, the 78 kDa fraction, live protoscolices and BCG respectively. Group five was injected with alum alone and the sixth group left intact without any injection. The size of the tumor was measured and compared in all groups. Then blood samples of mice were evaluated for serum cytokine levels. RESULT In mice injected with hydatid cyst antigens especially a fraction of hydatid cyst fluid, tumor size was smaller than the that of control groups and the difference of tumor size in cases and control groups was statistically significant. CONCLUSION The results of this study showed that injection of mice with a fraction of hydatid cyst fluid significantly inhibits the growth of mouse colon cancer and this inhibition may be related to effect of immune response to these antigens.
Collapse
Affiliation(s)
- Shahla Rostamirad
- Department of Parasitology and Mycology, Isfahan Medical School, Isfahan University of Medical Sciences, Isfahan, Iran; Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Shima Daneshpour
- Department of Parasitology and Mycology, Isfahan Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry, Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Immunology Department, Isfahan Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Eskandariyan
- Department of Parasitology and Mycology, Isfahan Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Mousavi
- Department of Parasitology and Mycology, Isfahan Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of Parasitology and Mycology, Isfahan Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
10
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
11
|
Epitope-based minigene vaccine targeting fibroblast activation protein α induces specific immune responses and anti-tumor effects in 4 T1 murine breast cancer model. Int Immunopharmacol 2022; 112:109237. [PMID: 36152535 DOI: 10.1016/j.intimp.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022]
Abstract
Fibroblast activation protein (FAPα) is a tumor stromal antigen expressed by cancer-associated fibroblasts (CAFs) in more than 90 % of malignant epithelial carcinomas. FAPα-based immunotherapy has been reported and showed that FAPα-specific immune response can remold immune microenvironment and contribute to tumor regression. Many FAPα-based vaccines have been investigated in preclinical trials, which can elicit strong and durable cytolytic T lymphocytes (CTL) with good safety. However, epitope-based FAPα vaccines are rarely reported. To break tolerance against self-antigens, analogue epitopes with modified peptides at the anchor residues are typically used to improve epitope immunogenicity. To investigate the feasibility of a FAPα epitope-based vaccine for cancer immunotherapy in vivo, we conducted a preclinical study to identify a homologous CTL epitope of human and mouse FAPα and obtained its analogue epitope in BALB/c mice, and explored the anti-tumor activity of their minigene vaccines in 4 T1 tumor-bearing mice. By using in silico epitope prediction tools and immunogenicity assays, immunodominant epitope FAP.291 (YYFSWLTWV) and its analogue epitope FAP.291I9 (YYFSWLTWI) were identified. The FAP.291-based epitope minigene vaccine successfully stimulated CTLs targeting CAFs and exhibited anti-tumor activity in a 4 T1 murine breast cancer model. Furthermore, although the analogue epitope FAP.291I9 enhanced FAP.291-specific immune responses, improvement of anti-tumor immunity effects was not observed. Check of immunosuppressive factors revealed that the high levels of IL-10, IL-13, myeloid-derived suppressor cells and iNOS induced by FAP.291I9 increased, which considered the main cause of the failure of the analogue epitope-based vaccine. Thus, we demonstrated for the first time that the FAP.291 minigene vaccine could induce mouse CTLs and also function as a tumor regression antigen, providing the basis for future studies of FAPα epitope-based vaccines. This study may also be valuable for further improvement of the immunogenicity of analogue epitope vaccines.
Collapse
|
12
|
CRISPR/Cas9-medaited knockout of endogenous T-cell receptor in Jurkat cells and generation of NY-ESO-1-specific T cells: An in vitro study. Int Immunopharmacol 2022; 110:109055. [PMID: 35853277 DOI: 10.1016/j.intimp.2022.109055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/27/2022]
Abstract
Adoptive transfer of T-cell receptor (TCR)-engineered T cells has been successful in mediating favorable clinical outcomes. TCR-engineered T cells can be applied for targeting cancers whose associated antigens are intracellular and presented through major histocompatibility complexes (MHC). The mispairing of the exogenous TCR chains with the endogenous TCR chains leads to functionally impaired TCR-engineered T cells. The CRISPR/Cas9 genome-editing system can be utilized for the knockout of the endogenous TCR in T cells before introducing the exogenous TCR chains. In this study, we used the lentiviral delivery of CRISPR/Cas9 for disrupting the expression of the endogenous TCR in the Jurkat cell line. Next, an exogenous TCR targeting human leukocyte antigen (HLA)-A*0201-restricted New York esophageal squamous cell carcinoma 1 (NY-ESO-1) peptide was transduced into the TCR-knockout (KO) Jurkat cells. Further, we assessed lentiviral transduction efficacy using tetramer assay and evaluated the functionality of the NY-ESO-1-specific TCR-engineered T cells by quantifying the cell surface expression of CD69 upon co-cultivation with peptide-pulsed T2 cells. We successfully knocked out the endogenous TCR in ∼40% of the Jurkat cells. TCR-KO cells were selected and subjected to express NY-ESO-1-specific TCRs using lentiviral vectors. Flow cytometry analysis confirmed that up to 55% of the cells expressed the transgenic TCR on their surface. The functionality assay demonstrated that >90% of the engineered cells expressed CD69 when co-cultured with peptide-pulsed T2 cells. Conclusively, we developed a pipeline to engineer Jurkat cells using the state-of-the-art technique CRISPR/Cas9 and generated TCR-engineered cells that can become activated by a tumor-specific antigen.
