1
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Jiang Y, Xiao S, Huang S, Zhao X, Ding S, Huang Q, Xiao W, Li Z, Zhu H. Extracellular vesicle-mediated regulation of imatinib resistance in chronic myeloid leukemia via the miR-629-5p/SENP2/PI3K/AKT/mTOR axis. Hematology 2024; 29:2379597. [PMID: 39056503 DOI: 10.1080/16078454.2024.2379597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Imatinib (IM) is the primary treatment for patients with chronic-phase CML (CML-CP). However, an increasing number of CML-CP patients have developed resistance to IM. Our study aims to explore the expression of miR-629-5p in extracellular vesicles (EVs) from both IM-sensitive (K562) and resistant (K562-Re) CML cell lines and to investigate the impact of regulating miR-629-5p expression on the biological characteristics of K562 and K562-Re cells. METHODS Assess miR-629-5p expression levels in IM-sensitive and resistant CML cell lines. Separate EVs and verify it. EVs from K562-Re cells were co-cultured with K562 cells to detect the expression level of miR-629-5p. Target genes of miR-629-5p were determined and validated through luciferase experiments. Examined by manipulating miR-629-5p expression in cells using transfection techniques. The expression level of phosphorylated proteins in the PI3K/AKT/mTOR signaling pathway after IM was detected in CML cell lines. In K562-Re cells, the expression level of phosphorylated protein in the PI3K/AKT/mTOR signaling pathway was detected after single transfection of miR-629-5p inhibitor and cotransfection of miR-629-5p inhibitor and siSENP2. RESULTS Increasing concentrations of EVs from K562-Re cells elevated miR-629-5p expression levels. The expression levels of miR-629-5p in CML cells varied with IM concentration and influenced the biological characteristics of cells. SENP2 was identified as a target gene of miR-629-5p. Furthermore, miR-629-5p was found to modulate the SENP2/PI3K/AKT/mTOR pathway, impacting IM resistance in CML cells. CONCLUSION EVs from IM-resistant CML cells alter the expression of miR-629-5p in sensitive cells, activating the SENP2/PI3K/AKT/mTOR pathway and leading to IM resistance.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Yaqin Jiang
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Shishan Xiao
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Shengwen Huang
- Department of Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xuemei Zhao
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Siruiyun Ding
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Qianqian Huang
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Wei Xiao
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Zhe Li
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Hongqian Zhu
- Department of Hematology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| |
Collapse
|
3
|
Hirpara J, Thuya WL, Cheow SH, Fernando K, Eu JQ, Wang L, Wong ALA, Fong ELS, Ali AB, Ding LW, Zhuoran W, Lim YC, Pervaiz S, Goh BC. Tumor-derived extracellular vesicles convey solute transporters to induce bioenergetic dependence shift contributing to treatment resistance. Theranostics 2024; 14:6350-6369. [PMID: 39431017 PMCID: PMC11488098 DOI: 10.7150/thno.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Growing evidence points to the tumor microenvironment's role in developing drug resistance. A key element of this microenvironment is inter-cellular communication, which includes the release of membrane-encapsulated vesicles containing various cargo, known as extracellular vesicles (EVs). Understanding how EVs contribute to acquired resistance holds significant clinical implications. Methods: Differential centrifugation-based methods were used to isolate EVs from established cell lines and human plasma. TMT labeling proteomics analysis of EVs revealed an abundance of metabolic transporter proteins. Increased expression of SLC1A5 in EVs of patient-derived plasma and cell lines rendered resistant to tyrosine kinase inhibitors and its relationship with progression-free survival was assessed