1
|
Zhang T, Yin H, Guo J, Chang J, Li M, He J, Zhou C. HOTTIP rs1859168 C > A polymorphism reduces neuroblastoma susceptibility in Chinese children. Eur J Pediatr 2024; 184:104. [PMID: 39718648 DOI: 10.1007/s00431-024-05942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Neuroblastoma, " a malignancy originating from neural crest cells, is most commonly diagnosed in children and adolescents. Polymorphisms within the long noncoding RNA (lncRNA) HOXA distal transcript antisense RNA (HOTTIP) are believed to have the capacity to alter an individual's susceptibility to various cancers. This study aimed to investigate the link between HOTTIP gene polymorphisms and neuroblastoma susceptibility. We identified the genotypes of two prevalent polymorphisms (rs3807598 and rs1859168) within the HOTTIP via the TaqMan assay in a cohort comprising 402 individuals diagnosed with neuroblastoma and 473 healthy controls. Logistic regression was used to evaluate the associations between the HOTTIP polymorphisms and the likelihood of neuroblastoma susceptibility. Additionally, the genotype-tissue expression (GTEx) database was used to investigate how these HOTTIP gene variations influence gene expression across different tissues. Our findings demonstrated a significant association between the rs1859168 C > A polymorphism and reduced neuroblastoma susceptibility (CA vs. CC: adjusted odds ratio (OR) = 0.55, 95% confidence interval (CI) = 0.40-0.74, P = 0.0001; CA/AA vs. CC: adjusted OR = 0.69, 95% CI = 0.53-0.91, P = 0.010). The additional stratified analysis revealed that the presence of rs1859168 CA/AA or two protective genotypes was associated with a lower susceptibility in specific subgroups, such as older children and girls. Expression quantitative trait locus (eQTL) analysis revealed that the rs1859168 CC genotype was related to high expression of the HOTTIP gene. CONCLUSION We found that HOTTIP gene polymorphisms were associated with a reduced likelihood of neuroblastoma in Chinese children. Further studies with large cohorts and diverse ethnicities are warranted to verify our results. WHAT IS KNOWN • Genetic variations can influence neuroblastoma susceptibility. HOTTIP gene polymorphisms may alter an individual's susceptibility to various cancers. WHAT IS NEW • HOTTIP gene polymorphisms were associated with a reduced risk of neuroblastoma in Chinese children.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Huimin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jiejie Guo
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Jiaming Chang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Mengjia Li
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Jing He
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, Zhejiang, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
2
|
Nie Q, Zhang W, Lin S, Huang M, Li Y, Qiu Y, Li J, Chen X, Wang Y, Tong X, Wu J, He P, Cai Q, Chen L, Chen M, Guo W, Lin Y, Yu L, Hou J, Cai W, Chen H, Wang C, Fu F. Identification of sequence polymorphism in the D-loop region of mitochondrial DNA as a risk factor for breast cancer. Cancer Sci 2024; 115:4064-4073. [PMID: 39401980 PMCID: PMC11611757 DOI: 10.1111/cas.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 12/06/2024] Open
Abstract
Mitochondrial DNA (mtDNA) variations affect the efficiency of the electron transport chain and production of reactive oxygen species, contributing to carcinogenesis. The D-loop region of mtDNA has emerged as a variation hotspot region in human neoplasia; however, the potential contribution of these variations in breast cancer risk prediction remains unknown. We investigated the relationship between germline single nucleotide polymorphisms (SNPs) in the entire D-loop region and breast cancer risk in Chinese women. Peripheral blood-isolated mtDNA from 2329 patients with breast cancer and 2328 cancer-free controls was examined for SNPs. In the combined cohort, we used traditional risk factors, susceptibility germline polymorphisms, and logistic regression analysis to evaluate the predictive value of susceptibility variants for breast cancer risk. We calculated the area under the receiver operating characteristic curve (AUC) as a measure. We also measured the content of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Individual polymorphisms SNP573 were significantly associated with breast cancer risk in both the discovery and validation cohorts. In the combined cohort, the AUC of the traditional risk factors was 64.3%; after adding susceptibility variants, the AUC was 64.9% (DeLong test, p = 0.007). 8-OHdG levels were significantly higher in patients with breast cancer than in controls and higher in individuals with SNP573 than in those negative for this variation. Overall, oxidative stress might be associated with the risk of breast cancer, and SNP573 might be associated with oxidative stress. Our results indicate the risk potential of polymorphisms in the D-loop region in breast cancer in Southern China.