Collapse
|
13
|
Liu Y, Zhang L, Chang R, Yan X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem Commun (Camb) 2022; 58:2247-2258. [PMID: 35083992 DOI: 10.1039/d1cc06355c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinational photoimmunotherapy (PIT) is considered to be an ideal strategy for the treatment of highly recurrent and metastatic cancer, because it can ablate the primary tumor and provide in situ an autologous tumor vaccine to induce the host immune response, ultimately achieving the goal of controlling tumor growth and distal metastasis. Significant efforts have been devoted to enhancing the immune response caused by phototherapy-eliminated tumors. Recently, supramolecular PIT nanoagents based on precise peptide self-assembly design have been employed to improve the efficacy of photoimmunotherapy by utilizing the stability, targeting capability and flexibility of drugs, increasing tumor immunogenicity and realizing the synergistic amplification of immune effects through multiple pathways and collaborative strategy. This review summarizes peptide-based supramolecular PIT nanoagents for phototherapy-synergized cancer immunotherapy and its progress in enhancing the effect of photoimmunotherapy, especially focusing on the design of peptide-based PIT nanoagents, the progress of bioactive peptides combined photoimmunotherapy, and the synergistic immune-response mechanism.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics & Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China.,Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.
| |
Collapse
|
14
|
Mukherjee S, Sanchez-Bernabeu A, Demmers LC, Wu W, Heck AJR. The HLA Ligandome Comprises a Limited Repertoire of O-GlcNAcylated Antigens Preferentially Associated With HLA-B*07:02. Front Immunol 2021; 12:796584. [PMID: 34925382 PMCID: PMC8671986 DOI: 10.3389/fimmu.2021.796584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Mass-spectrometry based immunopeptidomics has provided unprecedented insights into antigen presentation, not only charting an enormous ligandome of self-antigens, but also cancer neoantigens and peptide antigens harbouring post-translational modifications. Here we concentrate on the latter, focusing on the small subset of HLA Class I peptides (less than 1%) that has been observed to be post-translationally modified (PTM) by a O-linked N-acetylglucosamine (GlcNAc). Just like neoantigens these modified antigens may have specific immunomodulatory functions. Here we compiled from literature, and a new dataset originating from the JY B cell lymphoblastoid cell line, a concise albeit comprehensive list of O-GlcNAcylated HLA class I peptides. This cumulative list of O-GlcNAcylated HLA peptides were derived from normal and cancerous origin, as well as tissue specimen. Remarkably, the overlap in detected O-GlcNAcylated HLA peptides as well as their source proteins is strikingly high. Most of the O-GlcNAcylated HLA peptides originate from nuclear proteins, notably transcription factors. From this list, we extract that O-GlcNAcylated HLA Class I peptides are preferentially presented by the HLA-B*07:02 allele. This allele loads peptides with a Proline residue anchor at position 2, and features a binding groove that can accommodate well the recently proposed consensus sequence for O-GlcNAcylation, P(V/A/T/S)g(S/T), essentially explaining why HLA-B*07:02 is a favoured binding allele. The observations drawn from the compiled list, may assist in the prediction of novel O-GlcNAcylated HLA antigens, which will be best presented by patients harbouring HLA-B*07:02 or related alleles that use Proline as anchoring residue.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Alvaro Sanchez-Bernabeu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Laura C Demmers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
James CA, Ronning P, Cullinan D, Cotto KC, Barnell EK, Campbell KM, Skidmore ZL, Sanford DE, Goedegebuure SP, Gillanders WE, Griffith OL, Hawkins WG, Griffith M. In silico epitope prediction analyses highlight the potential for distracting antigen immunodominance with allogeneic cancer vaccines. CANCER RESEARCH COMMUNICATIONS 2021; 1:115-126. [PMID: 35611186 PMCID: PMC9126504 DOI: 10.1158/2767-9764.crc-21-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Allogeneic cancer vaccines are designed to induce antitumor immune responses with the goal of impacting tumor growth. Typical allogeneic cancer vaccines are produced by expansion of established cancer cell lines, transfection with vectors encoding immunostimulatory cytokines, and lethal irradiation. More than 100 clinical trials have investigated the clinical benefit of allogeneic cancer vaccines in various cancer types. Results show limited therapeutic benefit in clinical trials and currently there are no FDA approved allogeneic cancer vaccines. We used recently developed bioinformatics tools including the pVAC-seq suite of software tools to analyze DNA/RNA sequencing data from the TCGA to examine the repertoire of antigens presented by a typical allogeneic cancer vaccine, and to simulate allogeneic cancer vaccine clinical trials. Specifically, for each simulated clinical trial we modeled the repertoire of antigens presented by allogeneic cancer vaccines consisting of three hypothetical cancer cell lines to 30 patients with the same cancer type. Simulations were repeated ten times for each cancer type. Each tumor sample in the vaccine and the vaccine recipient was subjected to HLA typing, differential expression analyses for tumor associated antigens (TAAs), germline variant calling, and neoantigen prediction. These analyses provided a robust, quantitative comparison between potentially beneficial TAAs and neoantigens versus distracting antigens present in the allogeneic cancer vaccines. We observe that distracting antigens greatly outnumber shared TAAs and neoantigens, providing one potential explanation for the lack of observed responses to allogeneic cancer vaccines. This analysis provides additional rationale for the redirection of efforts towards a personalized cancer vaccine approach.
Collapse
Affiliation(s)
- C. Alston James
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Peter Ronning
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Darren Cullinan
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Kelsy C. Cotto
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Erica K. Barnell
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Katie M. Campbell
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dominic E. Sanford
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - S. Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.,CorrespondingAuthor: Malachi Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. Phone: 314-286-1274; E-mail: ; Obi L. Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail: ; and William G. Hawkins, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail:
| | - William G. Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,CorrespondingAuthor: Malachi Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. Phone: 314-286-1274; E-mail: ; Obi L. Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail: ; and William G. Hawkins, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail:
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.,CorrespondingAuthor: Malachi Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. Phone: 314-286-1274; E-mail: ; Obi L. Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail: ; and William G. Hawkins, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail:
| |
Collapse
|
16
|
Rodrigues MQ, Alves PM, Roldão A. Functionalizing Ferritin Nanoparticles for Vaccine Development. Pharmaceutics 2021; 13:1621. [PMID: 34683914 PMCID: PMC8540537 DOI: 10.3390/pharmaceutics13101621] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
In the last decade, the interest in ferritin-based vaccines has been increasing due to their safety and immunogenicity. Candidates against a wide range of pathogens are now on Phase I clinical trials namely for influenza, Epstein-Barr, and SARS-CoV-2 viruses. Manufacturing challenges related to particle heterogeneity, improper folding of fused antigens, and antigen interference with intersubunit interactions still need to be overcome. In addition, protocols need to be standardized so that the production bioprocess becomes reproducible, allowing ferritin-based therapeutics to become readily available. In this review, the building blocks that enable the formulation of ferritin-based vaccines at an experimental stage, including design, production, and purification are presented. Novel bioengineering strategies of functionalizing ferritin nanoparticles based on modular assembly, allowing the challenges associated with genetic fusion to be circumvented, are discussed. Distinct up/down-stream approaches to produce ferritin-based vaccines and their impact on production yield and vaccine efficacy are compared. Finally, ferritin nanoparticles currently used in vaccine development and clinical trials are summarized.
