1
|
Prat J, D'Angelo E, Espinosa I. Ovarian Carcinomas: Clinicopathologic and Molecular Features With Comments on 2014 FIGO Staging. Am J Surg Pathol 2025:00000478-990000000-00464. [PMID: 39807827 DOI: 10.1097/pas.0000000000002352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
According to histopathology and molecular genetics, there are 5 major subtypes of ovarian carcinomas: high-grade serous (70%), endometrioid (10%), clear cell (10%), mucinous (3% to 4%), and low-grade serous (<5%) carcinomas. These tumors, which constitute over 95% of cases, represent distinct diseases with different prognoses and therapy. This review outlines contemporary advances in molecular pathology, which have expanded our knowledge of the biology of epithelial ovarian cancer and are also important to patient management. We also comment on some controversial points of the FIGO staging classification that we proposed in 2014.
Collapse
Affiliation(s)
- Jaime Prat
- Autonomous University of Barcelona, Sant Quintin, Barcelona, Spain
| | - Emanuela D'Angelo
- Hospital de la Santa Creu i Sant Pau, Sant Quintin, Barcelona, Spain
| | - Iñigo Espinosa
- Department of Medical and Biotechnological Sciences, University "G. D'Annunzio", Via dei Vestini, Chieti-Pescara Italy
| |
Collapse
|
2
|
Paranal RM, Wood LD, Klein AP, Roberts NJ. Understanding familial risk of pancreatic ductal adenocarcinoma. Fam Cancer 2024; 23:419-428. [PMID: 38609521 PMCID: PMC11660179 DOI: 10.1007/s10689-024-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is the result of an accumulation of sequential genetic alterations. These genetic alterations can either be inherited, such as pathogenic germline variants that are associated with an increased risk of cancer, or acquired, such as somatic mutations that occur during the lifetime of an individual. Understanding the genetic basis of inherited risk of PDAC is essential to advancing patient care and outcomes through improved clinical surveillance, early detection initiatives, and targeted therapies. In this review we discuss factors associated with an increased risk of PDAC, the prevalence of genetic variants associated with an increased risk in patients with PDAC, estimates of PDAC risk in carriers of pathogenic germline variants in genes associated with an increased risk of PDAC. The role of common variants in pancreatic cancer risk will also be discussed.
Collapse
Affiliation(s)
- Raymond M Paranal
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Human Genetics Predoctoral Training Program, the McKusick-Nathans Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| | - Nicholas J Roberts
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Blackman A, Rees AC, Bowers RR, Jones CM, Vaena SG, Clark MA, Carter S, Villamor ED, Evans D, Emanuel AJ, Fullbright G, O’Malley MS, Carpenter RL, Long DT, Spruill LS, Romeo MJ, Orr BC, Helke KL, Delaney JR. MYC is Sufficient to Generate Mid-Life High-Grade Serous Ovarian and Uterine Serous Carcinomas in a p53-R270H Mouse Model. CANCER RESEARCH COMMUNICATIONS 2024; 4:2525-2538. [PMID: 39225558 PMCID: PMC11425777 DOI: 10.1158/2767-9764.crc-24-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Genetically engineered mouse models (GEMM) have fundamentally changed how ovarian cancer etiology, early detection, and treatment are understood. MYC, an oncogene, is amongst the most amplified genes in high-grade serous ovarian cancer (HGSOC), but it has not previously been utilized to drive HGSOC GEMMs. We coupled Myc and dominant-negative mutant p53-R270H with a fallopian tube epithelium (FTE)-specific promoter Ovgp1 to generate a new GEMM of HGSOC. Female mice developed lethal cancer at an average of 14.5 months. Histopathologic examination of mice revealed HGSOC characteristics, including nuclear p53 and nuclear MYC in clusters of cells within the FTE and ovarian surface epithelium. Unexpectedly, nuclear p53 and MYC clustered cell expression was also identified in the uterine luminal epithelium, possibly from intraepithelial metastasis from the FTE. Extracted tumor cells exhibited strong loss of heterozygosity at the p53 locus, leaving the mutant allele. Copy-number alterations in these cancer cells were prevalent, disrupting a large fraction of genes. Transcriptome profiles most closely matched human HGSOC and serous endometrial cancer. Taken together, these results demonstrate that the Myc and Trp53-R270H transgenes were able to recapitulate many phenotypic hallmarks of HGSOC through the utilization of strictly human-mimetic genetic hallmarks of HGSOC. This new mouse model enables further exploration of ovarian cancer pathogenesis, particularly in the 50% of HGSOC which lack homology-directed repair mutations. Histologic and transcriptomic findings are consistent with the hypothesis that uterine serous cancer may originate from the FTE. SIGNIFICANCE Mouse models using transgenes which generate spontaneous cancers are essential tools to examine the etiology of human diseases. Here, the first Myc-driven spontaneous model is described as a valid HGSOC model. Surprisingly, aspects of uterine serous carcinoma were also observed in this model.
Collapse
Affiliation(s)
- Alexandra Blackman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina.
| | - Amy C. Rees
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Robert R. Bowers
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Christian M. Jones
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Silvia G. Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
| | - Madison A. Clark
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Shelby Carter
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Evan D. Villamor
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Della Evans
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Anthony J. Emanuel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - George Fullbright
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Matthew S. O’Malley
- Department of Medical Sciences, Indiana University Bloomington, Bloomington, Indiana.
| | - Richard L. Carpenter
- Department of Medical Sciences, Indiana University Bloomington, Bloomington, Indiana.
- Department of Biochemistry and Molecular Biology, Indiana University Bloomington, Bloomington, Indiana.
| | - David T. Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Laura S. Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
| | - Brian C. Orr
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina.
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
4
|
Miyahira AK, Kamran SC, Jamaspishvili T, Marshall CH, Maxwell KN, Parolia A, Zorko NA, Pienta KJ, Soule HR. Disrupting prostate cancer research: Challenge accepted; report from the 2023 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2024; 84:993-1015. [PMID: 38682886 DOI: 10.1002/pros.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Catherine H Marshall
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Abhijit Parolia
- Department of Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zorko
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
5
|
Schnaiter S, Schamschula E, Laschtowiczka J, Fiegl H, Zschocke J, Zeimet A, Wimmer K, Reimer D. Stratification of Homologous Recombination Deficiency-Negative High-Grade Ovarian Cancer by the Type of Peritoneal Spread into Two Groups with Distinct Survival Outcomes. Cancers (Basel) 2024; 16:2129. [PMID: 38893248 PMCID: PMC11171355 DOI: 10.3390/cancers16112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) has evolved into a major diagnostic marker in high-grade ovarian cancer (HGOC), predicting the response to poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) and also platinum-based therapy. In addition to HRD, the type of peritoneal tumor spread influences the treatment response and patient survival; miliary type tumor spread has a poorer predicted outcome than non-miliary type tumor spread. METHODS Known methods for HRD assessment were adapted for our technical requirements and the predictive-value integrated genomic instability score (PIGIS) for HRD assessment evolved as an outcome. PIGIS was validated in HGOC samples from 122 patients. We used PIGIS to analyze whether the type of tumor spread correlated with HRD status and whether this had an impact on survival. RESULTS We demonstrated that PIGIS can discriminate HRD-positive from HRD-negative samples. Tumors with a miliary tumor spread are HRD-negative and have a very bad prognosis with a progression-free survival (PFS) of 15.6 months and an overall survival (OS) of 3.9 years. However, HRD-negative non-miliary spreading tumors in our cohort had a much better prognosis (PFS 35.4 months, OS 8.9 years); similar to HRD-positive tumors (PFS 34.7 months, OS 8.9 years). CONCLUSIONS Our results indicate that in a predominantly PARPi naïve cohort, the type of tumor spread and concomitant cytoreduction efficiency is a better predictor of survival than HRD and that HRD may be an accidental surrogate marker for tumor spread and concomitant cytoreduction efficiency. It remains to be determined whether this also applies for sensitivity to PARPi.
Collapse
Affiliation(s)
- Simon Schnaiter
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Esther Schamschula
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Juliane Laschtowiczka
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University Innsbruck, 6020 Innsbruck, Austria; (H.F.); (A.Z.); (D.R.)
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Alain Zeimet
- Department of Obstetrics and Gynecology, Medical University Innsbruck, 6020 Innsbruck, Austria; (H.F.); (A.Z.); (D.R.)
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (E.S.); (J.L.); (J.Z.); (K.W.)
| | - Daniel Reimer
- Department of Obstetrics and Gynecology, Medical University Innsbruck, 6020 Innsbruck, Austria; (H.F.); (A.Z.); (D.R.)
| |
Collapse
|
6
|
Harrold EC, Stadler ZK. Upper Gastrointestinal Cancers and the Role of Genetic Testing. Hematol Oncol Clin North Am 2024; 38:677-691. [PMID: 38458854 DOI: 10.1016/j.hoc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Beyond the few established hereditary cancer syndromes with an upper gastrointestinal cancer component, there is increasing recognition of the contribution of novel pathogenic germline variants (gPVs) to upper gastrointestinal carcinogenesis. The detection of gPVs has potential implications for novel treatment approaches of the index cancer patient as well as long-term implications for surveillance and risk-reducing measures for cancer survivors and far-reaching implications for the patients' family. With widespread availability of multigene panel testing, new associations may be identified with germline-somatic integration being critical to determining true causality of novel gPVs. Comprehensive cancer care should incorporate both somatic and germline testing.
Collapse
Affiliation(s)
- Emily C Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland. https://twitter.com/EmilyHarrold6
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Jang SY, Kwak Y, Choi JY, Shin DS, Lee H, Kim M, Jung BY, Chae BJ, Yu J, Lee JE, Kim SW, Nam SJ, Ryu JM. The Effects of National Insurance Coverage Expansion and Genetic Counseling's Role on BRCA1/2 Mutation Tests in Breast Cancer Patients. Cancers (Basel) 2024; 16:1865. [PMID: 38791944 PMCID: PMC11120266 DOI: 10.3390/cancers16101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE This study aims to evaluate the impact of South Korea's national insurance coverage (NIC) expansion and the addition of genetic counselors on BRCA1/2 mutation testing rates in breast cancer patients. MATERIALS AND METHODS A retrospective review was conducted at the Samsung Medical Center (SMC), dividing patients into three groups: pre-NIC expansion, post-NIC expansion, and post-extra genetic counselor involvement. The number of BRCA1/2 tests performed and the detection rates among newly diagnosed and follow-up patients, particularly focusing on triple-negative breast cancer (TNBC) cases, were analyzed. RESULTS Post-NIC expansion, there was a significant increase in BRCA1/2 testing rates, with a gradual rise in detection rates while maintaining statistical significance. TNBC patients under 60 experienced substantial increases in testing rates. The number of follow-up patients recalled for testing also rose significantly after the extra genetic counselor involvement. Additionally, NIC expansion increased insurance coverage for TNBC patients, enhancing accessibility to testing. CONCLUSION The study highlights the positive impact of NIC expansion and genetic counselor involvement on BRCA1/2 mutation testing rates and subsequent patient management. Addressing financial barriers to testing and incorporating genetic counseling significantly improve patient outcomes. This model provides a potential strategy for enhancing early detection and personalized treatment for breast cancer patients with BRCA1/2 mutations, contributing to global cancer management efforts.
Collapse
Affiliation(s)
- Sung Yoon Jang
- Division of Breast Surgery, Department of Surgery, Jeju National University Hospital, Jeju National University School of Medicine, 15, Aran 13-gil, Jeju-si 63241, Republic of Korea; (S.Y.J.); (J.Y.C.)
| | - Youngji Kwak
- Division of Breast Surgery, Department of Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Republic of Korea;
| | - Joon Young Choi
- Division of Breast Surgery, Department of Surgery, Jeju National University Hospital, Jeju National University School of Medicine, 15, Aran 13-gil, Jeju-si 63241, Republic of Korea; (S.Y.J.); (J.Y.C.)
| | - Dong Seung Shin
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (D.S.S.); (B.J.C.); (J.Y.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Hyunjun Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (D.S.S.); (B.J.C.); (J.Y.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Mina Kim
- Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (M.K.); (B.Y.J.)
| | - Boo Yeon Jung
- Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (M.K.); (B.Y.J.)
| | - Byung Joo Chae
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (D.S.S.); (B.J.C.); (J.Y.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Jonghan Yu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (D.S.S.); (B.J.C.); (J.Y.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Jeong Eon Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (D.S.S.); (B.J.C.); (J.Y.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Seok Won Kim
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (D.S.S.); (B.J.C.); (J.Y.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Seok Jin Nam
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (D.S.S.); (B.J.C.); (J.Y.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Jai Min Ryu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (D.S.S.); (B.J.C.); (J.Y.); (J.E.L.); (S.W.K.); (S.J.N.)
| |
Collapse
|
8
|
Martin FJ, Saffie IM, Hurtado MA, Avila-Jaque D, Lagos RA, Selman CA, Huserman JZ, Castillo VA, Chahuán BJ. Variants in BRCA1/2 in a hospital-based cohort in Chile and national literature review. Ecancermedicalscience 2024; 18:1683. [PMID: 38566764 PMCID: PMC10984842 DOI: 10.3332/ecancer.2024.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 04/04/2024] Open
Abstract
Purpose The aim was to assess the diagnostic yield of next generation sequencing (NGS) multi-gene panels for breast and ovarian cancer in a high-complexity cancer centre in Chile. Additionally, our goal was to broaden the genotypic spectrum of BRCA variants already identified in Chilean families. Methods Retrospective analysis was conducted on the genetic test results of 722 individuals from Fundación Arturo López Pérez's genetic counselling unit between 2016 and 2021. A comprehensive literature review encompassing articles analysing the frequency of germinal pathogenic variants in BRCA1/2 within the Chilean population was undertaken. Results 23.5% of the panels had positive results, with 60% due to pathogenic variants in the BRCA1/2 genes. Seven previously unreported variants in BRCA1 from Chilean studies were identified.One or more variants of uncertain significance were detected in 31% of the results, and 11.5% of the families in this cohort presented copy number variants (CNVs) in BRCA1/2.8 studies analysed the frequency of pathogenic variants in BRCA1/2 in the Chilean population between 2006 and 2023, with a frequency between 7.1% and 17.1%.51 BRCA1 variants in 149 families have been reported in Chile and 38 BRCA2 variants in 132 families. Nine founder pathogenic variants identified by one study were present in 51.9% of the total Chilean families reported. Conclusion Our findings advocate for the integration of NGS multi-gene panel testing as a primary strategy within our population. This approach allows for the comprehensive assessment of single nucleotide variants and CNVs in BRCA1/2, alongside other high and moderately penetrant genes associated with breast and ovarian cancer.