using Kaplan-Meier survival plot. Gene knockdown and overexpression of SLC1A5 were used to validate its effect on Tyrosine kinase inhibitor (TKI) resistance. Co-culture assays using inserts was used to evaluate the effect of resistant EVs on normal fibroblasts and epithelial cells. Next, mouse-derived tumor slices (MDTS) were cultured in vitro to assess the effect of resistant EVs. Results: We report here that TKI-sensitive cells are rendered resistant upon incubation with EVs derived from TKI-resistant cell lines. Metabolic transporters, in particular SLC1A5 and SLC25A5, are upregulated in EVs derived from TKI-resistant cells and plasma from patients harbouring TKI-resistant tumors and in TKI-resistant cell lines. Furthermore, we also provide evidence for the increased abundance of pSTAT3 and the stemness marker ALDH1A1 upon EV-induced resistance. Notably, resistant EVs trigger phenotypic and functional switching of lung-derived fibroblasts into tumor-associated fibroblasts, significantly increasing their migratory and invasive capacities. Conclusions: Our findings support the role of metabolic transporters within tumor-derived EVs in reshaping the tumor microenvironment to promote therapy resistance, which could have potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Jayshree Hirpara
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sok-Hwee Cheow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kanishka Fernando
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
| | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore
| | - Eliza Li Shan Fong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
- The N. 1 Institute of Health, National University of Singapore
| | - Azhar Bin Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wu Zhuoran
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
| | - Yaw-Chyn Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shazib Pervaiz
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore
| |
Collapse
|
4
|
Guo J, Zhong L, Momeni MR. MicroRNA-155 and its exosomal form: Small pieces in the gastrointestinal cancers puzzle. Cell Biol Toxicol 2024; 40:77. [PMID: 39283408 PMCID: PMC11405467 DOI: 10.1007/s10565-024-09920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Gastrointestinal (GI) cancers are common cancers that are responsible for a large portion of global cancer fatalities. Due to this, there is a pressing need for innovative strategies to identify and treat GI cancers. MicroRNAs (miRNAs) are short ncRNAs that can be considered either cancer-causing or tumor-inhibiting molecules. MicroRNA-155, also known as miR-155, is a vital regulator in various cancer types. This miRNA has a carcinogenic role in a variety of gastrointestinal cancers, including pancreatic, colon, and gastric cancers. Since the abnormal production of miR-155 has been detected in various malignancies and has a correlation with increased mortality, it is a promising target for future therapeutic approaches. Moreover, exosomal miR-155 associated with tumors have significant functions in communicating between cells and establishing the microenvironment for cancer in GI cancers. Various types of genetic material, such as specifically miR-155 as well as proteins found in cancer-related exosomes, have the ability to be transmitted to other cells and have a function in the advancement of tumor. Therefore, it is critical to conduct a review that outlines the diverse functions of miR-155 in gastrointestinal malignancies. As a result, we present a current overview of the role of miR-155 in gastrointestinal cancers. Our research highlighted the role of miR-155 in GI cancers and covered critical issues in GI cancer such as pharmacologic inhibitors of miRNA-155, miRNA-155-assosiated circular RNAs, immune-related cells contain miRNA-155. Importantly, we discussed miRNA-155 in GI cancer resistance to chemotherapy, diagnosis and clinical trials. Furthermore, the function of miR-155 enclosed in exosomes that are released by cancer cells or tumor-associated macrophages is also covered.