Collapse
Affiliation(s)
- Margarida Q. Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.Q.R.); (P.M.A.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.Q.R.); (P.M.A.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.Q.R.); (P.M.A.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
17
|
The therapeutic triad of extracellular vesicles: As drug targets, as drugs, and as drug carriers. Biochem Pharmacol 2021; 192:114714. [PMID: 34332957 DOI: 10.1016/j.bcp.2021.114714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Rapidly growing interest in the study of extracellular vesicles (EVs) has led to the accumulation of evidence on their critical roles in various pathologies, as well as opportunities to design novel therapeutic EV-based applications. Efficiently exploiting the constantly expanding knowledge of the biology and function of EVs requires a deep understanding of the various possible strategies of using EVs for therapeutic purposes. Accordingly, in the present work, we have narrowed the broad therapeutic potential of EVs and consider the similarities and differences of various strategies as we articulate three major aspects (i.e., a triad) of their therapeutic uses: (i) EVs as drug targets, whereby we discuss therapeutic targeting of disease-promoting EVs; (ii) EVs as drugs, whereby we consider the natural medicinal properties of EVs and the available options for their optimization; and (iii) EVs as drug carriers, whereby we highlight the advantages of EVs as vehicles for efficacious drug delivery of natural compounds. Finally, after conducting a comprehensive review of the latest literature on each of these aspects, we outline opportunities, limitations, and potential solutions.
Collapse
|
18
|
The Role of Peptide-Based Tumor Vaccines on Cytokines of Adaptive Immunity: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Oncogenic activity and cellular functionality of melanoma associated antigen A3. Biochem Pharmacol 2021; 192:114700. [PMID: 34303709 DOI: 10.1016/j.bcp.2021.114700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Cancer testis antigen Melanoma associated antigen A3 (MAGE-A3) has been subject of research for many years. Being expressed in various tumor types and influencing proliferation, metastasis, and tumor pathogenicity, MAGE-A3 is an attractive target for cancer therapy, particularly because in healthy tissues, MAGE-A3 is only expressed in testes and placenta. MAGE-A3 acts as a cellular master regulator by stimulating E3 ubiquitin ligase tripartite motif-containing protein 28 (TRIM28), resulting in regulation of various cellular targets. These include tumor suppressor protein p53 and cellular energy sensor AMP-activated protein kinase (AMPK). The restricted expression of MAGE-A3 in tumor cells makes MAGE-A3 an attractive target for vaccine-based immune therapy. However, although phase I and phase II clinical trials involving MAGE-A3-specific immunotherapeutic interventions were promising, large phase III studies failed. This article gives an overview about the role of MAGE-A3 as a cellular master switch and discusses approaches to improve MAGE-A3-based immunotherapies.
Collapse
|
20
|
Ragone C, Manolio C, Cavalluzzo B, Mauriello A, Tornesello ML, Buonaguro FM, Castiglione F, Vitagliano L, Iaccarino E, Ruvo M, Tagliamonte M, Buonaguro L. Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs). J Immunother Cancer 2021; 9:jitc-2021-002694. [PMID: 34049932 PMCID: PMC8166618 DOI: 10.1136/jitc-2021-002694] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 11/11/2022] Open
Abstract
Background The host’s immune system develops in equilibrium with both cellular self-antigens and non-self-antigens derived from microorganisms which enter the body during lifetime. In addition, during the years, a tumor may arise presenting to the immune system an additional pool of non-self-antigens, namely tumor antigens (tumor-associated antigens, TAAs; tumor-specific antigens, TSAs). Methods In the present study, we looked for homology between published TAAs and non-self-viral-derived epitopes. Bioinformatics analyses and ex vivo immunological validations have been performed. Results Surprisingly, several of such homologies have been found. Moreover, structural similarities between paired TAAs and viral peptides as well as comparable patterns of contact with HLA and T cell receptor (TCR) α and β chains have been observed. Therefore, the two classes of non-self-antigens (viral antigens and tumor antigens) may converge, eliciting cross-reacting CD8+ T cell responses which possibly drive the fate of cancer development and progression. Conclusions An established antiviral T cell memory may turn out to be an anticancer T cell memory, able to control the growth of a cancer developed during the lifetime if the expressed TAA is similar to the viral epitope. This may ultimately represent a relevant selective advantage for patients with cancer and may lead to a novel preventive anticancer vaccine strategy.
Collapse
Affiliation(s)
- Concetta Ragone
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Carmen Manolio
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Beatrice Cavalluzzo
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Angela Mauriello
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Maria Lina Tornesello
- Esperimental Oncology - Molecular Biology and Viral Oncogenesis, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Franco M Buonaguro
- Esperimental Oncology - Molecular Biology and Viral Oncogenesis, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | | | | | | | - Menotti Ruvo
- Institute for Biostructures and Bioimages, CNR, Roma, Italy
| | - Maria Tagliamonte
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Luigi Buonaguro
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| |
Collapse
|
21
|
Hashemzadeh N, Dolatkhah M, Adibkia K, Aghanejad A, Barzegar-Jalali M, Omidi Y, Barar J. Recent advances in breast cancer immunotherapy: The promising impact of nanomedicines. Life Sci 2021; 271:119110. [PMID: 33513401 DOI: 10.1016/j.lfs.2021.119110] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) is one of the prevalent cancers among women. Generally, the treatment of BC is mostly based on several prominent strategies, including chemotherapy, surgery, endocrine therapy, molecular targeted therapy, and radiation. Owing to the growing knowledge about the complexity of BC pathobiology, immunotherapy as a promising treatment modality has substantially improved the patients' care in the clinic. Immunotherapy is used to harness the patient's immune system to recognize and battle devious cancer cells. As a novel therapy approach, this emerging strategy targets the key molecular entities of tumor tissue. To achieve maximal therapeutic impacts, the dynamic interplay between cancer and immune cells needs to be fully comprehended. The key molecular machinery of solid tumors can be targeted by nanoscale immunomedicines. While discussing the potential biomarkers involved in the initiation and progression of BC, we aimed to provide comprehensive insights into the immunotherapy and articulate the recent advances in terms of the therapeutic strategies used to control this disease, including immune checkpoint inhibitors, vaccines, chimeric antigen receptor T cells therapy, and nanomedicines.