Collapse
Affiliation(s)
- Fernanda J Martin
- Unidad Asesoramiento Genético Oncológico, Fundación Arturo López Pérez, Santiago 7500921, Chile
- https://orcid.org/0000-0002-7167-8850
| | - Isabel M Saffie
- Cirugía de mama, Fundación Arturo López Pérez, Santiago 7500921, Chile
- https://orcid.org/0000-0002-4723-5750
| | - Mabel A Hurtado
- Unidad Asesoramiento Genético Oncológico, Fundación Arturo López Pérez, Santiago 7500921, Chile
- Cirugía de mama, Fundación Arturo López Pérez, Santiago 7500921, Chile
| | - Diana Avila-Jaque
- Sección de Genética, Hospital San Juan de Dios, Santiago 8350488, Chile
- https://orcid.org/0009-0002-7787-6847
| | - Rodrigo A Lagos
- Unidad estadística, Fundación Arturo López Pérez, Santiago 7500921, Chile
- https://orcid.org/0000-0002-5806-6227
| | - Carolina A Selman
- Subdirección Unidades Diagnósticas, Fundación Arturo López Pérez, Santiago 7500921, Chile
| | - Jonathan Z Huserman
- Departamento Genética, Hospital Base San José Osorno, Osorno 5311523, Chile
- https://orcid.org/0000-0002-9355-3282
| | - Valentina A Castillo
- Departamento Genética, Hospital Clínico Universidad de Chile, Santiago 8380453, Chile
- Departamento Genética, Hospital Dr. Sótero del Río, Santiago 8150000, Chile
| | - Badir J Chahuán
- Unidad Asesoramiento Genético Oncológico, Fundación Arturo López Pérez, Santiago 7500921, Chile
- Cirugía de mama, Fundación Arturo López Pérez, Santiago 7500921, Chile
- https://orcid.org/0000-0003-3133-6706
| |
Collapse
|
9
|
Barnes DR, Tyrer JP, Dennis J, Leslie G, Bolla MK, Lush M, Aeilts AM, Aittomäki K, Andrieu N, Andrulis IL, Anton-Culver H, Arason A, Arun BK, Balmaña J, Bandera EV, Barkardottir RB, Berger LP, de Gonzalez AB, Berthet P, Białkowska K, Bjørge L, Blanco AM, Blok MJ, Bobolis KA, Bogdanova NV, Brenton JD, Butz H, Buys SS, Caligo MA, Campbell I, Castillo C, Claes KB, Colonna SV, Cook LS, Daly MB, Dansonka-Mieszkowska A, de la Hoya M, deFazio A, DePersia A, Ding YC, Domchek SM, Dörk T, Einbeigi Z, Engel C, Evans DG, Foretova L, Fortner RT, Fostira F, Foti MC, Friedman E, Frone MN, Ganz PA, Gentry-Maharaj A, Glendon G, Godwin AK, González-Neira A, Greene MH, Gronwald J, Guerrieri-Gonzaga A, Hamann U, Hansen TV, Harris HR, Hauke J, Heitz F, Hogervorst FB, Hooning MJ, Hopper JL, Huff CD, Huntsman DG, Imyanitov EN, Izatt L, Jakubowska A, James PA, Janavicius R, John EM, Kar S, Karlan BY, Kennedy CJ, Kiemeney LA, Konstantopoulou I, Kupryjanczyk J, Laitman Y, Lavie O, Lawrenson K, Lester J, Lesueur F, Lopez-Pleguezuelos C, Mai PL, Manoukian S, May T, McNeish IA, Menon U, Milne RL, Modugno F, Mongiovi JM, Montagna M, Moysich KB, Neuhausen SL, Nielsen FC, Noguès C, Oláh E, Olopade OI, Osorio A, Papi L, Pathak H, Pearce CL, Pedersen IS, Peixoto A, Pejovic T, Peng PC, Peshkin BN, Peterlongo P, Powell CB, Prokofyeva D, Pujana MA, Radice P, Rashid MU, Rennert G, Richenberg G, Sandler DP, Sasamoto N, Setiawan VW, Sharma P, Sieh W, Singer CF, Snape K, Sokolenko AP, Soucy P, Southey MC, Stoppa-Lyonnet D, Sutphen R, Sutter C, Teixeira MR, Terry KL, Thomsen LCV, Tischkowitz M, Toland AE, Van Gorp T, Vega A, Velez Edwards DR, Webb PM, Weitzel JN, Wentzensen N, Whittemore AS, Winham SJ, Wu AH, Yadav S, Yu Y, Ziogas A, Berchuck A, Couch FJ, Goode EL, Goodman MT, Monteiro AN, Offit K, Ramus SJ, Risch HA, Schildkraut JM, Thomassen M, Simard J, Easton DF, Jones MR, Chenevix-Trench G, Gayther SA, Antoniou AC, Pharoah PD. Large-scale genome-wide association study of 398,238 women unveils seven novel loci associated with high-grade serous epithelial ovarian cancer risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.29.24303243. [PMID: 38496424 PMCID: PMC10942532 DOI: 10.1101/2024.02.29.24303243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). Methods We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. Results Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). Conclusions This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.
Collapse
Affiliation(s)
- Daniel R. Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P. Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amber M. Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, USA
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nadine Andrieu
- Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Irene L. Andrulis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Adalgeir Arason
- Department of Pathology, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Banu K. Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, University Hospital of Vall d’Hebron, Barcelona, Spain
| | - Elisa V. Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Rosa B. Barkardottir
- Department of Pathology, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lieke P.V. Berger
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | | | - Pascaline Berthet
- Département de Biopathologie, Centre François Baclesse, Caen, France
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Line Bjørge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amie M. Blanco
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA, USA
| | - Marinus J. Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kristie A. Bobolis
- City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA
| | - Natalia V. Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Budapest, Hungary
| | - Saundra S. Buys
- Department of Medicine, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, USA
| | | | - Ian Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Carmen Castillo
- Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
| | - Kathleen B.M. Claes
- Centre for Medical Genetics, Ghent University, Gent, Belgium
- Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - EMBRACE Collaborators
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sarah V. Colonna
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, USA
| | - Linda S. Cook
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Agnieszka Dansonka-Mieszkowska
- Department of Pathology and Laboratory Medicine, Institute of Oncology and Maria Sklodowska-Curie Cancer Center, Warsaw, Poland
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Allison DePersia
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M. Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Zakaria Einbeigi
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - D. Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary’s Hospital, Manchester, UK
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary’s Hospital, Manchester, UK
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Eitan Friedman
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
- Assuta Medical Center, Tel-Aviv, Israel
| | - Megan N. Frone
- National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Patricia A. Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Centre, UCLA, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre, Madrid, Spain
- Spanish Network on Rare Diseases, Madrid, Spain
| | - Mark H. Greene
- National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas v.O. Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
| | - Frans B.L. Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G. Huntsman
- British Columbia’s Ovarian Cancer Research (OVCARE) Program, BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - kConFab Investigators
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise Izatt
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Paul A. James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center and the Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ramunas Janavicius
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Hematology, Oncology and Transfusion Medicine Center, Oncogenetics Unit, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Esther M. John
- Department of Epidemiology & Population Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Medicine, Institute of Oncology and Maria Sklodowska-Curie Cancer Center, Warsaw, Poland
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ofer Lavie
- Technion-Israel Institute of Technology, Haifa, Israel
- Carmel Medical Center, Haifa, Israel
| | - Kate Lawrenson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Women’s Cancer Program at the Samuel Oschin Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Carlos Lopez-Pleguezuelos
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Escola de Doutoramento Internacional, Universidade de Santiago, Santiago de Compostela, Spain
| | - Phuong L. Mai
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Taymaa May
- Princess Margaret Cancer Center, Toronto, Canada
| | - Iain A. McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, Imperial College London, London, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Francesmary Modugno
- Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jennifer M. Mongiovi
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Finn C. Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Catherine Noguès
- Département d’Anticipation et de Suivi des Cancers, Oncogénétique Clinique, Institut Paoli-Calmettes, Marseille, France
- Aix Marseille Université, INSERM, IRD, SESSTIM, Marseille, France
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | | | - Ana Osorio
- Spanish Network on Rare Diseases, Madrid, Spain
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Madrid, Spain
| | - Laura Papi
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Celeste L. Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ana Peixoto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Tanja Pejovic
- Department of Obstetrics & Gynecology, Providence Medical Center, Medford, OR, USA
- Providence Cancer Center, Medford, OR, USA
| | - Pei-Chen Peng
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth N. Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Jess and Mildred Fisher Center for Hereditary Cancer and Clinical Genomics Research, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - C. Bethan Powell
- Hereditary Cancer Program, Kaiser Permanente Northern California, San Francisco, CA, USA
| | | | - Miquel Angel Pujana
- ProCURE, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
- ProCURE, IDIBGI (Girona Biomedical Research Institute), Catalan Institute of Oncology, Girona, Spain
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Muhammad U. Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Technion-Israel Institute of Technology, Haifa, Israel
- The Association for Promotion of Research in Precision Medicine, Haifa, Israel
| | - George Richenberg
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Rockville, MD, USA
| | - Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA
| | - Weiva Sieh
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian F. Singer
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Katie Snape
- Medical Genetics Unit, St George’s, University of London, London, UK
| | - Anna P. Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, East Melbourne, Victoria, Australia
| | - Dominique Stoppa-Lyonnet
- Genetics Department, Institut Curie, Paris, France
- Unité INSERM U830, Paris, France
- Université Paris Cité, Paris, France
| | - Rebecca Sutphen
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel R. Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Kathryn L. Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Liv Cecilie V. Thomsen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Norway
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Amanda E. Toland
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Toon Van Gorp
- Division of Gynecologic Oncology, University Hospital Leuven, Leuven, Belgium
- Leuven Cancer Institute, University of Leuven, Leuven, Belgium
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Digna R. Velez Edwards
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Penelope M. Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alice S. Whittemore
- Department of Epidemiology & Population Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacey J. Winham
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marc T. Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- AnaNeo Therapeutics, New York, NY, USA
| | - Susan J. Ramus
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Harvey A. Risch
- Chronic Disease Epidemiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michelle R. Jones
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D.P. Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Yi H, Trivedi MS, Crew KD, Schechter I, Appelbaum P, Chung WK, Allegrante JP, Kukafka R. Understanding Social, Cultural, and Religious Factors Influencing Medical Decision-Making on BRCA1/2 Genetic Testing in the Orthodox Jewish Community. Public Health Genomics 2024; 27:57-67. [PMID: 38402864 DOI: 10.1159/000536391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Although the prevalence of a pathogenic variant in the BRCA1 and BRCA2 genes is about 1:400 (0.25%) in the general population, the prevalence is as high as 1:40 (2.5%) among the Ashkenazi Jewish population. Despite cost-effective preventive measures for mutation carriers, Orthodox Jews constitute a cultural and religious group that requires different approaches to BRCA1 and BRCA2 genetic testing relative to other groups. This study analyzed a dialog of key stakeholders and community members to explore factors that influence decision-making about BRCA1 and BRCA2 genetic testing in the New York Orthodox Jewish community. METHODS Qualitative research methods, based on Grounded Theory and Narrative Research, were utilized to analyze the narrative data collected from 49 key stakeholders and community members. A content analysis was conducted to identify themes; inter-rater reliability was 71%. RESULTS Facilitators of genetic testing were a desire for preventive interventions and education, while barriers to genetic testing included negative emotions, feared impact on family/romantic relationships, cost, and stigma. Views differed on the role of religious leaders and healthcare professionals in medical decision-making. Education, health, and community were discussed as influential factors, and concerns were expressed about disclosure, implementation, and information needs. CONCLUSION This study elicited the opinions of Orthodox Jewish women (decision-makers) and key stakeholders (influencers) who play critical roles in the medical decision-making process. The findings have broad implications for engaging community stakeholders within faith-based or culturally distinct groups to ensure better utilization of healthcare services for cancer screening and prevention designed to improve population health.