Collapse
Affiliation(s)
- Jinbao Guo
- Department of Thoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li Zhong
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | | |
Collapse
|
5
|
Singh J, Peters NJ, Avti P, Trehan A, Mahajan JK, Menon P, Bansal D, Kanojia RP. The Role of Liquid Biopsy in Neuroblastoma: A Scoping Review. J Pediatr Surg 2024:161887. [PMID: 39294087 DOI: 10.1016/j.jpedsurg.2024.161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Neuroblastoma (NBL), is the most common, non-CNS solid tumor of childhood. This disease presents with unique biological and clinical challenges necessitating accurate diagnosis, prognosis assessment, treatment, and vigilant monitoring. Liquid biopsy is an upcoming, innovative, and non-invasive diagnostic modality. It has the potential to detect tumors and perform therapeutic monitoring through the analysis of circulating biomarkers in blood, urine, saliva, and other bodily fluids. METHODOLOGY This scoping review offers an in-depth exploration, of the current landscape of liquid biopsy-based biomarkers in NBL. The review looks at the clinical implications, prevalent challenges, and future outlook of their clinical applications in NBL. The scoping review adhered to the guidelines of the PRISMA extension for scoping reviews, known as PRISMA-ScR, as the skeletal framework. The review involved comprehensive searches for liquid biopsy-based biomarkers in NBL across multiple databases, including PUBMED, EMBASE, SCOPUS, and WEB of Science, without restrictions. RESULTS The scoping review process uncovered a significant body of literature (n = 201) that underwent meticulous scrutiny, ultimately leading to the final selection of studies (n = 15). The liquid biopsy biomarkers included circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and other entities in bodily fluids. Their evaluation focused on associations with clinical outcomes such as overall survival, event-free survival, and risk stratification in NBL. CONCLUSION Our findings highlight the potential of liquid biopsy biomarkers to revolutionize NBL diagnosis and therapeutic monitoring. This rapidly evolving frontier in pediatric oncology suggests significant advancements in precision medicine for the management of NBL.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Nitin J Peters
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amita Trehan
- Pediatric Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - J K Mahajan
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Prema Menon
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Deepak Bansal
- Pediatric Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ravi Prakash Kanojia
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
6
|
Kumar RMR. Exosomal microRNAs: impact on cancer detection, treatment, and monitoring. Clin Transl Oncol 2024:10.1007/s12094-024-03590-6. [PMID: 38971914 DOI: 10.1007/s12094-024-03590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Exosomes, measuring between 30 and 150 nm in diameter, are small vesicles enclosed by a lipid bilayer membrane. They are released by various cells in the body and carry a diverse payload of molecules, including proteins, lipids, mRNA, and different RNA species such as long non-coding RNA, circular RNA, and microRNA (miRNA). With lengths of approximately 19-22 nucleotides, miRNAs constitute the predominant cargo in exosomes and serve as crucial regulators of protein biosynthesis. In cancer detection, exosomal miRNAs show promise as non-invasive biomarkers due to their stability and presence in various bodily fluids, aiding in early detection and precise diagnosis with specific miRNA signatures linked to different cancer types. Moreover, exosomal miRNAs influence treatment outcomes by affecting cellular processes like cell growth, cell death, and drug resistance, thereby impacting response to therapy. Additionally, they serve as indicators of disease progression and treatment response, providing insights that can guide treatment decisions and improve patient care. Through longitudinal studies, changes in exosomal miRNA profiles have been observed to correlate with disease progression, metastasis, and response to therapy, highlighting their potential for real-time monitoring of tumor dynamics and treatment efficacy. Understanding the intricate roles of exosomal miRNAs in cancer biology offers opportunities for developing innovative diagnostic tools and therapeutic strategies tailored to individual patients, ultimately advancing precision medicine approaches and improving outcomes for cancer patients. This review aims to provide an understanding of the role of exosomal miRNAs in cancer detection, treatment, and monitoring, shedding light on their potential for revolutionising oncology practices and patient care.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.
| |
Collapse
|
7
|
Almeida PP, Moraes JA, Barja-Fidalgo TC, Renovato-Martins M. Extracellular vesicles as modulators of monocyte and macrophage function in tumors. AN ACAD BRAS CIENC 2024; 96:e20231212. [PMID: 38922279 DOI: 10.1590/0001-3765202420231212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/17/2024] [Indexed: 06/27/2024] Open
Abstract
The tumor microenvironment (TME) harbors several cell types, such as tumor cells, immune cells, and non-immune cells. These cells communicate through several mechanisms, such as cell-cell contact, cytokines, chemokines, and extracellular vesicles (EVs). Tumor-derived vesicles are known to have the ability to modulate the immune response. Monocytes are a subset of circulating innate immune cells and play a crucial role in immune surveillance, being recruited to tissues where they differentiate into macrophages. In the context of tumors, it has been observed that tumor cells can attract monocytes to the TME and induce their differentiation into tumor-associated macrophages with a pro-tumor phenotype. Tumor-derived EVs have emerged as essential structures mediating this process. Through the transfer of specific molecules and signaling factors, tumor-derived EVs can shape the phenotype and function of monocytes, inducing the expression of cytokines and molecules by these cells, thus modulating the TME towards an immunosuppressive environment.