Collapse
Affiliation(s)
- Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Dolatkhah
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Nanomaterials for Protein Delivery in Anticancer Applications. Pharmaceutics 2021; 13:pharmaceutics13020155. [PMID: 33503889 PMCID: PMC7910976 DOI: 10.3390/pharmaceutics13020155] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments.
Collapse
|
23
|
Shofolawe-Bakare OT, Stokes LD, Hossain M, Smith AE, Werfel TA. Immunostimulatory biomaterials to boost tumor immunogenicity. Biomater Sci 2020; 8:5516-5537. [PMID: 33049007 PMCID: PMC7837217 DOI: 10.1039/d0bm01183e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is exhibiting great promise as a new therapeutic modality for cancer treatment. However, immunotherapies are limited by the inability of some tumors to provoke an immune response. These tumors with a 'cold' immunological phenotype are characterized by low numbers of tumor-infiltrating lymphocytes, high numbers of immunosuppressive leukocytes (e.g. regulatory T cells, tumor-associated macrophages), and high production of immune-dampening signals (e.g. IL-10, TGF-β, IDO-1). Strategies to boost the aptitude of tumors to initiate an immune response (i.e. boost tumor immunogenicity) will turn 'cold' tumors 'hot' and augment the anti-tumor efficacy of current immunotherapies. Approaches to boost tumor immunogenicity already show promise; however, multifaceted delivery and immunobiology challenges exist. For instance, systemic delivery of many immune-stimulating agents causes off-target toxicity and/or the development of autoimmunity, limiting the administrable dose below the threshold needed to achieve efficacy. Moreover, once administered in vivo, molecules such as the nucleic acid-based agonists for many pattern recognition receptors are either rapidly cleared or degraded, and don't efficiently traffic to the intracellular compartments where the receptors are located. Thus, these nucleic acid-based drugs are ineffective without a delivery system. Biomaterials-based approaches aim to enhance current strategies to boost tumor immunogenicity, enable novel strategies, and spare dose-limiting toxicities. Here, we review recent progress to improve cancer immunotherapies by boosting immunogenicity within tumors using immunostimulatory biomaterials.
Collapse
|
24
|
Buonaguro L, Tagliamonte M. Selecting Target Antigens for Cancer Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8040615. [PMID: 33080888 PMCID: PMC7711972 DOI: 10.3390/vaccines8040615] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
One of the principal goals of cancer immunotherapy is the development of efficient therapeutic cancer vaccines that are able to elicit an effector as well as memory T cell response specific to tumor antigens. In recent years, the attention has been focused on the personalization of cancer vaccines. However, the efficacy of therapeutic cancer vaccines is still disappointing despite the large number of vaccine strategies targeting different tumors that have been evaluated in recent years. While the preclinical data have frequently shown encouraging results, clinical trials have not provided satisfactory data to date. The main reason for such failures is the complexity of identifying specific target tumor antigens that should be unique or overexpressed only by the tumor cells compared to normal cells. Most of the tumor antigens included in cancer vaccines are non-mutated overexpressed self-antigens, eliciting mainly T cells with low-affinity T cell receptors (TCR) unable to mediate an effective anti-tumor response. In this review, the target tumor antigens employed in recent years in the development of therapeutic cancer vaccine strategies are described, along with potential new classes of tumor antigens such as the human endogenous retroviral elements (HERVs), unconventional antigens, and/or heteroclitic peptides.
Collapse
|
25
|
Patel BK, Wang C, Lorens B, Levine AD, Steinmetz NF, Shukla S. Cowpea Mosaic Virus (CPMV)-Based Cancer Testis Antigen NY-ESO-1 Vaccine Elicits an Antigen-Specific Cytotoxic T Cell Response. ACS APPLIED BIO MATERIALS 2020; 3:4179-4187. [PMID: 34368641 PMCID: PMC8340627 DOI: 10.1021/acsabm.0c00259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer vaccines are promising adjuvant immunotherapies that can stimulate the immune system to recognize tumor-associated antigens and eliminate the residual or recurring disease. The aberrant and restricted expression of highly immunogenic cancer testis antigen NY-ESO-1 in several malignancies, including triple-negative breast cancer, melanoma, myelomas, and ovarian cancer, makes NY-ESO-1 an attractive antigenic target for cancer vaccines. This study describes a NY-ESO-1 vaccine based on a bio-inspired nanomaterial platform technology, specifically a plant virus nanoparticle. The 30 nm icosahedral plant virus cowpea mosaic virus (CPMV) displaying multiple copies of human HLA-A2 restricted peptide antigen NY-ESO-1157-165 exhibited enhanced uptake and activation of antigen-presenting cells and stimulated a potent CD8+ T cell response in transgenic human HLA-A2 expressing mice. CD8+ T cells from immunized mice exhibited antigen-specific proliferation and cancer cell cytotoxicity, highlighting the potential application of a CPMV-NY-ESO-1 vaccine against NY-ESO-1+ malignancies.