Collapse
Affiliation(s)
- Haeseung Yi
- Department of Health Studies and Applied Educational Psychology, Teachers College, Columbia University, New York, New York, USA,
| | - Meghna S Trivedi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Katherine D Crew
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Isaac Schechter
- Achieve Behavioral Health, Monsey, New York, USA
- Institute for Applied Research and Community Collaboration (ARCC), Spring Valley, New York, USA
| | - Paul Appelbaum
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Center for Law, Ethics and Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Wendy K Chung
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - John P Allegrante
- Department of Health Studies and Applied Educational Psychology, Teachers College, Columbia University, New York, New York, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Rita Kukafka
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Guo F, Adekanmbi V, Hsu CD, Berenson AB, Kuo YF, Shih YCT. Cost-Effectiveness of Population-Based Multigene Testing for Breast and Ovarian Cancer Prevention. JAMA Netw Open 2024; 7:e2356078. [PMID: 38353949 PMCID: PMC10867683 DOI: 10.1001/jamanetworkopen.2023.56078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Importance The current method of BRCA testing for breast and ovarian cancer prevention, which is based on family history, often fails to identify many carriers of pathogenic variants. Population-based genetic testing offers a transformative approach in cancer prevention by allowing for proactive identification of any high-risk individuals and enabling early interventions. Objective To assess the lifetime incremental effectiveness, costs, and cost-effectiveness of population-based multigene testing vs family history-based testing. Design, Setting, and Participants This economic evaluation used a microsimulation model to assess the cost-effectiveness of multigene testing (BRCA1, BRCA2, and PALB2) for all women aged 30 to 35 years compared with the current standard of care that is family history based. Carriers of pathogenic variants were offered interventions, such as magnetic resonance imaging with or without mammography, chemoprevention, or risk-reducing mastectomy and salpingo-oophorectomy, to reduce cancer risk. A total of 2000 simulations were run on 1 000 000 women, using a lifetime time horizon and payer perspective, and costs were adjusted to 2022 US dollars. This study was conducted from September 1, 2020, to December 15, 2023. Main Outcomes and Measures The main outcome measure was the incremental cost-effectiveness ratio (ICER), quantified as cost per quality-adjusted life-year (QALY) gained. Secondary outcomes included incremental cost, additional breast and ovarian cancer cases prevented, and excess deaths due to coronary heart disease (CHD). Results The study assessed 1 000 000 simulated women aged 30 to 35 years in the US. In the base case, population-based multigene testing was more cost-effective compared with family history-based testing, with an ICER of $55 548 per QALY (95% CI, $47 288-$65 850 per QALY). Population-based multigene testing would be able to prevent an additional 1338 cases of breast cancer and 663 cases of ovarian cancer, but it would also result in 69 cases of excess CHD and 10 excess CHD deaths per million women. The probabilistic sensitivity analyses show that the probability that population-based multigene testing is cost-effective was 100%. When the cost of the multigene test exceeded $825, population-based testing was no longer cost-effective (ICER, $100 005 per QALY; 95% CI, $87 601-$11 6323). Conclusions and Relevance In this economic analysis of population-based multigene testing, population-based testing was a more cost-effective strategy for the prevention of breast cancer and ovarian cancer when compared with the current family history-based testing strategy at the $100 000 per QALY willingness-to-pay threshold. These findings support the need for more comprehensive genetic testing strategies to identify pathogenic variant carriers and enable informed decision-making for personalized risk management.
Collapse
Affiliation(s)
- Fangjian Guo
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
| | - Victor Adekanmbi
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
| | - Christine D. Hsu
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
| | - Abbey B. Berenson
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
| | - Yong-Fang Kuo
- Center for Interdisciplinary Research in Women’s Health, The University of Texas Medical Branch at Galveston, Galveston
- Department of Biostatistics and Data Science, The University of Texas Medical Branch at Galveston, Galveston
- Office of Biostatistics, University of Texas Medical Branch at Galveston, Galveston
| | - Ya-Chen Tina Shih
- Program in Cancer Health Economics Research, Jonsson Comprehensive Cancer Center, and Department of Radiation Oncology, School of Medicine, University of California, Los Angeles
| |
Collapse
|
12
|
Kramer C, Lanjouw L, Ruano D, Ter Elst A, Santandrea G, Solleveld-Westerink N, Werner N, van der Hout AH, de Kroon CD, van Wezel T, Berger L, Jalving M, Wesseling J, Smit V, de Bock GH, van Asperen CJ, Mourits M, Vreeswijk M, Bart J, Bosse T. Causality and functional relevance of BRCA1 and BRCA2 pathogenic variants in non-high-grade serous ovarian carcinomas. J Pathol 2024; 262:137-146. [PMID: 37850614 DOI: 10.1002/path.6218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
The identification of causal BRCA1/2 pathogenic variants (PVs) in epithelial ovarian carcinoma (EOC) aids the selection of patients for genetic counselling and treatment decision-making. Current recommendations therefore stress sequencing of all EOCs, regardless of histotype. Although it is recognised that BRCA1/2 PVs cluster in high-grade serous ovarian carcinomas (HGSOC), this view is largely unsubstantiated by detailed analysis. Here, we aimed to analyse the results of BRCA1/2 tumour sequencing in a centrally revised, consecutive, prospective series including all EOC histotypes. Sequencing of n = 946 EOCs revealed BRCA1/2 PVs in 125 samples (13%), only eight of which were found in non-HGSOC histotypes. Specifically, BRCA1/2 PVs were identified in high-grade endometrioid (3/20; 15%), low-grade endometrioid (1/40; 2.5%), low-grade serous (3/67; 4.5%), and clear cell (1/64; 1.6%) EOCs. No PVs were identified in any mucinous ovarian carcinomas tested. By re-evaluation and using loss of heterozygosity and homologous recombination deficiency analyses, we then assessed: (1) whether the eight 'anomalous' cases were potentially histologically misclassified and (2) whether the identified variants were likely causal in carcinogenesis. The first 'anomalous' non-HGSOC with a BRCA1/2 PV proved to be a misdiagnosed HGSOC. Next, germline BRCA2 variants, found in two p53-abnormal high-grade endometrioid tumours, showed substantial evidence supporting causality. One additional, likely causal variant, found in a p53-wildtype low-grade serous ovarian carcinoma, was of somatic origin. The remaining cases showed retention of the BRCA1/2 wildtype allele, suggestive of non-causal secondary passenger variants. We conclude that likely causal BRCA1/2 variants are present in high-grade endometrioid tumours but are absent from the other EOC histotypes tested. Although the findings require validation, these results seem to justify a transition from universal to histotype-directed sequencing. Furthermore, in-depth functional analysis of tumours harbouring BRCA1/2 variants combined with detailed revision of cancer histotypes can serve as a model in other BRCA1/2-related cancers. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cjh Kramer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - L Lanjouw
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - N Solleveld-Westerink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Werner
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A H van der Hout
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C D de Kroon
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - T van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lpv Berger
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J Wesseling
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vthbm Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - G H de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mje Mourits
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mpg Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - J Bart
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - T Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Blackman A, Rees AC, Bowers RR, Jones CM, Vaena SG, Clark MA, Carter S, Villamor ED, Evans D, Emanuel AJ, Fullbright G, Long DT, Spruill L, Romeo MJ, Helke KL, Delaney JR. MYC is sufficient to generate mid-life high-grade serous ovarian and uterine serous carcinomas in a p53-R270H mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.576924. [PMID: 38352443 PMCID: PMC10862747 DOI: 10.1101/2024.01.24.576924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Genetically engineered mouse models (GEMM) have fundamentally changed how ovarian cancer etiology, early detection, and treatment is understood. However, previous GEMMs of high-grade serous ovarian cancer (HGSOC) have had to utilize genetics rarely or never found in human HGSOC to yield ovarian cancer within the lifespan of a mouse. MYC, an oncogene, is amongst the most amplified genes in HGSOC, but it has not previously been utilized to drive HGSOC GEMMs. We coupled Myc and dominant negative mutant p53-R270H with a fallopian tube epithelium-specific promoter Ovgp1 to generate a new GEMM of HGSOC. Female mice developed lethal cancer at an average of 15.1 months. Histopathological examination of mice revealed HGSOC characteristics including nuclear p53 and nuclear MYC in clusters of cells within the fallopian tube epithelium and ovarian surface epithelium. Unexpectedly, nuclear p53 and MYC clustered cell expression was also identified in the uterine luminal epithelium, possibly from intraepithelial metastasis from the fallopian tube epithelium (FTE). Extracted tumor cells exhibited strong loss of heterozygosity at the p53 locus, leaving the mutant allele. Copy number alterations in these cancer cells were prevalent, disrupting a large fraction of genes. Transcriptome profiles most closely matched human HGSOC and serous endometrial cancer. Taken together, these results demonstrate the Myc and Trp53-R270H transgene was able to recapitulate many phenotypic hallmarks of HGSOC through the utilization of strictly human-mimetic genetic hallmarks of HGSOC. This new mouse model enables further exploration of ovarian cancer pathogenesis, particularly in the 50% of HGSOC which lack homology directed repair mutations. Histological and transcriptomic findings are consistent with the hypothesis that uterine serous cancer may originate from the fallopian tube epithelium.
Collapse
|
14
|
Loizzi V, Mongelli M, Arezzo F, Romagno I, Cazzato G, Popescu O, Legge F, Trerotoli P, Silvestris E, Kardhashi A, Cormio G. BRCA Mutation Patients: Are There Other Predisposing Factors for Ovarian Cancer Occurrence? A Multicenter Retrospective Study. Gynecol Obstet Invest 2024; 89:87-94. [PMID: 38246147 DOI: 10.1159/000535012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVES The objective of this multicenter retrospective study aimed to evaluate the association of clinical variables and the incidence of ovarian cancer in patients with BRCA 1-2 mutation carriers who underwent risk-reducing salpingo-oophorectomy (RRSO). DESIGN Patients with a pathogenic mutation of BRCA 1-2 genes and with no evidence of disease are considered eligible. The exclusion criterion was the refusal to undergo the surgery. The retrospective study included all RRSO performed from May 2015 to April 2022 in the three gynecological Institutions of Southern Italy for were included in this retrospective study. PARTICIPANTS/MATERIALS, SETTING, METHODS Age, menarche age, BMI, menopause at time of RRSO, breast cancer first- and second-degree relatives, ovarian cancer first- and second-degree relatives, estroprogestin use, pregnancy normal full-term delivery, history of endometriosis, previous breast cancer and histologic type, previous abdominal/pelvic surgery, BRCA 1 or BRCA 2 status, preoperative serum CA-125 levels (IU/mL), age at time of RRSO and histological analysis were collected. RESULTS 184 were recruited. One was excluded. To assess cancer risk, the outcome variable was classified into three classes: no event, cancer, and other conditions excluding cancer. 14 women presented ovarian cancer and tubal intraepithelial carcinoma (STIC) on histopathologic final report. Ovarian cancer was found in 8 patients, whereas the presence of STIC was found in 6 of them. LIMITATIONS The low incidence of patients diagnosed with ovarian cancer or STIC compared with the total number of patients undergoing RRSO is a potential bias. CONCLUSIONS Our study did not demonstrate a correlation between clinical features and the occurrence of precancerous or cancerous lesions in BRCA mutation carrier patients.
Collapse
Affiliation(s)
- Vera Loizzi
- S.S.D. Ginecologia Oncologica Clinicizzata, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Michele Mongelli
- Obstetrics and Gynecology Unit, University of "Aldo Moro", Bari, Italy
| | - Francesca Arezzo
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Isabella Romagno
- Obstetrics and Gynecology Unit, University of "Aldo Moro", Bari, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari "Aldo Moro", Bari, Italy
| | - Ondina Popescu
- S.C. Anatomia Patologica, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Francesco Legge
- Gynecologic Oncology Unit, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, Italy
| | - Paolo Trerotoli
- Medical Statistic and Biometry Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Erica Silvestris
- S.S.D. Ginecologia Oncologica Clinicizzata, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Anila Kardhashi
- S.S.D. Ginecologia Oncologica Clinicizzata, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Gennaro Cormio
- S.S.D. Ginecologia Oncologica Clinicizzata, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
15
|
Hodan R, Kingham K, Kurian AW. Recurrent BRCA2 exon 3 deletion in Assyrian families. J Med Genet 2024; 61:155-157. [PMID: 37657917 DOI: 10.1136/jmg-2023-109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
We identified six patients from five families with a recurrent mutation: NM_000059.3 (BRCA2) exon 3 deletion. All families self-identified as Assyrian. Assyrians are an ethnoreligious population of ancient Mesopotamia, now mostly living in modern day Iraq, Syria, Turkey and Iran. They are historically a socially isolated population with intermarriage within their community, living as a religious and language minority in mostly Muslim countries. The probands of each family presented with a classic BRCA2-associated cancer including early-onset breast cancer, epithelial serous ovarian cancer, male breast cancer and/or high-grade prostate cancer, and family history that was also significant for BRCA2-associated cancer. BRCA2 exon 3 deletion is classified as pathogenic and has been previously described in the literature, but it has not been described as a founder mutation in a particular population. We characterise this recurrent BRCA2 pathogenic variant in five Assyrian families in a single centre cohort.