Collapse
|
3
|
Chang X, Qu HQ, Liu Y, Glessner JT, Hakonarson H. Mitochondrial DNA Haplogroup K Is Protective Against Autism Spectrum Disorder Risk in Populations of European Ancestry. J Am Acad Child Adolesc Psychiatry 2024; 63:835-844. [PMID: 38072244 PMCID: PMC11186604 DOI: 10.1016/j.jaac.2023.09.550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Accumulative evidence indicates a critical role of mitochondrial function in autism spectrum disorders (ASD), implying that ASD risk may be linked to mitochondrial dysfunction due to DNA (mtDNA) variations. Although a few studies have explored the association between mtDNA variations and ASD, the role of mtDNA in ASD is still unclear. Here, we aimed to investigate whether mitochondrial DNA haplogroups are associated with the risk of ASD. METHOD Two European cohorts and an Ashkenazi Jewish (AJ) cohort were analyzed, including 2,062 ASD patients in comparison with 4,632 healthy controls. DNA samples were genotyped using Illumina HumanHap550/610 and Illumina 1M arrays, inclusive of mitochondrial markers. Mitochondrial DNA (mtDNA) haplogroups were identified from genotyping data using HaploGrep2. A mitochondrial genome imputation pipeline was established to detect mtDNA variants. We conducted a case-control study to investigate potential associations of mtDNA haplogroups and variants with the susceptibility to ASD. RESULTS We observed that the ancient adaptive mtDNA haplogroup K was significantly associated with decreased risk of ASD by the investigation of 2 European cohorts including a total of 2,006 cases and 4,435 controls (odds ratio = 0.64, P=1.79 × 10-5), and we replicated this association in an Ashkenazi Jewish (AJ) cohort including 56 cases and 197 controls (odds ratio = 0.35, P = 9.46 × 10-3). Moreover, we demonstrate that the mtDNA variants rs28358571, rs28358584, and rs28358280 are significantly associated with ASD risk. Further expression quantitative trait loci (eQTLs) analysis indicated that the rs28358584 and rs28358280 genotypes are associated with expression levels of nearby genes in brain tissues, suggesting those mtDNA variants may confer risk for ASD via regulation of expression levels of genes encoded by the mitochondrial genome. CONCLUSION This study helps to shed light on the contribution of mitochondria in ASD and provides new insights into the genetic mechanism underlying ASD, suggesting the potential involvement of mtDNA-encoded proteins in the development of ASD. PLAIN LANGUAGE SUMMARY Increasing evidence indicates that mitochondrial dysfunction may be linked to autism spectrum disorder (ASD). This study investigated potential associations of mitochondrial DNA (mtDNA) variants in 2 European and Ashkenazi Jewish cohorts including 2,062 individuals with ASD and 4,632 healthy controls. Researchers found that the ancient mtDNA haplogroup K was linked to a reduced risk of ASD in both European and Ashkenazi Jewish populations. Additionally, specific mtDNA variants were associated with ASD risk and were shown to influence the expression of nearby genes in the brain. These findings highlight the potential involvement of mtDNA in ASD development, offering new insights into the genetic mechanisms underlying the disorder.
Collapse
Affiliation(s)
- Xiao Chang
- Children's Hospital of Philadelphia, Pennsylvania, United States; Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.