Collapse
Affiliation(s)
- Bindi K Patel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chao Wang
- Department of NanoEngineering, University of California-San Diego, La Jolla, California 92093, United States
| | - Braulio Lorens
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alan D Levine
- Department of Molecular Biology and Microbiology and Medicine, Pediatrics Pathology, and Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
26
|
Qin L, Wang S, Dominguez D, Long A, Chen S, Fan J, Ahn J, Skakuj K, Huang Z, Lee A, Mirkin C, Zhang B. Development of Spherical Nucleic Acids for Prostate Cancer Immunotherapy. Front Immunol 2020; 11:1333. [PMID: 32733447 PMCID: PMC7362897 DOI: 10.3389/fimmu.2020.01333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023] Open
Abstract
Although the strategy of therapeutic vaccination for the treatment of prostate cancer has advanced to and is available in the clinic (Sipuleucel-T), the efficacy of such therapy remains limited. Here, we develop Immunostimulatory Spherical Nucleic Acid (IS-SNA) nanostructures comprised of CpG oligonucleotides as adjuvant and prostate cancer peptide antigens, and evaluate their antitumor efficacy in syngeneic mouse models of prostate cancer. IS-SNAs with the specific structural feature of presenting both antigen and adjuvant CpG on the surface (hybridized model (HM) SNAs) induce stronger cytotoxic T lymphocyte (CTL) mediated antigen-specific killing of target cells than that for IS-SNAs with CpG on the surface and antigen encapsulated within the core (encapsulated model (EM) SNAs). Mechanistically, HM SNAs increase the co-delivery of CpG and antigen to dendritic cells over that for EM SNAs or admixtures of linear CpG and peptide, thereby improving cross-priming of antitumor CD8+ T cells. As a result, vaccination with HM SNAs leads to more effective antitumor immune responses in two prostate cancer models. These data demonstrate the importance of the structural positioning of peptide antigens together with adjuvants within IS-SNAs to the efficacy of IS-SNA-based cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Qin
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shuya Wang
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, United States
| | - Donye Dominguez
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Alan Long
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Siqi Chen
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jie Fan
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jihae Ahn
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kacper Skakuj
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Ziyin Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Andrew Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Chad Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL, United States.,The International Institute for Nanotechnology, Northwestern University, Evanston, IL, United States
| | - Bin Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
27
|
Anticancer effects of chemokine-directed antigen delivery to a cross-presenting dendritic cell subset with immune checkpoint blockade. Br J Cancer 2020; 122:1185-1193. [PMID: 32066911 PMCID: PMC7156711 DOI: 10.1038/s41416-020-0757-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/26/2019] [Accepted: 01/30/2020] [Indexed: 11/15/2022] Open
Abstract
Background Cancer peptide vaccines show only marginal effects against cancers. Immune checkpoint inhibitors (ICIs) show significant curative effects in certain types of cancers, but the response rate is still limited. In this study, we aim to improve cancer peptide vaccination by targeting Ag peptides selectively to a dendritic cell (DC) subset, XCR1-expressing DCs (XCR1+ DCs), with high ability to support CD8+ T-cell responses. Methods We have generated a fusion protein, consisting of an Ag peptide presented with MHC class I, and an XCR1 ligand, XCL1, and examined its effects on antitumour immunity in mice. Results The fusion protein was delivered to XCR1+ DCs in an XCR1-dependent manner. Immunisation with the fusion protein plus an immune adjuvant, polyinosinic:polycytidylic acids (poly(I:C)), more potently induced Ag-specific CD8+ T-cell responses through XCR1 than the Ag peptide plus poly(I:C) or the Ag protein plus poly(I:C). The fusion protein plus poly(I:C) inhibited the tumour growth efficiently in the prophylactic and therapeutic tumour models. Furthermore, the fusion protein plus poly(I:C) showed suppressive effects on tumour growth in synergy with anti-PD-1 Ab. Conclusions Cancer Ag targeting to XCR1+ DCs should be a promising procedure as a combination anticancer therapy with immune checkpoint blockade.
Collapse
|
28
|
Kumbhari A, Kim PS, Lee PP. Optimisation of anti-cancer peptide vaccines to preferentially elicit high-avidity T cells. J Theor Biol 2020; 486:110067. [DOI: 10.1016/j.jtbi.2019.110067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/24/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
|
29
|
Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019; 9:7807-7825. [PMID: 31695802 PMCID: PMC6831480 DOI: 10.7150/thno.37194] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peptide-based materials hold great promise as immunotherapeutic agents for the treatment of many malignant cancers. Extensive studies have focused on the development of peptide-based cancer vaccines and delivery systems by mimicking the functional domains of proteins with highly specific immuno-regulatory functions or tumor cells fate controls. However, a systemic understanding of the interactions between the different peptides and immune systems remains unknown. This review describes the role of peptides in regulating the functions of the innate and adaptive immune systems and provides a comprehensive focus on the design, categories, and applications of peptide-based cancer vaccines. By elucidating the impacts of peptide length and formulations on their immunogenicity, peptide-based immunomodulating agents can be better utilized and dramatic breakthroughs may also be realized. Moreover, some critical challenges for translating peptides into large-scale synthesis, safe delivery, and efficient cancer immunotherapy are posed to improve the next-generation peptide-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
30
|
Kim H, Seong KY, Lee JH, Park W, Yang SY, Hahn SK. Biodegradable Microneedle Patch Delivering Antigenic Peptide-Hyaluronate Conjugate for Cancer Immunotherapy. ACS Biomater Sci Eng 2019; 5:5150-5158. [PMID: 33455221 DOI: 10.1021/acsbiomaterials.9b00961] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antigenic peptide-delivery systems have been extensively investigated to harness the immune system for cancer therapy. Cytotoxic T-cell epitope peptide can induce an antigen-specific CD8+ T-cell response, which subsequently inhibits the growth of antigen-bearing tumors. However, there are only a few facile tailored delivery systems of antigenic peptide for effective cancer immunotherapy. Here, we developed a biodegradable microneedle patch delivering a hyaluronate (HA)-antigenic peptide conjugate for prophylactic cancer immunotherapy. Cytotoxic T-cell epitope peptide (SIINFEKL) was conjugated to HA, which was loaded into a biodegradable HA microneedle (MN) patch to efficiently deliver an antigen to the immune system in the skin. HA could act as a transdermal vaccine carrier eliciting strong immune responses by the efficient stimulation of immunocompetent cells. The HA-SIINFEKL conjugates loaded into biodegradable MNs were localized near the MN administration site, exhibiting long-term residence for more than 24 h post-administration. Remarkably, a single transdermal vaccination with the MN patch containing HA-SIINFEKL conjugates resulted in a statistically significant inhibition of tumor growth in B16 melanoma model mice by enhancing antigen-specific cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Hyemin Kim
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, 1268-50 Samnangjin-ro, Miryang, Gyeongnam 50463, Republic of Korea
| | - Jung Ho Lee
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Wonchan Park
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, 1268-50 Samnangjin-ro, Miryang, Gyeongnam 50463, Republic of Korea
| | - Sei Kwang Hahn
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, Republic of Korea.,Department of Materials Science and Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
31
|
Vaccination against atherosclerosis. Curr Opin Immunol 2019; 59:15-24. [PMID: 30928800 DOI: 10.1016/j.coi.2019.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that causes most heart attacks and strokes, making it the biggest killer in the world. Although cholesterol-lowering drugs have dramatically reduced these major adverse cardiovascular events, there remains a high residual risk called inflammatory risk. Atherosclerosis has an autoimmune component that can be manipulated by immunologic approaches including vaccination. Vaccination is attractive, because it is antigen-specific, does not impair host defense, and provides long-term protection. Several candidate antigens for atherosclerosis vaccine development have been identified and have been shown to reduce atherosclerosis in animal models. In this review, we focus on two different types of atherosclerosis vaccines: antibody-inducing and regulatory T cell-inducing.