Collapse
Affiliation(s)
- Rachel Hodan
- Cancer Genetics, Stanford Health Care, Stanford, California, USA
- Department of Pediatrics (Genetics), Stanford University School of Medicine, Stanford, California, USA
| | - Kerry Kingham
- Cancer Genetics, Stanford Health Care, Stanford, California, USA
- Department of Pediatrics (Genetics), Stanford University School of Medicine, Stanford, California, USA
| | - Allison W Kurian
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
16
|
Guo R, Yu Y, Huang Y, Lin M, Liao Y, Hu Y, Li Q, Peng C, Zhou J. A nomogram model combining ultrasound-based radiomics features and clinicopathological factors to identify germline BRCA1/2 mutation in invasive breast cancer patients. Heliyon 2024; 10:e23383. [PMID: 38169922 PMCID: PMC10758804 DOI: 10.1016/j.heliyon.2023.e23383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Objective BRCA1/2 status is a key to personalized therapy for invasive breast cancer patients. This study aimed to explore the association between ultrasound radiomics features and germline BRCA1/2 mutation in patients with invasive breast cancer. Materials and methods In this retrospective study, 100 lesions in 92 BRCA1/2-mutated patients and 390 lesions in 357 non-BRCA1/2-mutated patients were included and randomly assigned as training and validation datasets in a ratio of 7:3. Gray-scale ultrasound images of the largest plane of the lesions were used for feature extraction. Maximum relevance minimum redundancy (mRMR) algorithm and multivariate logistic least absolute shrinkage and selection operator (LASSO) regression were used to select features. The multivariate logistic regression method was used to construct predictive models based on clinicopathological factors, radiomics features, or a combination of them. Results In the clinical model, age at first diagnosis, family history of BRCA1/2-related malignancies, HER2 status, and Ki-67 level were found to be independent predictors for BRCA1/2 mutation. In the radiomics model, 10 significant features were selected from the 1032 radiomics features extracted from US images. The AUCs of the radiomics model were not inferior to those of the clinical model in both training dataset [0.712 (95% CI, 0.647-0.776) vs 0.768 (95% CI, 0.704-0.835); p = 0.429] and validation dataset [0.705 (95% CI, 0.597-0.808) vs 0.723 (95% CI, 0.625-0.828); p = 0.820]. The AUCs of the nomogram model combining clinical and radiomics features were 0.804 (95% CI, 0.748-0.861) in the training dataset and 0.811 (95% CI, 0.724-0.894) in the validation dataset, which were proved significantly higher than those of the clinical model alone by DeLong's test (p = 0.041; p = 0.007). To be noted, the negative predictive values (NPVs) of the nomogram model reached a favorable 0.93 in both datasets. Conclusion This machine nomogram model combining ultrasound-based radiomics and clinical features exhibited a promising performance in identifying germline BRCA1/2 mutation in patients with invasive breast cancer and may help avoid unnecessary gene tests in clinical practice.
Collapse
Affiliation(s)
| | | | - Yini Huang
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Min Lin
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Ying Liao
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yixin Hu
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Qing Li
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Chuan Peng
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| |
Collapse
|
17
|
Roebothan A, Smith KN, Seal M, Etchegary H, Dawson L. Specialty Care and Counselling about Hereditary Cancer Risk Improves Adherence to Cancer Screening and Prevention in Newfoundland and Labrador Patients with BRCA1/2 Pathogenic Variants: A Population-Based Retrospective Cohort Study. Curr Oncol 2023; 30:9367-9381. [PMID: 37887578 PMCID: PMC10605144 DOI: 10.3390/curroncol30100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Pathogenic variants (PVs) in BRCA1 and BRCA2 increase the lifetime risks of breast and ovarian cancer. Guidelines recommend breast screening (magnetic resonance imaging (MRI) and mammogram) or risk-reducing mastectomy (RRM) and salpingo-oophorectomy (RRSO). We sought to (1) characterize the population of BRCA1/2 PV carriers in Newfoundland and Labrador (NL), (2) evaluate risk-reducing interventions, and (3) identify factors influencing screening and prevention adherence. We conducted a retrospective study from a population-based provincial cohort of BRCA1/2 PV carriers. The eligibility criteria for risk-reducing interventions were defined for each case and patients were categorized based on their level of adherence with recommendations. Chi-squared and regression analyses were used to determine which factors influenced uptake and level of adherence. A total of 276 BRCA1/2 PV carriers were identified; 156 living NL biological females composed the study population. Unaffected females were younger at testing than those with a cancer diagnosis (44.4 years versus 51.7 years; p = 0.002). Categorized by eligibility, 61.0%, 61.6%, 39.0%, and 75.7% of patients underwent MRI, mammogram, RRM, and RRSO, respectively. Individuals with breast cancer were more likely to have RRM (64.7% versus 35.3%; p < 0.001), and those who attended a specialty hereditary cancer clinic were more likely to be adherent to recommendations (73.2% versus 13.4%; p < 0.001) and to undergo RRSO (84.1% versus 15.9%; p < 0.001). Nearly 40% of the female BRCA1/2 PV carriers were not receiving breast surveillance according to evidence-based recommendations. Cancer risk reduction and uptake of breast imaging and prophylactic surgeries are significantly higher in patients who receive dedicated specialty care. Organized hereditary cancer prevention programs will be a valuable component of Canadian healthcare systems and have the potential to reduce the burden of disease countrywide.
Collapse
Affiliation(s)
- Aimee Roebothan
- Faculty of Medicine, Memorial University, St. John’s, NL 1AB 3V6, Canada;
| | - Kerri N. Smith
- Centre for Translational Genomics, NL Health Services, St. John’s, NL 1AB 3V6, Canada
- Discipline of Laboratory Medicine, Faculty of Medicine, Memorial University, St. John’s, NL 1AB 3V6, Canada
| | - Melanie Seal
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John’s, NL 1AB 3V6, Canada;
| | - Holly Etchegary
- Community Health and Humanities, Faculty of Medicine, Memorial University, St. John’s, NL 1AB 3V6, Canada;
| | - Lesa Dawson
- Division of Gynecologic Oncology, Faculty of Medicine, Memorial University, St. John’s, NL 1AB 3V6, Canada
| |
Collapse
|
18
|
Craig O, Nigam A, Dall GV, Gorringe K. Rare Epithelial Ovarian Cancers: Low Grade Serous and Mucinous Carcinomas. Cold Spring Harb Perspect Med 2023; 13:a038190. [PMID: 37277207 PMCID: PMC10513165 DOI: 10.1101/cshperspect.a038190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ovarian epithelial cancer histotypes can be divided into common and rare types. Common types include high-grade serous ovarian carcinomas and the endometriosis-associated cancers, endometrioid and clear-cell carcinomas. The less common histotypes are mucinous and low-grade serous, each comprising less than 10% of all epithelial carcinomas. Although histologically and epidemiologically distinct from each other, these histotypes share some genetic and natural history features that distinguish them from the more common types. In this review, we will consider the similarities and differences of these rare histological types, and the clinical challenges they pose.
Collapse
Affiliation(s)
- Olivia Craig
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Abhimanyu Nigam
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Kylie Gorringe
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
19
|
Nesic K, Krais JJ, Vandenberg CJ, Wang Y, Patel P, Cai KQ, Kwan T, Lieschke E, Ho GY, Barker HE, Bedo J, Casadei S, Farrell A, Radke M, Shield-Artin K, Penington JS, Geissler F, Kyran E, Zhang F, Dobrovic A, Olesen I, Kristeleit R, Oza A, Ratnayake G, Traficante N, DeFazio A, Bowtell DDL, Harding TC, Lin K, Swisher EM, Kondrashova O, Scott CL, Johnson N, Wakefield MJ. BRCA1 secondary splice-site mutations drive exon-skipping and PARP inhibitor resistance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.20.23287465. [PMID: 36993400 PMCID: PMC10055590 DOI: 10.1101/2023.03.20.23287465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BRCA1 splice isoforms Δ11 and Δ11q can contribute to PARP inhibitor (PARPi) resistance by splicing-out the mutation-containing exon, producing truncated, partially-functional proteins. However, the clinical impact and underlying drivers of BRCA1 exon skipping remain undetermined. We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs), predicted in silico to drive exon skipping. Predictions were confirmed using qRT-PCR, RNA sequencing, western blots and BRCA1 minigene modelling. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials. We demonstrate that SSMs drive BRCA1 exon 11 skipping and PARPi resistance, and should be clinically monitored, along with frame-restoring secondary mutations.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | | | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | - Tanya Kwan
- Clovis Oncology Inc., San Francisco, CA, USA
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gwo-Yaw Ho
- School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Holly E. Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Justin Bedo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | | | - Andrew Farrell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marc Radke
- University of Washington, Seattle, WA, USA
| | - Kristy Shield-Artin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jocelyn S. Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Franziska Geissler
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth Kyran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Fan Zhang
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
| | - Inger Olesen
- The Andrew Love Cancer Centre, Barwon Health, Geelong, Victoria, Australia
| | - Rebecca Kristeleit
- Department of Oncology, Guys and St Thomas’ NHS Foundation Trust, London, UK
- National Institute for Health Research, University College London Hospitals Clinical Research Facility, London, UK
| | - Amit Oza
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | - Nadia Traficante
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | | | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council New South Wales, Sydney, New South Wales, Australia
- The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynecological Oncology, Westmead Hospital, Western Sydney Local Health District, New South Wales, Australia
| | - David D. L. Bowtell
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | | | - Kevin Lin
- Clovis Oncology Inc., San Francisco, CA, USA
| | | | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia
| | | | - Matthew J. Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Kurian AW, Abrahamse P, Furgal A, Ward KC, Hamilton AS, Hodan R, Tocco R, Liu L, Berek JS, Hoang L, Yussuf A, Susswein L, Esplin ED, Slavin TP, Gomez SL, Hofer TP, Katz SJ. Germline Genetic Testing After Cancer Diagnosis. JAMA 2023; 330:43-51. [PMID: 37276540 PMCID: PMC10242510 DOI: 10.1001/jama.2023.9526] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Importance Germline genetic testing is recommended by practice guidelines for patients diagnosed with cancer to enable genetically targeted treatment and identify relatives who may benefit from personalized cancer screening and prevention. Objective To describe the prevalence of germline genetic testing among patients diagnosed with cancer in California and Georgia between 2013 and 2019. Design, Setting, and Participants Observational study including patients aged 20 years or older who had been diagnosed with any type of cancer between January 1, 2013, and March 31, 2019, that was reported to statewide Surveillance, Epidemiology, and End Results registries in California and Georgia. These patients were linked to genetic testing results from 4 laboratories that performed most germline testing for California and Georgia. Main Outcomes and Measures The primary outcome was germline genetic testing within 2 years of a cancer diagnosis. Testing trends were analyzed with logistic regression modeling. The results of sequencing each gene, including variants associated with increased cancer risk (pathogenic results) and variants whose cancer risk association was unknown (uncertain results), were evaluated. The genes were categorized according to their primary cancer association, including breast or ovarian, gastrointestinal, and other, and whether practice guidelines recommended germline testing. Results Among 1 369 602 patients diagnosed with cancer between 2013 and 2019 in California and Georgia, 93 052 (6.8%) underwent germline testing through March 31, 2021. The proportion of patients tested varied by cancer type: male breast (50%), ovarian (38.6%), female breast (26%), multiple (7.5%), endometrial (6.4%), pancreatic (5.6%), colorectal (5.6%), prostate (1.1%), and lung (0.3%). In a logistic regression model, compared with the 31% (95% CI, 30%-31%) of non-Hispanic White patients with male breast cancer, female breast cancer, or ovarian cancer who underwent testing, patients of other races and ethnicities underwent testing less often: 22% (95% CI, 21%-22%) of Asian patients, 25% (95% CI, 24%-25%) of Black patients, and 23% (95% CI, 23%-23%) of Hispanic patients (P < .001 using the χ2 test). Of all pathogenic results, 67.5% to 94.9% of variants were identified in genes for which practice guidelines recommend testing and 68.3% to 83.8% of variants were identified in genes associated with the diagnosed cancer type. Conclusions and Relevance Among patients diagnosed with cancer in California and Georgia between 2013 and 2019, only 6.8% underwent germline genetic testing. Compared with non-Hispanic White patients, rates of testing were lower among Asian, Black, and Hispanic patients.