Collapse
Affiliation(s)
- Palloma P Almeida
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Laboratório de Inflamação e Metabolismo, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24020-140 Niterói, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Biologia Redox, Av. Carlos Chagas Filho, 373, Prédio do ICB - Anexo B1F3, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes - IBRAG, Laboratório de Farmacologia Celular e Molecular, Av. 28 de setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - João Alfredo Moraes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Biologia Redox, Av. Carlos Chagas Filho, 373, Prédio do ICB - Anexo B1F3, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Thereza Christina Barja-Fidalgo
- Universidade do Estado do Rio de Janeiro, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes - IBRAG, Laboratório de Farmacologia Celular e Molecular, Av. 28 de setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Mariana Renovato-Martins
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Laboratório de Inflamação e Metabolismo, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24020-140 Niterói, RJ, Brazil
| |
Collapse
|
8
|
Pathania AS, Chava H, Chaturvedi NK, Chava S, Byrareddy SN, Coulter DW, Challagundla KB. The miR-29 family facilitates the activation of NK-cell immune responses by targeting the B7-H3 immune checkpoint in neuroblastoma. Cell Death Dis 2024; 15:428. [PMID: 38890285 PMCID: PMC11189583 DOI: 10.1038/s41419-024-06791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Neuroblastoma (NB) is a highly aggressive pediatric cancer that originates from immature nerve cells, presenting significant treatment challenges due to therapy resistance. Despite intensive treatment, approximately 50% of high-risk NB cases exhibit therapy resistance or experience relapse, resulting in poor outcomes often associated with tumor immune evasion. B7-H3 is an immune checkpoint protein known to inhibit immune responses. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. Our study aims to explore the impact of miRNAs on B7-H3 regulation, the anti-tumor immune response, and tumorigenicity in NB. Analysis of NB patients and patient-derived xenograft tumors revealed a correlation between higher B7-H3 expression and poorer patient survival. Notably, deceased patients exhibited a depletion of miR-29 family members (miR-29a, miR-29b, and miR-29c), which displayed an inverse association with B7-H3 expression in NB patients. Overexpression and knockdown experiments demonstrated that these miRNAs degrade B7-H3 mRNA, resulting in enhanced NK cell activation and cytotoxicity. In vivo, experiments provided further evidence that miR-29 family members reduce tumorigenicity, macrophage infiltration, and microvessel density, promote infiltration and activation of NK cells, and induce tumor cell apoptosis. These findings offer a rationale for developing more effective combination treatments that leverage miRNAs to target B7-H3 in NB patients.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
9
|
Prathipati P, Pathania AS, Chaturvedi NK, Gupta SC, Byrareddy SN, Coulter DW, Challagundla KB. SAP30, an oncogenic driver of progression, poor survival, and drug resistance in neuroblastoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:101543. [PMID: 38817681 PMCID: PMC11137595 DOI: 10.1016/j.omtn.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/18/2022] [Indexed: 06/01/2024]
Abstract
Neuroblastoma is the most devastating extracranial solid malignancy in children. Despite an intense treatment regimen, the prognosis for high-risk neuroblastoma patients remains poor, with less than 40% survival. So far, MYCN amplification status is considered the most prognostic factor but corresponds to only ∼25% of neuroblastoma patients. Therefore, it is essential to identify a better prognosis and therapy response marker in neuroblastoma patients. We applied robust bioinformatic data mining tools, such as weighted gene co-expression network analysis, cisTarget, and single-cell regulatory network inference and clustering on two neuroblastoma patient datasets. We found Sin3A-associated protein 30 (SAP30), a driver transcription factor positively associated with high-risk, progression, stage 4, and poor survival in neuroblastoma patient cohorts. Tumors of high-risk neuroblastoma patients and relapse-specific patient-derived xenografts showed higher SAP30 levels. The advanced pharmacogenomic analysis and CRISPR-Cas9 screens indicated that SAP30 essentiality is associated with cisplatin resistance and further showed higher levels in cisplatin-resistant patient-derived xenograft tumor cell lines. Silencing of SAP30 induced cell death in vitro and led to a reduced tumor burden and size in vivo. Altogether, these results indicate that SAP30 is a better prognostic and cisplatin-resistance marker and thus a potential drug target in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Anup S. Pathania