Collapse
|
32
|
Mohamadi F, Shakibapour M, Sharafi SM, Reza AA, Tolouei S, Darani HY. Anti- Toxoplasma gondii antibodies attach to mouse cancer cell lines but not normal mouse lymphocytes. Biomed Rep 2019; 10:183-188. [PMID: 30906547 DOI: 10.3892/br.2019.1186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/04/2019] [Indexed: 01/03/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is prevalent intracellular parasite and a cause of worldwide infection in the human population. An inhibitory effect of this parasite on cancer growth has been demonstrated in cell culture and animal models. To determine whether the anticancer activities of T. gondii are associated with host immune response, in the current study the reactivity of anti-T. gondii antiserum with the surface of cancer cell lines was investigated. Anti-T. gondii antibodies were raised in rabbit and the reaction of this antiserum in comparison with other anti-parasite antisera (anti-T. vaginalis, anti-hydatid cyst fluid, anti-protoscolices antigens) with mouse melanoma or breast cancer cells lines was investigated using flow cytometry. Anti-T. gondii antiserum reacted markedly with the surface of mouse melanoma and breast cancer cells, and less so with the normal mouse spleen lymphocytes. Meanwhile, the other anti-parasite antisera did not react strongly with the surface of cancer cells compared with normal mouse spleen lymphocytes. In summary, it has been demonstrated herein that anti-T. gondii antiserum may selectively react with the surface of mouse cancer cells but not with normal mouse spleen lymphocytes. Therefore, further study on anti-Toxoplasma antibodies may be useful for directing the application of selective drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Fereshteh Mohamadi
- Department of Medical Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan 8179498861, Iran
| | - Mahshid Shakibapour
- Department of Medical Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan 8179498861, Iran
| | - Seyedeh Maryam Sharafi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan 8179498861, Iran
| | - Ali Andalib Reza
- Department of Medical Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan 8179498861, Iran
| | - Sepideh Tolouei
- Department of Medical Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan 8179498861, Iran
| | - Hossein Yousofi Darani
- Department of Medical Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan 8179498861, Iran.,Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan 8179498861, Iran
| |
Collapse
|
33
|
Neek M, Kim TI, Wang SW. Protein-based nanoparticles in cancer vaccine development. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:164-174. [PMID: 30291897 PMCID: PMC6289732 DOI: 10.1016/j.nano.2018.09.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
Peptide and protein-based cancer vaccines usually fail to elicit efficient immune responses against tumors. However, delivery of these peptides and proteins as components within caged protein nanoparticles has shown promising improvements in vaccine efficacy. Advantages of protein nanoparticles over other vaccine platforms include their highly organized structures and symmetry, biodegradability, ability to be specifically functionalized at three different interfaces (inside and outside the protein cage, and between subunits in macromolecular assembly), and ideal size for vaccine delivery. In this review, we discuss different classes of virus-like particles and caged protein nanoparticles that have been used as vehicles to transport and increase the interaction of cancer vaccine components with the immune system. We review the effectiveness of these protein nanoparticles towards inducing and elevating specific immune responses, which are needed to overcome the low immunogenicity of the tumor microenvironment.
Collapse
Affiliation(s)
- Medea Neek
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - Tae Il Kim
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
| |
Collapse
|
34
|
Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. J Control Release 2018; 285:56-66. [DOI: 10.1016/j.jconrel.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|
35
|
Li H, Schaduangrat N, Simeon S, Nantasenamat C. Computational study on the origin of the cancer immunotherapeutic potential of B and T cell epitope peptides. MOLECULAR BIOSYSTEMS 2018; 13:2310-2322. [PMID: 28880325 DOI: 10.1039/c7mb00219j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immune therapy is generally seen as the future of cancer treatment. The discovery of tumor-associated antigens and cytotoxic T lymphocyte epitope peptides spurned intensive research into effective peptide-based cancer vaccines. One of the major obstacles hindering the development of peptide-based cancer vaccines is the lack of humoral response induction. As of now, very limited work has been performed to identify epitope peptides capable of inducing both cellular and humoral anticancer responses. In addition, no research has been carried out to analyze the structure and properties of peptides responsible for such immunological activities. This study utilizes a machine learning method together with interpretable descriptors in an attempt to identify parameters determining the immunotherapeutic activity of cancer epitope peptides.