Collapse
Affiliation(s)
- Allison W. Kurian
- Department of Medicine, School of Medicine, Stanford University, Stanford, California
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California
| | - Paul Abrahamse
- Department of Health Management and Policy, School of Public Health, University of Michigan, Ann Arbor
| | - Allison Furgal
- Department of Health Management and Policy, School of Public Health, University of Michigan, Ann Arbor
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Kevin C. Ward
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Ann S. Hamilton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Rachel Hodan
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California
| | - Rachel Tocco
- Department of Health Management and Policy, School of Public Health, University of Michigan, Ann Arbor
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Lihua Liu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Jonathan S. Berek
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, California
| | | | | | | | | | | | - Scarlett L. Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco
| | - Timothy P. Hofer
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor
- Center for Clinical Management Research, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Steven J. Katz
- Department of Health Management and Policy, School of Public Health, University of Michigan, Ann Arbor
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| |
Collapse
|
21
|
Wan A, Zhang G, Ma D, Zhang Y, Qi X. An overview of the research progress of BRCA gene mutations in breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188907. [PMID: 37172654 DOI: 10.1016/j.bbcan.2023.188907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The breast cancer susceptibility gene (BRCA) is an important tumor suppressor gene, including BRCA1 and BRCA2, a biomarker that assesses the risk of breast cancer and influences a patient's individualized treatment options. BRCA1/2 mutation (BRCAm) increases the risk of breast cancer. However, breast-conserving surgery is still an option for BRCAm, and prophylactic mastectomy and nipple-sparing mastectomy may also reduce the risk of breast cancer. BRCAm is sensitive to Poly (ADP-ribose) polymerase inhibitor (PARPi) therapy due to specific types of DNA repair defects, and its combination with other DNA damage pathway inhibitors and endocrine therapy and immunotherapy are also used for the treatment of BRCAm breast cancer. The current treatment and research progress of BRCA1/2 mutant breast cancer in this review provides a basis for the individualized treatment of patients with this type of breast cancer.
Collapse
Affiliation(s)
- Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Dandan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
22
|
Kang M, Kim S, Lee DB, Hong C, Hwang KB. Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants. Sci Rep 2023; 13:10478. [PMID: 37380723 DOI: 10.1038/s41598-023-37698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023] Open
Abstract
Machine learning-based pathogenicity prediction helps interpret rare missense variants of BRCA1 and BRCA2, which are associated with hereditary cancers. Recent studies have shown that classifiers trained using variants of a specific gene or a set of genes related to a particular disease perform better than those trained using all variants, due to their higher specificity, despite the smaller training dataset size. In this study, we further investigated the advantages of "gene-specific" machine learning compared to "disease-specific" machine learning. We used 1068 rare (gnomAD minor allele frequency (MAF) < 0.005) missense variants of 28 genes associated with hereditary cancers for our investigation. Popular machine learning classifiers were employed: regularized logistic regression, extreme gradient boosting, random forests, support vector machines, and deep neural networks. As features, we used MAFs from multiple populations, functional prediction and conservation scores, and positions of variants. The disease-specific training dataset included the gene-specific training dataset and was > 7 × larger. However, we observed that gene-specific training variants were sufficient to produce the optimal pathogenicity predictor if a suitable machine learning classifier was employed. Therefore, we recommend gene-specific over disease-specific machine learning as an efficient and effective method for predicting the pathogenicity of rare BRCA1 and BRCA2 missense variants.
Collapse
Affiliation(s)
- Moonjong Kang
- Research Center, Software Division, NGeneBio, Seoul, 08390, Korea
| | - Seonhwa Kim
- Research Center, Software Division, NGeneBio, Seoul, 08390, Korea
| | - Da-Bin Lee
- Department of Computer Science and Engineering, Graduate School, Soongsil University, Seoul, 06978, Korea
| | - Changbum Hong
- Research Center, Software Division, NGeneBio, Seoul, 08390, Korea.
| | - Kyu-Baek Hwang
- Department of Computer Science and Engineering, Graduate School, Soongsil University, Seoul, 06978, Korea.
| |
Collapse
|
23
|
Harrold E, Latham A, Pemmaraju N, Lieu CH. Early-Onset GI Cancers: Rising Trends, Genetic Risks, Novel Strategies, and Special Considerations. Am Soc Clin Oncol Educ Book 2023; 43:e398068. [PMID: 37235819 DOI: 10.1200/edbk_398068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cancers in young adults (commonly described as early-onset [EO] cancer) represent a group of malignancies that have unique and challenging biology and genetic, treatment, social, and psychological implications. Even more concerning is a rising trend of EO cancers in multiple tumor types. Research and investigation in EO cancers will help elucidate mechanisms of carcinogenesis, differences in biology and response to treatment, and the need for multidisciplinary care to ensure comprehensive treatment and support for young patients.
Collapse
Affiliation(s)
- Emily Harrold
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alicia Latham
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | |
Collapse
|
24
|
Thapa I, Vahrenkamp R, Witus SR, Lightle C, Falkenberg O, Sellin Jeffries M, Klevit R, Stewart MD. Conservation of transcriptional regulation by BRCA1 and BARD1 in Caenorhabditis elegans. Nucleic Acids Res 2023; 51:2108-2116. [PMID: 36250637 PMCID: PMC10018340 DOI: 10.1093/nar/gkac877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 01/27/2023] Open
Abstract
The tumor-suppressor proteins BRCA1 and BARD1 function as an E3 ubiquitin ligase to facilitate transcriptional repression and DNA damage repair. This is mediated in-part through its ability to mono-ubiquitylate histone H2A in nucleosomes. Studies in Caenorhabditis elegans have been used to elucidate numerous functions of BRCA1 and BARD1; however, it has not been established that the C. elegans orthologs, BRC-1 and BRD-1, retain all the functions of their human counterparts. Here we explore the conservation of enzymatic activity toward nucleosomes which leads to repression of estrogen-metabolizing cytochrome P450 (cyp) genes in humans. Biochemical assays establish that BRC-1 and BRD-1 contribute to ubiquitylation of histone H2A in the nucleosome. Mutational analysis shows that while BRC-1 likely binds the nucleosome using a conserved interface, BRD-1 and BARD1 have evolved different modes of binding, resulting in a difference in the placement of ubiquitin on H2A. Gene expression analysis reveals that in spite of this difference, BRC-1 and BRD-1 also contribute to cyp gene repression in C. elegans. Establishing conservation of these functions in C. elegans allows for use of this powerful model organism to address remaining questions regarding regulation of gene expression by BRCA1 and BARD1.
Collapse
Affiliation(s)
- Ishor Thapa
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Russell Vahrenkamp
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Samuel R Witus
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caitlin Lightle
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Owen Falkenberg
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | | | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Mikaela D Stewart
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| |
Collapse
|
25
|
Preuss C, Wunderle M, Hack CC, Beckmann MW, Wenkel E, Jud S, Heindl F. [Breast cancer in men]. Dtsch Med Wochenschr 2023; 148:301-306. [PMID: 36878228 DOI: 10.1055/a-1924-3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Male breast cancer is an unknown field for many practitioners. Patients often see different doctors before the correct diagnosis is made - often too late. This article is intended to point out risk factors, initiation of diagnostics and therapy. In the dawning age of molecular medicine, we will also take a look at genetics.
Collapse
|
26
|
Shah I, Silva-Santisteban A, Germansky KA, Wadhwa V, Tung N, Huang DC, Kandasamy C, Mlabasati J, Bilal M, Sawhney MS. Incidence and Prevalence of Intraductal Papillary Mucinous Neoplasms in Individuals With BRCA1 and BRCA2 Pathogenic Variant. J Clin Gastroenterol 2023; 57:317-323. [PMID: 35220378 DOI: 10.1097/mcg.0000000000001683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/23/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND The natural history of branch-duct intraductal papillary neoplasm (BD-IPMN) in BRCA1/2 patients is unknown. Our goal was to estimate the incidence and prevalence of BD-IPMN and other pancreatic lesions in BRCA1/2 patients and compare it to that for average-risk individuals. METHODS We identified a cohort of BRCA1/2 patients followed at our institution between 1995 and 2020. Medical records and imaging results were reviewed to determine prevalence of pancreatic lesions. We then identified those who had undergone follow-up imaging and determined the incidence of new pancreatic lesions. We categorized pancreatic lesions as low, intermediate, or high-risk based on their malignant potential. RESULTS During the study period, 359 eligible BRCA1/2 patients were identified. Average patient age was 56.8 years, 88.3% were women, and 51.5% had BRCA1 . The prevalence of low-risk pancreatic lesions was 14.4%, intermediate-risk 13.9%, and high-risk 3.3%. The prevalence of BD-IPMN was 13.6% with mean cyst size 7.7 mm (range: 2 to 34 mm). The prevalence of pancreatic cancer was 3.1%. Subsequent imaging was performed in 169 patents with mean follow-up interval of 5.3 years (range: 0 to 19.7 y). The incidence of BD-IPMN was 20.1%, with median cyst size 5.5 mm (range: 2 to 30 mm). The incidence of pancreatic cancer was 2.9%. BRCA2 patients were almost 4-times more likely to develop pancreatic cancer than BRCA1 patients, however, there was no difference in incidence or prevalence of BD-IPMN. CONCLUSIONS Incidence and prevalence of BD-IPMNs in BRCA1/2 patients was similar to that reported for average-risk individuals. BRCA2 patients were more likely than BRCA1 patients to develop pancreatic cancer but had similar rates of BD-IPMN.
Collapse
Affiliation(s)
- Ishani Shah
- Division of Gastroenterology, Department of Medicine
| | | | | | | | - Nadine Tung
- Division of Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Dora C Huang
- Division of Gastroenterology, Department of Medicine
| | | | | | | | | |
Collapse
|
27
|
Asangba AE, Chen J, Goergen KM, Larson MC, Oberg AL, Casarin J, Multinu F, Kaufmann SH, Mariani A, Chia N, Walther-Antonio MRS. Diagnostic and prognostic potential of the microbiome in ovarian cancer treatment response. Sci Rep 2023; 13:730. [PMID: 36639731 PMCID: PMC9839674 DOI: 10.1038/s41598-023-27555-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Ovarian cancer (OC) is the second most common gynecological malignancy and the fifth leading cause of death due to cancer in women in the United States mainly due to the late-stage diagnosis of this cancer. It is, therefore, critical to identify potential indicators to aid in early detection and diagnosis of this disease. We investigated the microbiome associated with OC and its potential role in detection, progression as well as prognosis of the disease. We identified a distinct OC microbiome with general enrichment of several microbial taxa, including Dialister, Corynebacterium, Prevotella, and Peptoniphilus in the OC cohort in all body sites excluding stool and omentum which were not sampled from the benign cohort. These taxa were, however, depleted in the advanced-stage and high-grade OC patients compared to early-stage and low-grade OC patients suggestive of decrease accumulation in advanced disease and could serve as potential indicators for early detection of OC. Similarly, we also observed the accumulation of these mainly pathogenic taxa in OC patients with adverse treatment outcomes compared to those without events and could also serve as potential indicators for predicting patients' responses to treatment. These findings provide important insights into the potential use of the microbiome as indicators in (1) early detection of and screening for OC and (2) predicting patients' response to treatment. Given the limited number of patients enrolled in the study, these results would need to be further investigated and confirmed in a larger study.
Collapse
Affiliation(s)
- Abigail E Asangba
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Krista M Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jvan Casarin
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Francesco Multinu
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marina R S Walther-Antonio
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Liu Y, Shen Z, Zhu T, Lu W, Fu Y. Curcumin enhances the anti-cancer efficacy of paclitaxel in ovarian cancer by regulating the miR-9-5p/BRCA1 axis. Front Pharmacol 2023; 13:1014933. [PMID: 36703740 PMCID: PMC9871306 DOI: 10.3389/fphar.2022.1014933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Patients with late-stage ovarian cancer still have a very poor prognosis due to chemotherapy resistance. Curcumin has been shown to synergistically enhance the therapeutic effects of multiple chemotherapeutic agents, but the potential involvement of curcumin in ovarian cancer is largely unknown. This study aimed to investigate whether curcumin has synergistic anti-cancer effects with paclitaxel in ovarian cancer and its underlying mechanism. Methods: Ovarian cancer cell lines (SKOV3 and A2780) were treated with curcumin, alone or combined with paclitaxel. Cell viability, colony formation, EdU incorporation assays, and flow cytometry were used to assess cell proliferation, apoptosis, and cell cycle progression. The cytotoxic synergistic effect of curcumin and paclitaxel was detected by Calcusyn software. RNA immunoprecipitation assay was used to verify the interaction between miR-9-5p and BRCA1. qRT-PCR and Western blot were performed to detect gene and protein expression. Results: We found that curcumin and paclitaxel synergistically inhibited proliferation and promoted apoptosis in ovarian cancer cells. Furthermore, curcumin and paclitaxel combination resulted in decreased miR-9-5p expression and increased BRCA1 expression. Functionally, miR-9-5p overexpression counteracted the synergistic effect of curcumin and paclitaxel on cell proliferation and apoptosis by targeting BRCA1. Meanwhile, in vivo experiments revealed that curcumin and paclitaxel combination dramatically suppressed the growth of transplanted tumors, while miR-9-5p mimics eliminated the growth inhibition of xenografts induced by the combined treatment. Conclusion: Curcumin enhanced the anti-cancer efficacy of paclitaxel in ovarian cancer by regulating the miR-9-5p/BRCA1 axis. These findings provide strong evidence for clinical investigation of curcumin and paclitaxel combination as a novel strategy for ovarian cancer patients, and identify miR-9-5p and BRCA1 as key targets for regulating sensitivity to this therapy.