- Department of Biochemistry and Molecular Biology & Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddappa N. Byrareddy
- Department of Biochemistry and Molecular Biology & Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Perzolli A, Koedijk JB, Zwaan CM, Heidenreich O. Targeting the innate immune system in pediatric and adult AML. Leukemia 2024; 38:1191-1201. [PMID: 38459166 PMCID: PMC11147779 DOI: 10.1038/s41375-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
While the introduction of T cell-based immunotherapies has improved outcomes in many cancer types, the development of immunotherapies for both adult and pediatric AML has been relatively slow and limited. In addition to the need to identify suitable target antigens, a better understanding of the immunosuppressive tumor microenvironment is necessary for the design of novel immunotherapy approaches. To date, most immune characterization studies in AML have focused on T cells, while innate immune lineages such as monocytes, granulocytes and natural killer (NK) cells, received less attention. In solid cancers, studies have shown that innate immune cells, such as macrophages, myeloid-derived suppressor cells and neutrophils are highly plastic and may differentiate into immunosuppressive cells depending on signals received in their microenvironment, while NK cells appear to be functionally impaired. Hence, an in-depth characterization of the innate immune compartment in the TME is urgently needed to guide the development of immunotherapeutic interventions for AML. In this review, we summarize the current knowledge on the innate immune compartment in AML, and we discuss how targeting its components may enhance T cell-based- and other immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alicia Perzolli
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Joost B Koedijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
11
|
Kong X, Jiang S, He Q, Shi X, Pu W, Huang Y, Ma Y, Liu Q, Sun D, Huang D, Wu F, Li P, Tu W, Zhao Y, Wang L, Chen Y, Wu W, Tang Y, Zhao X, Zhu Q, Gao J, Xu W, Shui X, Qian F, Wang J. TLR8 aggravates skin inflammation and fibrosis by activating skin fibroblasts in systemic sclerosis. Rheumatology (Oxford) 2024; 63:1710-1719. [PMID: 37665747 DOI: 10.1093/rheumatology/kead456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVES Innate immunity significantly contributes to SSc pathogenesis. TLR8 is an important innate immune mediator that is implicated in autoimmunity and fibrosis. However, the expression, mechanism of action, and pathogenic role of TLR8 in SSc remain unclear. The aim of this study was to explore the roles and underlying mechanisms of TLR8 in SSc. METHODS The expression of TLR8 was analysed, based on a public dataset, and then verified in skin tissues and skin fibroblasts of SSc patients. The role of TLR8 in inflammation and fibrosis was investigated using a TLR8-overexpression vector, activator (VTX-2337), inhibitor (cu-cpt-8m), and TLR8 siRNA in skin fibroblasts. The pathogenic role of TLR8 in skin inflammation and fibrosis was further validated in a bleomycin (BLM)-induced mouse skin inflammation and fibrosis model. RESULTS TLR8 levels were significantly elevated in SSc skin tissues and myofibroblasts, along with significant activation of the TLR8 pathway. In vitro studies showed that overexpression or activation of TLR8 by a recombinant plasmid or VTX-2337 upregulated IL-6, IL-1β, COL I, COL III and α-SMA in skin fibroblasts. Consistently, both TLR8-siRNA and cu-cpt-8m reversed the phenotypes observed in TLR8-activating fibroblasts. Mechanistically, TLR8 induces skin fibrosis and inflammation in a manner dependent on the MAPK, NF-κB and SMAD2/3 pathways. Subcutaneous injection of cu-cpt-8m significantly alleviated BLM-induced skin inflammation and fibrosis in vivo. CONCLUSION TLR8 might be a promising therapeutic target for improving the treatment strategy for skin inflammation and fibrosis in SSc.