Collapse
Affiliation(s)
- Hao Li
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | | | | | | |
Collapse
|
36
|
Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 2018; 164:38-53. [DOI: 10.1016/j.biomaterials.2018.02.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022]
|
37
|
Phase I Study of Multiple Epitope Peptide Vaccination in Patients With Recurrent or Persistent Cervical Cancer. J Immunother 2018; 41:201-207. [DOI: 10.1097/cji.0000000000000214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett 2018; 196:11-21. [DOI: 10.1016/j.imlet.2018.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
39
|
Chen YL, Chang MC, Chiang YC, Lin HW, Sun NY, Chen CA, Sun WZ, Cheng WF. Immuno-modulators enhance antigen-specific immunity and anti-tumor effects of mesothelin-specific chimeric DNA vaccine through promoting DC maturation. Cancer Lett 2018; 425:152-163. [PMID: 29596890 DOI: 10.1016/j.canlet.2018.03.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
As a tumor antigen, mesothelin (MSLN) can be identified in various malignancies. MSLN is potential for antigen-specific cancer vaccines. We generated a novel chimeric DNA vaccine using antigen-specific connective tissue growth factor lined with MSLN (CTGF/MSLN). The anti-tumor effects of the CTGF/MSLN DNA vaccine combined with anti-CD40 Ab and toll-like receptor 3 ligand-poly(I:C) were validated in an MSLN-expressing model. CTGF/MSLN DNA with anti-CD40Ab and poly(I:C) vaccinated mice demonstrated potent anti-tumor effects with longer survival and less tumor volumes. An increase in MSLN-specific CD8+ T cells and anti-MSLN Ab titers was also noted in CTGF/MSLN DNA with anti-CD40Ab and poly(I:C) vaccinated mice. The CTGF/MSLN DNA vaccine combined with immuno-modulator EGCG also generated potent anti-tumor effects. Immuno-modulators could enhance the antigen-specific anti-tumor effects of CTGF/MSLN DNA vaccine through promoting the DC maturation. In addition, MSLN-specific cell-based vaccine with AAV-IL-12 and the CTGF/MSLN DNA vaccine with anti-CD40Ab/polyp(I:C) generated more potent anti-tumor effects than the other combinational regimens. The results indicate that an MSLN-specific DNA vaccine combined with immuno-modulators may be an effective immunotherapeutic strategy to control MSLN-expressing tumors including ovarian and pancreastic cancers, and malignant mesothelioma.
Collapse
Affiliation(s)
- Yu-Li Chen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Ming-Cheng Chang
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan; Department of Anesthesiology, National Taiwan University, Taipei, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taiwan
| | - Nai-Yun Sun
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taiwan
| | - Chi-An Chen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan.
| |
Collapse
|
40
|
Obara W, Kanehira M, Katagiri T, Kato R, Kato Y, Takata R. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci 2018; 109:550-559. [PMID: 29345737 PMCID: PMC5834812 DOI: 10.1111/cas.13506] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Use of peptide‐based vaccines as therapeutics aims to elicit immune responses through antigenic epitopes derived from tumor antigens. Peptide‐based vaccines are easily synthesized and lack significant side‐effects when given in vivo. Peptide‐based vaccine therapy against several cancers including urological cancers has made progress for several decades, but there is no worldwide approved peptide vaccine. Peptide vaccines were also shown to induce a high frequency of immune response in patients accompanied by clinical efficacy. These data are discussed in light of the recent progression of immunotherapy caused by the addition of immune checkpoint inhibitors thus providing a general picture of the potential therapeutic efficacy of peptide‐based vaccines and their combination with other biological agents. In this review, we discuss the mechanism of the antitumor effect of peptide‐based vaccine therapy, development of our peptide vaccine, recent clinical trials using peptide vaccines for urological cancers, and perspectives of peptide‐based vaccine therapy.
Collapse
Affiliation(s)
- Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Mitsugu Kanehira
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Renpei Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yoichiro Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ryo Takata
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
41
|
Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Front Immunol 2018; 9:14. [PMID: 29403496 PMCID: PMC5786548 DOI: 10.3389/fimmu.2018.00014] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI). Cytotoxic T lymphocytes (CTL) eliminate malignant cells through recognition by the T-cell receptor (TCR) of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL) of patients with varied cancers. TCRβ-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer, and dendritic cell-based vaccines. These tumor-specific mutation-derived antigens open up new perspectives for development of effective second-generation therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Aurélie Durgeau
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,ElyssaMed, Paris Biotech Santé, Paris, France
| | - Yasemin Virk
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
42
|
Motokawa Y, Kokubo M, Kuwabara N, Tatematsu KI, Sezutsu H, Takahashi H, Sakakura K, Chikamatsu K, Takeda S. Melanoma antigen family A4 protein produced by transgenic silkworms induces antitumor immune responses. Exp Ther Med 2018; 15:2512-2518. [PMID: 29563979 DOI: 10.3892/etm.2018.5703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials with the aim of developing tumor antigen (TA)-specific cancer vaccines against a number of malignancies have focused on the identification of TAs presented by tumor cells and recognized by T cells. In the present study, the TA melanoma antigen family A4 (MAGE-A4) protein was produced using a transgenic (TG) silkworm system. Using in vitro stimulation, it was subsequently determined whether MAGE-A4 protein induced MAGE-A4-specific T cells from peripheral blood mononuclear cells of healthy donors. TG silkworm lines expressing a MAGE-A4 gene under an upstream activating sequence (UAS) were mated with those expressing a yeast transcription activator protein (GAL4) at the middle silk glands (MSGs) and embryos that harbored both the GAL4 and UAS constructs were selected. Recombinant MAGE-A4 protein was extracted from the MSGs of TG silkworms and evaluated using SDS-PAGE and western blot analysis. It was observed that MAGE-A4 produced by the TG silkworm system successfully induced MAGE-A4-specific CD4+ T cell responses. Furthermore, MAGE-A4-specific CD4+ T cells recognized antigen-presenting cells when pulsed with a MAGE-A4+ tumor cell lysate. The present data suggests that recombinant tumor antigen production using the TG silkworm system may be a novel tool in the preparation of cancer vaccines.
Collapse
Affiliation(s)
- Yoko Motokawa
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Michifumi Kokubo
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center, Maebashi, Gunma 371-8570, Japan
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideyuki Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Koichi Sakakura
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
43
|
Choi YJ, Park SJ, Park YS, Park HS, Yang KM, Heo K. EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLoS One 2018; 13:e0190638. [PMID: 29298343 PMCID: PMC5752035 DOI: 10.1371/journal.pone.0190638] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer stem-like cells (CSCs) may play a key role in tumor initiation, self-renewal, differentiation, and resistance to current treatments. Dendritic cells (DCs) play a vital role in host immune reactions as well as antigen presentation. In this study, we explored the suitability of using CSC peptides as antigen sources for DC vaccination against human breast cancer and hepatocellular carcinoma (HCC) with the aim of achieving CSC targeting and enhancing anti-tumor immunity. CD44 is used as a CSC marker for breast cancer and EpCAM is used as a CSC marker for HCC. We selected CD44 and EpCAM peptides that bind to HLA-A2 molecules on the basis of their binding affinity, as determined by a peptide-T2 binding assay. Our data showed that CSCs express high levels of tumor-associated antigens (TAAs) as well as major histocompatibility complex (MHC) molecules. Pulsing DCs with CD44 and EpCAM peptides resulted in the efficient generation of mature DCs (mDCs), thus enhancing T cell stimulation and generating potent cytotoxic T lymphocytes (CTLs). The activation of CSC peptide-specific immune responses by the DC vaccine in combination with standard chemotherapy may provide better clinical outcomes in advanced carcinomas.