| | - Hui-Qi Qu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Yichuan Liu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | | | - Hakon Hakonarson
- Children's Hospital of Philadelphia, Pennsylvania, United States; The Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
4
|
Zhang T, Zhou C, Guo J, Chang J, Wu H, He J. RTEL1 gene polymorphisms and neuroblastoma risk in Chinese children. BMC Cancer 2023; 23:1145. [PMID: 38001404 PMCID: PMC10675872 DOI: 10.1186/s12885-023-11642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Neuroblastoma, a neuroendocrine tumor originating from the sympathetic ganglia, is one of the most common malignancies in childhood. RTEL1 is critical in many fundamental cellular processes, such as DNA replication, DNA damage repair, genomic integrity, and telomere stability. Single nucleotide polymorphisms (SNPs) in the RTEL1 gene have been reported to confer susceptibility to multiple cancers, but their contributing roles in neuroblastoma remain unclear. METHODS We conducted a study on 402 neuroblastoma cases and 473 controls to assess the association between four RTEL1 SNPs (rs3761124 T>C, rs3848672 T>C, rs3208008 A>C and rs2297441 G>A) and neuroblastoma susceptibility. RESULTS Our results show that rs3848672 T>C is significantly associated with an increased risk of neuroblastoma [CC vs. TT/TC: adjusted odds ratio (OR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.038]. The stratified analysis further indicated that boy carriers of the rs3848672 CC genotype had a higher risk of neuroblastoma, and all carriers had an increased risk of developing neuroblastoma of mediastinum origin. Moreover, the rs2297441 AA genotype increased neuroblastoma risk in girls and predisposed children to neuroblastoma arising from retroperitoneal. CONCLUSION Our study indicated that the rs3848672 CC and rs2297441 AA genotypes of the RTEL1 gene are significantly associated with an increased risk of neuroblastoma in Chinese children in a gender- and site-specific manner.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Jiejie Guo
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Jiamin Chang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China.
| | - Jing He
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
5
|
Welch DR, Foster C, Rigoutsos I. Roles of mitochondrial genetics in cancer metastasis. Trends Cancer 2022; 8:1002-1018. [PMID: 35915015 PMCID: PMC9884503 DOI: 10.1016/j.trecan.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
The contributions of mitochondria to cancer have been recognized for decades. However, the focus on the metabolic role of mitochondria and the diminutive size of the mitochondrial genome compared to the nuclear genome have hindered discovery of the roles of mitochondrial genetics in cancer. This review summarizes recent data demonstrating the contributions of mitochondrial DNA (mtDNA) copy-number variants (CNVs), somatic mutations, and germline polymorphisms to cancer initiation, progression, and metastasis. The goal is to summarize accumulating data to establish a framework for exploring the contributions of mtDNA to neoplasia and metastasis.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Internal Medicine (Hematology/Oncology), The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Pathology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - Christian Foster
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, 1020 Locust Street, Suite M81, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Atilano SR, Abedi S, Ianopol NV, Singh MK, Norman JL, Malik D, Falatoonzadeh P, Chwa M, Nesburn AB, Kuppermann BD, Kenney MC. Differential Epigenetic Status and Responses to Stressors between Retinal Cybrids Cells with African versus European Mitochondrial DNA: Insights into Disease Susceptibilities. Cells 2022; 11:2655. [PMID: 36078063 PMCID: PMC9454894 DOI: 10.3390/cells11172655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial (mt) DNA can be classified into haplogroups, which represent populations with different geographic origins. Individuals of maternal African backgrounds (L haplogroup) are more prone to develop specific diseases compared those with maternal European-H haplogroups. Using a cybrid model, effects of amyloid-β (Amyβ), sub-lethal ultraviolet (UV) radiation, and 5-Aza-2'-deoxycytidine (5-aza-dC), a methylation inhibitor, were investigated. Amyβ treatment decreased cell metabolism and increased levels of reactive oxygen species in European-H and African-L cybrids, but lower mitochondrial membrane potential (ΔΨM) was found only in African-L cybrids. Sub-lethal UV radiation induced higher expression levels of CFH, EFEMP1, BBC3, and BCL2L13 in European-H cybrids compared to African-L cybrids. With respect to epigenetic status, the African-L cybrids had (a) 4.7-fold higher total global methylation levels (p = 0.005); (b) lower expression patterns for DNMT3B; and (c) elevated levels for HIST1H3F. The European-H and African-L cybrids showed different transcription levels for CFH, EFEMP1, CXCL1, CXCL8, USP25, and VEGF after treatment with 5-aza-dC. In conclusion, compared to European-H haplogroup cybrids, the African-L cybrids have different (i) responses to exogenous stressors (Amyβ and UV radiation), (ii) epigenetic status, and (iii) modulation profiles of methylation-mediated downstream complement, inflammation, and angiogenesis genes, commonly associated with various human diseases.
Collapse
Affiliation(s)
- Shari R. Atilano
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Sina Abedi
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Narcisa V. Ianopol
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Mithalesh K. Singh
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - J Lucas Norman
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Deepika Malik
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Payam Falatoonzadeh
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Anthony B. Nesburn
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|