Collapse
Affiliation(s)
- Yuwan Liu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangjin Shen
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingjia Zhu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiguo Lu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Weiguo Lu, ; Yunfeng Fu,
| | - Yunfeng Fu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Weiguo Lu, ; Yunfeng Fu,
| |
Collapse
|
29
|
Clinical Impact of Next-Generation Sequencing Multi-Gene Panel Highlighting the Landscape of Germline Alterations in Ovarian Cancer Patients. Int J Mol Sci 2022; 23:ijms232415789. [PMID: 36555431 PMCID: PMC9779064 DOI: 10.3390/ijms232415789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC) crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk of developing OC and permit patients to enter the most appropriate treatment and surveillance program. Next-generation sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely pathogenic variants in BRCA1/2 and 38 in other 21 genes. The patients with pathogenic/likely pathogenic variants in the non-BRCA1/2 genes mainly developed OC alone compared to the other groups that also developed breast cancer or other tumors (p = 0.001). Clinical correlation analysis showed that the low-risk patients were significantly associated with platinum sensitivity (p < 0.001). Regarding PARP inhibitors (PARPi) response, the patients with pathogenic mutations in the non-BRCA1/2 genes had worse PFS and OS. Moreover, a statistically significantly worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.
Collapse
|
30
|
Gargan ML, Frates MC, Benson CB, Guo Y. O-RADS Ultrasound Version 1: A Scenario-Based Review of Implementation Challenges. AJR Am J Roentgenol 2022; 219:916-927. [PMID: 35856453 DOI: 10.2214/ajr.22.28061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ovarian-Adnexal Reporting and Data System (O-RADS) ultrasound (US) risk stratification and management system was first published by the American College of Radiology in 2020. It provides standardized terminology for evaluation of ovarian and adnexal masses, aids risk stratification, and provides management guidelines for different categories of lesions. This system has been validated by subsequent research and found to be a useful diagnostic and management tool. However, as noted in the system's governing concepts, in some clinical scenarios, such as patients with acute symptoms or with a history of ovarian malignancy, O-RADS US does not apply, or the system's standard management may be adjusted. Additional scenarios, such as an adnexal mass in pregnancy, present challenges in the application of O-RADS US to assist diagnosis and management. The purpose of this article is to highlight 10 clinical scenarios in which O-RADS US version 1 may not apply, may be difficult to apply, or may require modified management. Additional scenarios in which O-RADS US can be appropriately applied are also described.
Collapse
Affiliation(s)
- Mary Louise Gargan
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Mary C Frates
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Carol B Benson
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Yang Guo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| |
Collapse
|
31
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
32
|
Familial history and prevalence of BRCA1, BRCA2 and TP53 pathogenic variants in HBOC Brazilian patients from a public healthcare service. Sci Rep 2022; 12:18629. [PMID: 36329109 PMCID: PMC9633799 DOI: 10.1038/s41598-022-23012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated the cost-effectiveness of genetic testing for surveillance and treatment of carriers of germline pathogenic variants associated with hereditary breast/ovarian cancer syndrome (HBOC). In Brazil, seventy percent of the population is assisted by the public Unified Health System (SUS), where genetic testing is still unavailable. And few studies were performed regarding the prevalence of HBOC pathogenic variants in this context. Here, we estimated the prevalence of germline pathogenic variants in BRCA1, BRCA2 and TP53 genes in Brazilian patients suspected of HBOC and referred to public healthcare service. Predictive power of risk prediction models for detecting mutation carriers was also evaluated. We found that 41 out of 257 tested patients (15.9%) were carriers of pathogenic variants in the analyzed genes. Most frequent pathogenic variant was the founder Brazilian mutation TP53 c.1010G > A (p.Arg337His), adding to the accumulated evidence that supports inclusion of TP53 in routine testing of Brazilian HBOC patients. Surprisingly, BRCA1 c.5266dupC (p.Gln1756fs), a frequently reported pathogenic variant in Brazilian HBOC patients, was not observed. Regarding the use of predictive models, we found that familial history of cancer might be used to improve selection or prioritization of patients for genetic testing, especially in a context of limited resources.
Collapse
|
33
|
Oda K, Aoki D, Tsuda H, Nishihara H, Aoyama H, Inomata H, Shimada M, Enomoto T. Japanese nationwide observational multicenter study of tumor BRCA1/2 variant testing in advanced ovarian cancer. Cancer Sci 2022; 114:271-280. [PMID: 36254756 PMCID: PMC9807512 DOI: 10.1111/cas.15518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 01/07/2023] Open
Abstract
The association between germline BRCA1 and BRCA2 pathogenic variants (mutations: gBRCAm) and ovarian cancer risk is well established. Germline testing alone cannot detect somatic BRCA1/2 pathogenic variants (sBRCAm), which is calculated based on the proportion of tumor BRCAm (tBRCAm) from tumor samples and gBRCAm. Homologous recombination deficiency (HRD) results mainly from genetic/epigenetic alterations in homologous recombination repair-related genes and can be evaluated by genomic instability status. In Japan, the prevalence of tBRCAm, sBRCAm, and HRD remains unclear. This multicenter, cross-sectional, observational study, CHaRacterIzing the croSs-secTional approach to invEstigate the prevaLence of tissue BRCA1/2 mutations in newLy diagnosEd advanced ovarian cancer patients (CHRISTELLE), evaluated the prevalence of tBRCAm, sBRCAm, and HRD in tumor specimens from newly diagnosed patients with ovarian cancer who underwent gBRCA testing. Of the 205 patients analyzed, 26.8% had a tBRCAm, including tBRCA1m (17.6%) and tBRCA2m (9.3%). The overall prevalence of tBRCAm, gBRCAm, sBRCAm, and HRD-positive status was 26.8%, 21.5%, 6.3%, and 60.0%, respectively. The calculated sBRCAm/tBRCAm ratio was 23.6% (13/55), and the prevalence of gBRCA variant of uncertain significance was 3.9%. These results suggest gBRCA testing alone cannot clearly identify the best course of treatment, highlighting the importance of sBRCA testing in Japan. The present results also suggest that testing for tBRCA and HRD should be encouraged in advanced ovarian cancer patients to drive precision medicine.
Collapse
Affiliation(s)
- Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Aoki
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Hitoshi Tsuda
- Department of Basic PathologyNational Defense Medical CollegeSaitamaJapan
| | | | | | | | - Muneaki Shimada
- Department of Obstetrics and GynecologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Takayuki Enomoto
- Department of Obstetrics and GynecologyNiigata University Medical SchoolNiigataJapan
| |
Collapse
|
34
|
Piedmonte S, Tsang K, Jembere N, Murphy J, McCurdy B, Sacco J, Kupets R. Are Women with Antecedent Low-Grade Cytology and <CIN2 Findings in Colposcopy Being Overmanaged? JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:1054-1060. [PMID: 35948169 DOI: 10.1016/j.jogc.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To determine the baseline and cumulative risks of cervical intraepithelial lesion grade 3 (CIN3) and invasive cervical cancer in patients with <CIN2 colposcopy findings after a low-grade screening cytology finding (atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion [LSIL]). METHODS By linking administrative databases, including cytology, pathology, cancer registries, and physician billing history, a population-based cohort study was performed on participants with <CIN2 initial colposcopy results after a low-grade antecedent cytology finding, between January 2012 and December 2013. Three and 5-year risks of CIN3 and invasive cervical cancer were generated using Kaplan-Meier survival analysis. RESULTS Among the 36 887 participants included in the study, CIN3 incidence based on referral cytology were as follows at 3 and 5 years, respectively: normal, 0.7% and 0.9%; ASCUS, 4.31% and 5.6%; and LSIL, 5.9% and 7.2%. Three- and 5-year incidence of invasive cancer were 0% and 0.02% for normal cytology, 0.08% and 0.11% for ASCUS, and 0.04% and 0.07% for LSIL, respectively. Stratifying risk by biopsy result at initial colposcopy, 3- and 5-year CIN3 incidences were 2.85% and 3.81% with a negative biopsy, 7.09% and 8.32% with an LSIL biopsy, and 4.11% and 5.2% when no biopsy was done, respectively. Three- and 5-year incidence of invasive cancer was 0% and 0.05% after a negative biopsy, 0% and 0% after LSIL biopsy, and 0.05% and 0.08% when no biopsy was done, respectively. CONCLUSION When initial colposcopy is done after a low-grade screening cytology result and <CIN2 is identified, the risk of CIN3 and invasive cancer is low, particularly when biopsies indicate LSIL. Surveillance strategies should balance the likelihood of detecting CIN3 with the potential harms over management with too frequent screening or colposcopic interventions in low-risk patients.
Collapse
Affiliation(s)
- Sabrina Piedmonte
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON
| | | | | | | | | | | | | |
Collapse
|
35
|
Afghani E, Klein AP. Pancreatic Adenocarcinoma: Trends in Epidemiology, Risk Factors, and Outcomes. Hematol Oncol Clin North Am 2022; 36:879-895. [PMID: 36154788 PMCID: PMC10548451 DOI: 10.1016/j.hoc.2022.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pancreatic cancer is one of the most lethal cancers in the world; it is a silent disease in which symptoms do not present until advanced stages, thereby reducing the 5-year survival rate to 10%. The global burden of pancreatic cancer has doubled over the past 25 years despite advancements in medicine. This review aims to discuss the global trends and disparities in pancreatic cancer, as well as the up-to-date literature on the known risk factors. A better understanding of these risk factors will reduce mortality by providing opportunities to screen these patients as well as counseling on lifestyle modifications.
Collapse
Affiliation(s)
- Elham Afghani
- Johns Hopkins School of Medicine, 1830 E Monument Street, Room 436, Baltimore, MD 21205, USA
| | - Alison P Klein
- Johns Hopkins School of Medicine, 1830 E Monument Street, Room 436, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Bloomberg School of Public Health, 1550 Orleans Street, Baltimore, MD 21231, USA.
| |
Collapse
|
36
|
Heemskerk-Gerritsen BAM, Hollestelle A, van Asperen CJ, van den Beek I, van Driel WJ, van Engelen K, Gómez Garcia EB, de Hullu JA, Koudijs MJ, Mourits MJE, Hooning MJ, Boere IA. Progression-free survival and overall survival after BRCA1/2-associated epithelial ovarian cancer: A matched cohort study. PLoS One 2022; 17:e0275015. [PMID: 36137114 PMCID: PMC9498928 DOI: 10.1371/journal.pone.0275015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction
Germline BRCA1/2-associated epithelial ovarian cancer has been associated with better progression-free survival and overall survival than sporadic epithelial ovarian cancer, but conclusive data are lacking.
Methods
We matched 389 BRCA1-associated and 123 BRCA2-associated epithelial ovarian cancer patients 1:1 to sporadic epithelial ovarian cancer patients on year of birth, year of diagnosis, and FIGO stage (< = IIA/> = IIB). Germline DNA test was performed before or after epithelial ovarian cancer diagnosis. All patients received chemotherapy. We used Cox proportional hazards models to estimate the associations between mutation status (BRCA1 or BRCA2 versus sporadic) and progression-free survival and overall survival. To investigate whether DNA testing after epithelial ovarian cancer diagnosis resulted in survival bias, we performed additional analyses limited to BRCA1/2-associated epithelial ovarian cancer patients with a DNA test result before cancer diagnosis (n = 73 BRCA1; n = 9 BRCA2) and their matched sporadic controls.
Results
The median follow-up was 4.4 years (range 0.1–30.1). During the first three years after epithelial ovarian cancer diagnosis, progression-free survival was better for BRCA1 (HR 0.88, 95% CI 0.74–1.04) and BRCA2 (HR 0.58, 95% CI 0.41–0.81) patients than for sporadic patients. Overall survival was better during the first six years after epithelial ovarian cancer for BRCA1 (HR 0.7, 95% CI 0.58–0.84) and BRCA2 (HR 0.41, 95% CI 0.29–0.59) patients. After surviving these years, survival benefits disappeared or were in favor of the sporadic patients.
Conclusion
For epithelial ovarian cancer patients who received chemotherapy, we confirmed survival benefit for BRCA1 and BRCA2 germline pathogenic variant carriers. This may indicate higher sensitivity to chemotherapy, both in first line treatment and in the recurrent setting. The observed benefit appears to be limited to a relatively short period after epithelial ovarian cancer diagnosis.
Collapse
Affiliation(s)
| | | | - Christi J. van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Irma van den Beek
- Department of Human Genetics, Amsterdam University Medical Center (University of Amsterdam), Amsterdam, the Netherlands
| | | | - Klaartje van Engelen
- Department of Clinical Genetics, Amsterdam University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Encarna B. Gómez Garcia
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joanne A. de Hullu
- Department of Obstetrics & Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marco J. Koudijs
- Department of Biomedical Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Marian J. E. Mourits
- Department of Gynecologic Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ingrid A. Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
37
|
Bennett C, Suguitan M, Abad J, Chawla A. Identification of high-risk germline variants for the development of pancreatic cancer: Common characteristics and potential guidance to screening guidelines. Pancreatology 2022; 22:719-729. [PMID: 35798629 DOI: 10.1016/j.pan.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a product of a variety of environmental and genetic factors. Recent work has highlighted the influence of hereditary syndromes on pancreatic cancer incidence. The purpose of this review is to identify the high-risk syndromes, common variants, and risks associated with PC. The study also elucidates common characteristics of patients with these mutations, which is used to recommend potential changes to current screening protocols for greater screening efficacy. We analyzed 8 syndromes and their respective variants: Hereditary Breast and Ovarian Cancer (BRCA1/2), Familial Atypical Multiple Mole Melanoma Syndrome (CDKN2A), Peutz-Jeghers Syndrome (STK11), Lynch Syndrome (PMS2, MLH1, MSH2, MSH6, EPCAM), Ataxia Telangiectasia (ATM), Li-Fraumeni Syndrome (TP53), Fanconi Anemia (PALB2), and Hereditary Pancreatitis (PRSS1, SPINK1, CFTR). Of 587 studies evaluated, 79 studies fit into our inclusion criteria. Information from each study was analyzed to draw conclusions on these variants as well as their association with pancreatic cancer. Information from this review is intended to improve precision medicine and improve criteria for screening.