Collapse
Affiliation(s)
- Yoo Jin Choi
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Seong-Joon Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - You-Soo Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Hee Sung Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Kwang Mo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- * E-mail: (KH); (KMY)
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- * E-mail: (KH); (KMY)
| |
Collapse
|
44
|
Polyactin A is a novel and potent immunological adjuvant for peptide-based cancer vaccine. Int Immunopharmacol 2018; 54:95-102. [DOI: 10.1016/j.intimp.2017.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
45
|
Wang E, Adams S, Stroncek DF, Marincola FM. Human Leukocyte Antigen and Human Neutrophil Antigen Systems. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Kroll AV, Fang RH, Jiang Y, Zhou J, Wei X, Yu CL, Gao J, Luk BT, Dehaini D, Gao W, Zhang L. Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201703969. [PMID: 29239517 PMCID: PMC5794340 DOI: 10.1002/adma.201703969] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/29/2017] [Indexed: 05/08/2023]
Abstract
Anticancer vaccines train the body's own immune system to recognize and eliminate malignant cells based on differential antigen expression. While conceptually attractive, clinical efficacy is lacking given several key challenges stemming from the similarities between cancerous and healthy tissue. Ideally, an effective vaccine formulation would deliver multiple tumor antigens in a fashion that potently stimulates endogenous immune responses against those antigens. Here, it is reported on the fabrication of a biomimetic, nanoparticulate anticancer vaccine that is capable of delivering autologously derived tumor antigen material together with a highly immunostimulatory adjuvant. The two major components, tumor antigens and adjuvant, are presented concurrently in a fashion that maximizes their ability to promote effective antigen presentation and activation of downstream immune processes. Ultimately, it is demonstrated that the formulation can elicit potent antitumor immune responses in vivo. When combined with additional immunotherapies such as checkpoint blockades, the nanovaccine demonstrates substantial therapeutic effect. Overall, the work represents the rational application of nanotechnology for immunoengineering and can provide a blueprint for the future development of personalized, autologous anticancer vaccines with broad applicability.
Collapse
|
47
|
Neek M, Tucker JA, Kim TI, Molino NM, Nelson EL, Wang SW. Co-delivery of human cancer-testis antigens with adjuvant in protein nanoparticles induces higher cell-mediated immune responses. Biomaterials 2017; 156:194-203. [PMID: 29202325 DOI: 10.1016/j.biomaterials.2017.11.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022]
Abstract
Nanoparticles have attracted considerable interest as cancer vaccine delivery vehicles for inducing sufficient CD8+ T cell-mediated immune responses to overcome the low immunogenicity of the tumor microenvironment. Our studies described here are the first to examine the effects of clinically-tested human cancer-testis (CT) peptide epitopes within a synthetic nanoparticle. Specifically, we focused on two significant clinical CT targets, the HLA-A2 restricted epitopes of NY-ESO-1 and MAGE-A3, using a viral-mimetic packaging strategy. Our data shows that simultaneous delivery of a NY-ESO-1 epitope (SLLMWITQV) and CpG using the E2 subunit assembly of pyruvate dehydrogenase (E2 nanoparticle), resulted in a 25-fold increase in specific IFN-γ secretion in HLA-A2 transgenic mice. This translated to a 15-fold increase in lytic activity toward target cancer cells expressing the antigen. Immunization with a MAGE-A3 epitope (FLWGPRALV) delivered with CpG in E2 nanoparticles yielded an increase in specific IFN-γ secretion and cell lysis by 6-fold and 9-fold, respectively. Furthermore, combined delivery of NY-ESO-1 and MAGE-A3 antigens in E2 nanoparticles yielded an additive effect that increased lytic activity towards cells bearing NY-ESO-1+ and MAGE-A3+. Our investigations demonstrate that formulation of CT antigens within a nanoparticle can significantly enhance antigen-specific cell-mediated responses, and the combination of the two antigens in a vaccine can preserve the increased individual responses that are observed for each antigen alone.
Collapse
Affiliation(s)
- Medea Neek
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Jo Anne Tucker
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Tae Il Kim
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Nicholas M Molino
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Edward L Nelson
- Department of Medicine, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
48
|
Wada S, Yada E, Ohtake J, Sasada T. Personalized peptide vaccines for cancer therapy: current progress and state of the art. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1403286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Satoshi Wada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Erica Yada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Junya Ohtake
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Tetsuro Sasada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| |
Collapse
|
49
|
Afridi S, Hoessli DC, Hameed MW. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications. Immunol Rev 2017; 272:151-68. [PMID: 27319349 DOI: 10.1111/imr.12435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.
Collapse
Affiliation(s)
- Saifullah Afridi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Waqar Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
50
|
Li Q, Liu Q. Noncoding RNAs in Cancer Immunology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 927:243-64. [PMID: 27376738 DOI: 10.1007/978-981-10-1498-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer immunology is the study of interaction between cancer cells and immune system by the application of immunology principle and theory. With the recent approval of several new drugs targeting immune checkpoints in cancer, cancer immunology has become a very attractive field of research and is thought to be the new hope to conquer cancer. This chapter introduces the aberrant expression and function of noncoding RNAs, mainly microRNAs and long noncoding RNAs, in tumor-infiltrating immune cells, and their significance in tumor immunity. It also illustrates how noncoding RNAs are shuttled between tumor cells and immune cells in tumor microenvironments via exosomes or other microvesicles to modulate tumor immunity.
Collapse
Affiliation(s)
- Qian Li
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107, Yanjiang West Road, Guangzhou, 510120, China
| | - Qiang Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107, Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|