Collapse
Affiliation(s)
- Cade Bennett
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mike Suguitan
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John Abad
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
38
|
Ovarian cancer risk of Chinese women with BRCA1/2 germline pathogenic variants. J Hum Genet 2022; 67:639-642. [PMID: 35864222 DOI: 10.1038/s10038-022-01065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
Estimating the lifetime risk of ovarian cancer in Chinese women with BRCA1/2 germline pathogenic variants (PVs) is of great importance for the clinical management of BRCA1/2 carriers. This cohort study recruited 9903 unselected Chinese breast cancer patients whose BRCA1/2 status was determined. Of these, 3984 probands completed family history questionnaires, which investigated the health status of their relatives, including 11,997 female first-degree relatives. The ovarian cancer risk of BRCA1/2 germline pathogenic carriers was estimated using the ovarian cancer history of proband first-degree female relatives via the Kin-cohort method. Of the 3984 probands, 126 (3.2%) carried BRCA1 PVs, and 183 (4.6%) carried BRCA2 PVs. The estimated cumulative risks of ovarian cancer by age 70 were 15.3% (95% CI 8.4-18.6%) for BRCA1 carriers, 5.5% (95% CI 2.0-10.2%) for BRCA2 carriers, and 0.4% (95% CI 0.3-0.7%) for noncarriers. The cumulative risks of ovarian cancer were very low before the age of 40 for both BRCA1 and BRCA2 carriers and were an increase up to age 45. The cumulative ovarian cancer risk of BRCA1 carriers was approximately three times higher than that of BRCA2 carriers, and BRCA1 and BRCA2 carriers had 38- and 14-fold higher risks than non-BRCA carriers, respectively. The findings indicate that Chinese women with BRCA1/2 PVs have high risks of ovarian cancer in their lifetime, especially BRCA1 carriers. These results are useful for devising optimal strategies to reduce ovarian cancer risk in BRCA1/2 carriers.
Collapse
|
39
|
Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23137481. [PMID: 35806485 PMCID: PMC9267387 DOI: 10.3390/ijms23137481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 5–10% of all breast cancer (BC) cases are caused by germline pathogenic variants (GPVs) in various cancer predisposition genes (CPGs). The most common contributors to hereditary BC are BRCA1 and BRCA2, which are associated with hereditary breast and ovarian cancer (HBOC). ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D have also been recognized as CPGs with a high to moderate risk of BC. Primary and secondary cancer prevention strategies have been established for HBOC patients; however, optimal preventive strategies for most hereditary BCs have not yet been established. Most BC-associated CPGs participate in DNA damage repair pathways and cell cycle checkpoint mechanisms, and function jointly in such cascades; therefore, a fundamental understanding of the disease drivers in such cascades can facilitate the accurate estimation of the genetic risk of developing BC and the selection of appropriate preventive and therapeutic strategies to manage hereditary BCs. Herein, we review the functions of key BC-associated CPGs and strategies for the clinical management in individuals harboring the GPVs of such genes.
Collapse
|
40
|
Ossa Gomez CA, Achatz MI, Hurtado M, Sanabria-Salas MC, Sullcahuaman Y, Chávarri-Guerra Y, Dutil J, Nielsen SM, Esplin ED, Michalski ST, Bristow SL, Hatchell KE, Nussbaum RL, Pineda-Alvarez DE, Ashton-Prolla P. Germline Pathogenic Variant Prevalence Among Latin American and US Hispanic Individuals Undergoing Testing for Hereditary Breast and Ovarian Cancer: A Cross-Sectional Study. JCO Glob Oncol 2022; 8:e2200104. [PMID: 35867948 PMCID: PMC9812461 DOI: 10.1200/go.22.00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To report on pathogenic germline variants detected among individuals undergoing genetic testing for hereditary breast and/or ovarian cancer (HBOC) from Latin America and compare them with self-reported Hispanic individuals from the United States. METHODS In this cross-sectional study, unrelated individuals with a personal/family history suggestive of HBOC who received clinician-ordered germline multigene sequencing were grouped according to the location of the ordering physician: group A, Mexico, Central America, and the Caribbean; group B, South America; and group C, United States with individuals who self-reported Hispanic ethnicity. Relatives who underwent cascade testing were analyzed separately. RESULTS Among 24,075 unrelated probands across all regions, most were female (94.9%) and reported a personal history suggestive of HBOC (range, 65.0%-80.6%); the mean age at testing was 49.1 ± 13.1 years. The average number of genes analyzed per patient was highest in group A (A 63 ± 28, B 56 ± 29, and C 40 ± 28). Between 9.1% and 18.7% of patients had pathogenic germline variants in HBOC genes (highest yield in group A), with the majority associated with high HBOC risk. Compared with US Hispanics individuals the overall yield was significantly higher in both Latin American regions (A v C P = 1.64×10-9, B v C P < 2.2×10-16). Rates of variants of uncertain significance were similar across all three regions (33.7%-42.6%). Cascade testing uptake was low in all regions (A 6.6%, B 4.5%, and C 1.9%). CONCLUSION This study highlights the importance of multigene panel testing in Latin American individuals with newly diagnosed or history of HBOC, who can benefit from medical management changes including targeted therapies, eligibility to clinical trials, risk-reducing surgeries, surveillance and prevention of secondary malignancy, and genetic counseling and subsequent cascade testing of at-risk relatives.
Collapse
Affiliation(s)
| | - Maria Isabel Achatz
- Department of Oncology, Hospital Sírio-Libanês, Brasília, Distrito Federal, Brazil
| | - Mabel Hurtado
- Instituto Oncológico, Fundación Arturo López Pérez, Santiago, Chile
| | | | - Yasser Sullcahuaman
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Instituto de Investigación Genomica, Lima, Peru
| | - Yanin Chávarri-Guerra
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Pone, Puerto Rico
| | | | | | | | | | | | | | | | - Patricia Ashton-Prolla
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica e Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
41
|
Kukafka R, Pan S, Silverman T, Zhang T, Chung WK, Terry MB, Fleck E, Younge RG, Trivedi MS, McGuinness JE, He T, Dimond J, Crew KD. Patient and Clinician Decision Support to Increase Genetic Counseling for Hereditary Breast and Ovarian Cancer Syndrome in Primary Care: A Cluster Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2222092. [PMID: 35849397 PMCID: PMC9294997 DOI: 10.1001/jamanetworkopen.2022.22092] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE To promote the identification of women carrying BRCA1/2 variants, the US Preventive Services Task Force recommends that primary care clinicians screen asymptomatic women for an increased risk of carrying a BRCA1/2 variant risk. OBJECTIVE To examine the effects of patient and clinician decision support about BRCA1/2 genetic testing compared with standard education alone. DESIGN, SETTING, AND PARTICIPANTS This clustered randomized clinical trial was conducted at an academic medical center including 67 clinicians (unit of randomization) and 187 patients. Patient eligibility criteria included women aged 21 to 75 years with no history of breast or ovarian cancer, no prior genetic counseling or testing for hereditary breast and ovarian cancer syndrome (HBOC), and meeting family history criteria for BRCA1/2 genetic testing. INTERVENTIONS RealRisks decision aid for patients and the Breast Cancer Risk Navigation Tool decision support for clinicians. Patients scheduled a visit with their clinician within 6 months of enrollment. MAIN OUTCOMES AND MEASURES The primary end point was genetic counseling uptake at 6 months. Secondary outcomes were genetic testing uptake at 6 and 24 months, decision-making measures (perceived breast cancer risk, breast cancer worry, genetic testing knowledge, decision conflict) based upon patient surveys administered at baseline, 1 month, postclinic visit, and 6 months. RESULTS From December 2018 to February 2020, 187 evaluable patients (101 in the intervention group, 86 in the control group) were enrolled (mean [SD] age: 40.7 [13.2] years; 88 Hispanic patients [46.6%]; 15 non-Hispanic Black patients [8.1%]; 72 non-Hispanic White patients [38.9%]; 35 patients [18.9%] with high school education or less) and 164 (87.8%) completed the trial. There was no significant difference in genetic counseling uptake at 6 months between the intervention group (20 patients [19.8%]) and control group (10 patients [11.6%]; difference, 8.2 percentage points; OR, 1.88 [95% CI, 0.82-4.30]; P = .14). Genetic testing uptake within 6 months was also statistically nonsignificant (13 patients [12.9%] in the intervention group vs 7 patients [8.1%] in the control group; P = .31). At 24 months, genetic testing uptake was 31 patients (30.7%) in intervention vs 18 patients (20.9%) in control (P = .14). Comparing decision-making measures between groups at baseline to 6 months, there were significant decreases in perceived breast cancer risk and in breast cancer worry (standard mean differences = -0.48 and -0.40, respectively). CONCLUSIONS AND RELEVANCE This randomized clinical trial did not find a significant increase in genetic counseling uptake among patients who received patient and clinician decision support vs those who received standard education, although more than one-third of the ethnically diverse women enrolled in the intervention underwent genetic counseling. These findings suggest that the main advantage for these high-risk women is the ability to opt for screening and preventive services to decrease their cancer risk. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03470402.
Collapse
Affiliation(s)
- Rita Kukafka
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer, Columbia University Irving Medical Center, New York, New York
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| | - Samuel Pan
- Herbert Irving Comprehensive Cancer, Columbia University Irving Medical Center, New York, New York
| | - Thomas Silverman
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Tianmai Zhang
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Wendy K. Chung
- Herbert Irving Comprehensive Cancer, Columbia University Irving Medical Center, New York, New York
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Elaine Fleck
- Division of Community and Population Health, New York Presbyterian Hospital, New York
| | - Richard G. Younge
- Division of Community and Population Health, New York Presbyterian Hospital, New York
| | - Meghna S. Trivedi
- Herbert Irving Comprehensive Cancer, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Julia E. McGuinness
- Herbert Irving Comprehensive Cancer, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Ting He
- Department of Biomedical Informatics, Johns Hopkins University, Baltimore, Maryland
| | | | - Katherine D. Crew
- Herbert Irving Comprehensive Cancer, Columbia University Irving Medical Center, New York, New York
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
42
|
González-Martín A, Matulonis UA, Korach J, Mirza MR, Moore KN, Wu X, York W, Gupta D, Lechpammer S, Monk BJ. Niraparib treatment for patients with BRCA-mutated ovarian cancer: review of clinical data and therapeutic context. Future Oncol 2022; 18:2505-2536. [PMID: 35791804 DOI: 10.2217/fon-2022-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We reviewed clinical data for niraparib monotherapy in BRCA-mutated (BRCAm) epithelial ovarian cancer (OC), contextualizing results with data from other poly(ADP-ribose) polymerase inhibitors (PARPis). Niraparib reduced the likelihood of progression or death by 60% as first-line maintenance therapy and by 73-78% in recurrent disease. In heavily pretreated OC, efficacy was greater in the BRCAm versus non-BRCAm cohort. Quality-of-life (QoL) was maintained throughout treatment. Adverse events were consistent with the known niraparib safety profile. Cumulative efficacy, safety and QoL evidence demonstrate niraparib maintenance monotherapy has a positive benefit:risk ratio in BRCAm OC. Niraparib significantly improved progression-free survival as first-line maintenance therapy in all patients with OC (i.e., of any biomarker status).
Collapse
Affiliation(s)
- Antonio González-Martín
- Grupo Español de Investigación en Cáncer de Ovario (GEICO) and Medical Oncology Department, Clínica Universidad de Navarra, Madrid, Spain & Program in Solid Tumors, Center for Applied Medical Research (CIMA), Madrid, 31008, Spain
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jacob Korach
- Gynecologic Oncology Department, Chaim Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel Aviv University, 69978, Israel
| | - Mansoor R Mirza
- Department of Oncology, Rigshospitalet Copenhagen University Hospital, Copenhagen, 2100, Denmark
| | - Kathleen N Moore
- Department of Gynecologic Oncology, Stephenson Cancer Center at the University of Oklahoma Health Science Center, Oklahoma City, OK 73104 & Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Whitney York
- GlaxoSmithKline, Upper Providence, PA 19426, USA
| | | | | | - Bradley J Monk
- HonorHealth Research Institute & Department of Obstetrics and Gynecology, University of Arizona, Creighton University, Phoenix, AZ 85258, USA
| |
Collapse
|
43
|
Low BRCA1/2 germline mutation rate in a French-Canadian population with a diagnosis of epithelial tubo-ovarian carcinoma. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:1047-1053. [PMID: 35779836 DOI: 10.1016/j.jogc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
|
44
|
Zheng G, Leone JP. Male Breast Cancer: An Updated Review of Epidemiology, Clinicopathology, and Treatment. JOURNAL OF ONCOLOGY 2022; 2022:1734049. [PMID: 35656339 PMCID: PMC9155932 DOI: 10.1155/2022/1734049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Male breast cancer (MaBC) is a rare clinical entity, which makes up approximately 1% of all breast cancers. However, the incidence of MaBC has been steadily increasing over the past few decades. The risk factors for MaBC include age, black race, family history of breast cancer, genetic mutations, liver cirrhosis, and testicular abnormalities. The majority of patients with MaBC present with painless lumps, and about half of the patients have at least one lymph node involved at the time of diagnosis. The treatment of MaBC models that of female breast cancer (FeBC), but this is mainly due to lack of prospective studies for MaBC patients. The treatment modality includes surgery, adjuvant radiation, endocrine therapy, and chemotherapy. However, there are some distinct features of MaBC, both clinically and molecularly, that may warrant a different clinical approach. Ongoing multinational effort is required, to conduct clinical trials for MaBC, or the inclusion of MaBC patients in FeBC trials, to help clinicians improve care for MaBC patients.
Collapse
Affiliation(s)
- Guoliang Zheng
- Department of Medicine, St Elizabeth Medical Center, A Teaching Hospital of Boston University, 736 Cambridge Street, Boston, MA, USA
| | - Jose Pablo Leone
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| |
Collapse
|
45
|
Li S, Silvestri V, Leslie G, Rebbeck TR, Neuhausen SL, Hopper JL, Nielsen HR, Lee A, Yang X, McGuffog L, Parsons MT, Andrulis IL, Arnold N, Belotti M, Borg Å, Buecher B, Buys SS, Caputo SM, Chung WK, Colas C, Colonna SV, Cook J, Daly MB, de la Hoya M, de Pauw A, Delhomelle H, Eason J, Engel C, Evans DG, Faust U, Fehm TN, Fostira F, Fountzilas G, Frone M, Garcia-Barberan V, Garre P, Gauthier-Villars M, Gehrig A, Glendon G, Goldgar DE, Golmard L, Greene MH, Hahnen E, Hamann U, Hanson H, Hassan T, Hentschel J, Horvath J, Izatt L, Janavicius R, Jiao Y, John EM, Karlan BY, Kim SW, Konstantopoulou I, Kwong A, Laugé A, Lee JW, Lesueur F, Mebirouk N, Meindl A, Mouret-Fourme E, Musgrave H, Ngeow Yuen Yie J, Niederacher D, Park SK, Pedersen IS, Ramser J, Ramus SJ, Rantala J, Rashid MU, Reichl F, Ritter J, Rump A, Santamariña M, Saule C, Schmidt G, Schmutzler RK, Senter L, Shariff S, Singer CF, Southey MC, Stoppa-Lyonnet D, Sutter C, Tan Y, Teo SH, Terry MB, Thomassen M, Tischkowitz M, Toland AE, Torres D, Vega A, Wagner SA, Wang-Gohrke S, Wappenschmidt B, Weber BHF, Yannoukakos D, Spurdle AB, Easton DF, Chenevix-Trench G, Ottini L, Antoniou AC. Cancer Risks Associated With BRCA1 and BRCA2 Pathogenic Variants. J Clin Oncol 2022; 40:1529-1541. [PMID: 35077220 PMCID: PMC9084432 DOI: 10.1200/jco.21.02112] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management. METHODS We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment. RESULTS BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers. CONCLUSION In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.
Collapse
Affiliation(s)
- Shuai Li
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | | | - Goska Leslie
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Timothy R. Rebbeck
- Harvard T.H. Chan School of Public Health, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA
| | - John L. Hopper
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Andrew Lee
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Lesley McGuffog
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Michael T. Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Irene L. Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Muriel Belotti
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Bruno Buecher
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Saundra S. Buys
- Department of Medicine and Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT
| | - Sandrine M. Caputo
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY
| | - Chrystelle Colas
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Sarah V. Colonna
- Department of Medicine and Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT
| | - Jackie Cook
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clinico San Carlos), Madrid, Spain
| | - Antoine de Pauw
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Hélène Delhomelle
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Jacqueline Eason
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - D. Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, United Kingdom
- North West Genomics Laboratory Hub, Manchester Center for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, United Kingdom
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - George Fountzilas
- Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Department of Medical Oncology, German Oncology Center, Limassol, Cyprus
| | - Megan Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Vanesa Garcia-Barberan
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clinico San Carlos), Madrid, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clinico San Carlos), Madrid, Spain
| | - Marion Gauthier-Villars
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Andrea Gehrig
- Department of Human Genetics, University Würzburg, Würzburg, Germany
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - David E. Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Lisa Golmard
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Mark H. Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helen Hanson
- Southwest Thames Regional Genetics Service, St George's Hospital, London, United Kingdom
| | - Tiara Hassan
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Julia Hentschel
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Judit Horvath
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Louise Izatt
- Clinical Genetics Department, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ramunas Janavicius
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Yue Jiao
- Genetic Epidemiology of Cancer Team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Esther M. John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, South Korea
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong
- Department of Surgery, The University of Hong Kong, Hong Kong
- Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Anthony Laugé
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Jong Won Lee
- Department of Surgery, Ulsan University College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer Team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer Team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich, Germany
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Emmanuelle Mouret-Fourme
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Hannah Musgrave
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Joanne Ngeow Yuen Yie
- Cancer Genetics Service, National Cancer Center, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Inge Sokilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Susan J. Ramus
- Faculty of Medicine, School of Women's and Children's Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Center, University of NSW Sydney, Sydney, New South Wales, Australia
| | | | - Muhammad U. Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH & RC), Lahore, Pakistan
| | - Florian Reichl
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Julia Ritter
- Institute of Medical and Human Genetics, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Rump
- Faculty of Medicine Carl Gustav Carus, Institute for Clinical Genetics, TU Dresden, Dresden, Germany
| | - Marta Santamariña
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
| | - Claire Saule
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Gunnar Schmidt
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Leigha Senter
- Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Saba Shariff
- West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Birmingham, United Kingdom
| | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France
- Department of Tumour Biology, INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Yen Tan
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odence, Denmark
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Amanda E. Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Ana Vega
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
| | - Sebastian A. Wagner
- Department of Medicine, Hematology/Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Shan Wang-Gohrke
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Amanda B. Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Douglas F. Easton
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonis C. Antoniou
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
James LM, Georgopoulos AP. Immunogenetic clustering of 30 cancers. Sci Rep 2022; 12:7235. [PMID: 35508592 PMCID: PMC9068692 DOI: 10.1038/s41598-022-11366-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Human leukocyte antigen (HLA) genes have been implicated in cancer risk and shared heritability of different types of cancer. In this immunogenetic epidemiological study we first computed a Cancer-HLA profile for 30 cancer types characterized by the correlation between the prevalence of each cancer and the population frequency of 127 HLA alleles, and then used multidimensional scaling to evaluate the possible clustering of those Cancer-HLA associations. The results indicated the presence of three clusters, broadly reflecting digestive-skin-cervical cancers, reproductive and endocrine systems cancers, and brain and androgen-associated cancers. The clustering of cancer types documented here is discussed in terms of mechanisms underlying shared Cancer-HLA associations.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.,Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA. .,Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA. .,Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
47
|
Calderwood AH, Sawhney MS, Thosani NC, Rebbeck TR, Wani S, Canto MI, Fishman DS, Golan T, Hidalgo M, Kwon RS, Riegert-Johnson DL, Sahani DV, Stoffel EM, Vollmer CM, Al-Haddad MA, Amateau SK, Buxbaum JL, DiMaio CJ, Fujii-Lau LL, Jamil LH, Jue TL, Law JK, Lee JK, Naveed M, Pawa S, Storm AC, Qumseya BJ. American Society for Gastrointestinal Endoscopy guideline on screening for pancreatic cancer in individuals with genetic susceptibility: methodology and review of evidence. Gastrointest Endosc 2022; 95:827-854.e3. [PMID: 35183359 DOI: 10.1016/j.gie.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Audrey H Calderwood
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Mandeep S Sawhney
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nirav C Thosani
- Center for Interventional Gastroenterology at UTHealth, McGovern Medical School, Houston, Texas, USA
| | - Timothy R Rebbeck
- Harvard TH Chan School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Douglas S Fishman
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Talia Golan
- Cancer Center, Sheba Medical Center, Yehuda, Israel
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Richard S Kwon
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas L Riegert-Johnson
- Department of Clinical Genomics and Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles M Vollmer
- Department of Surgery, Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Mohammad A Al-Haddad
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stuart K Amateau
- Division of Gastroenterology Hepatology and Nutrition, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - James L Buxbaum
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Christopher J DiMaio
- Department of Gastroenterology, Mount Sinai School of Medicine, New York, New York, USA
| | - Larissa L Fujii-Lau
- Department of Gastroenterology, The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Laith H Jamil
- Section of Gastroenterology and Hepatology, Beaumont Health, Royal Oak, Michigan, and Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Terry L Jue
- Department of Gastroenterology, The Permanente Medical Group, San Francisco, California, USA
| | - Joanna K Law
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Jeffrey K Lee
- Department of Gastroenterology, Kaiser Permanente San Francisco Medical Center, San Francisco, California, USA
| | - Mariam Naveed
- Advent Health Medical Group, Gastroenterology/Hepatology, Advent Health Hospital Altamonte Springs, Altamonte Springs, Florida, USA
| | - Swati Pawa
- Department of Gastroenterology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Andrew C Storm
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bashar J Qumseya
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
48
|
Sawhney MS, Calderwood AH, Thosani NC, Rebbeck TR, Wani S, Canto MI, Fishman DS, Golan T, Hidalgo M, Kwon RS, Riegert-Johnson DL, Sahani DV, Stoffel EM, Vollmer CM, Qumseya BJ. ASGE guideline on screening for pancreatic cancer in individuals with genetic susceptibility: summary and recommendations. Gastrointest Endosc 2022; 95:817-826. [PMID: 35183358 DOI: 10.1016/j.gie.2021.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Mandeep S Sawhney
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Audrey H Calderwood
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nirav C Thosani
- Center for Interventional Gastroenterology at UT Health, McGovern Medical School, Houston, Texas, USA
| | - Timothy R Rebbeck
- Harvard TH Chan School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Douglas S Fishman
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Richard S Kwon
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas L Riegert-Johnson
- Department of Clinical Genomics and Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles M Vollmer
- Department of Surgery, Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Bashar J Qumseya
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
49
|
Discovery of BRCA1/BRCA2 Founder Variants by Haplotype Analysis. Cancer Genet 2022; 266-267:19-27. [DOI: 10.1016/j.cancergen.2022.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
|
50
|
Guo F, Hirth JM, Fuchs EL, Cofie LE, Brown V, Kuo YF, Fernandez ME, Berenson AB. Knowledge, Attitudes, Willingness to Pay, and Patient Preferences About Genetic Testing and Subsequent Risk Management for Cancer Prevention. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2022; 37:362-369. [PMID: 32642924 PMCID: PMC7794087 DOI: 10.1007/s13187-020-01823-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Knowledge, attitudes, and patient preferences about genetic testing and subsequent risk management for cancer prevention among average risk populations are understudied, especially among Hispanics. This study was to assess these items by conducting an in-person survey in this understudied population. We conducted in-person surveys using a self-administered, structured questionnaire among young women in 2017. Survey questions were adapted from other validated surveys. This study had 677 participants in the final analyses. Data were collected in 2017 and analyzed in 2018 and 2019. Participants had little knowledge about genes or breast cancer risk, but most felt that genetic testing for cancer prevention is "a good idea" (87.0%), "a reassuring idea" (84.0%), and that "everyone should get the test" (87.7%). Most (64.0%) of these women would pay up to $25 for the test, 29.3% would pay $25-$500, and < 10% would pay more than $500 for the test. When asked about a hypothetical scenario of high breast cancer risk, 34.2% Hispanics and 24.5% non-Hispanics would choose chemoprevention. Women would be less likely to choose risk reduction procedures, such as mastectomy (19.6% among Hispanics and 15.1% among non-Hispanics) and salpingo-oophorectomy (11.8% among Hispanics and 10.7% among non-Hispanics). In this low-income, mostly Hispanic population, knowledge about genetic testing and cancer risk is poor, but most have positive opinions about genetic testing for cancer prevention. However, their strong preference for chemoprevention and lesser preference for prophylactic surgeries in a hypothetical scenario underscore the importance of genetic counseling and education.
Collapse
Affiliation(s)
- Fangjian Guo
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA.
- Center for Interdisciplinary Research in Women's Health, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA.
| | - Jacqueline M Hirth
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
- Center for Interdisciplinary Research in Women's Health, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
| | - Erika L Fuchs
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
- Center for Interdisciplinary Research in Women's Health, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
| | - Leslie E Cofie
- Department of Health Education and Promotion, East Carolina University, Greenville, NC, USA
| | - Veronica Brown
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
- Center for Interdisciplinary Research in Women's Health, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
| | - Yong-Fang Kuo
- Center for Interdisciplinary Research in Women's Health, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
- Office of Biostatistics, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Science, The University of Texas Medical Branch, Galveston, TX, USA
| | - Maria E Fernandez
- Center for Health Promotion and Prevention Research, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Abbey B Berenson
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
- Center for Interdisciplinary Research in Women's Health, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-0587, USA
| |
Collapse
|