Collapse
Affiliation(s)
- Xiangzhen Kong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuai Jiang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China
| | - Qiuyu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Weilin Pu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Dayan Sun
- Department of Neonatal Surgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Delin Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Fei Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Pengcheng Li
- Department of Pancreatic Surgery, Fudan University Cancer Hospital, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Lei Wang
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yuanyuan Chen
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiansheng Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Zhu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | - Weihong Xu
- Laboratory Department of Tongren Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Xiaochuan Shui
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
- Institute of Rheumatology, Immunology, and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
13
|
Dhamdhere MR, Spiegelman VS. Extracellular vesicles in neuroblastoma: role in progression, resistance to therapy and diagnostics. Front Immunol 2024; 15:1385875. [PMID: 38660306 PMCID: PMC11041043 DOI: 10.3389/fimmu.2024.1385875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid pediatric cancer, and is one of the leading causes of cancer-related deaths in children. Despite the current multi-modal treatment regimens, majority of patients with advanced-stage NBs develop therapeutic resistance and relapse, leading to poor disease outcomes. There is a large body of knowledge on pathophysiological role of small extracellular vesicles (EVs) in progression and metastasis of multiple cancer types, however, the importance of EVs in NB was until recently not well understood. Studies emerging in the last few years have demonstrated the involvement of EVs in various aspects of NB pathogenesis. In this review we summarize these recent findings and advances on the role EVs play in NB progression, such as tumor growth, metastasis and therapeutic resistance, that could be helpful for future investigations in NB EV research. We also discuss different strategies for therapeutic targeting of NB-EVs as well as utilization of NB-EVs as potential biomarkers.
Collapse
Affiliation(s)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
14
|
Mattoo S, Gupta A, Chauhan M, Agrawal A, Pore SK. Prospects and challenges of noncoding-RNA-mediated inhibition of heat shock protein 90 for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195006. [PMID: 38218528 DOI: 10.1016/j.bbagrm.2024.195006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Heat Shock Protein 90 (HSP90) is a potential drug target for cancer therapy as it is often dysregulated in several cancers, including lung, breast, pancreatic, and prostate cancers. In cancer, HSP90 fails to maintain the structural and functional integrity of its several client proteins which are involved in the hallmarks of cancer such as cell proliferation, invasion, migration, angiogenesis, and apoptosis. Several small molecule inhibitors of HSP90 have been shown to exhibit anticancer effects in vitro and in vivo animal models. However, a few of them are currently under clinical studies. The status and potential limitations of these inhibitors are discussed here. Studies demonstrate that several noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) regulate HSP90 and its client proteins to modulate cellular processes to exhibit oncogenic or tumor suppressing properties. Over the last decade, miRNAs and lncRNAs have drawn significant interest from the scientific community as therapeutic agents or targets for clinical applications. Here, we discuss the detailed mechanistic regulation of HSP90 and its client proteins by ncRNAs. Moreover, we highlight the significance of these ncRNAs as potential therapeutic agents/targets, and the challenges associated with ncRNA-based therapies. This article aims to provide a holistic view on HSP90-regulating ncRNAs for the development of novel therapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Abha Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Manvee Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Akshi Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
15
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Kadhum WR, Majeed AA, Saleh RO, Ali E, Alhajlah S, Alwaily ER, Mustafa YF, Ghildiyal P, Alawadi A, Alsalamy A. Overcoming drug resistance with specific nano scales to targeted therapy: Focused on metastatic cancers. Pathol Res Pract 2024; 255:155137. [PMID: 38324962 DOI: 10.1016/j.prp.2024.155137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Metastatic cancer, which accounts for the majority of cancer fatalities, is a difficult illness to treat. Currently used cancer treatments include radiation therapy, chemotherapy, surgery, and targeted treatment (immune, gene, and hormonal). The disadvantages of these treatments include a high risk of tumor recurrence and surgical complications that may result in permanent deformities. On the other hand, most chemotherapy drugs are small molecules, which usually have unfavorable side effects, low absorption, poor selectivity, and multi-drug resistance. Anticancer drugs can be delivered precisely to the cancer spot by encapsulating them to reduce side effects. Stimuli-responsive nanocarriers can be used for drug release at cancer sites and provide target-specific delivery. As previously stated, metastasis is the primary cause of cancer-related mortality. We have evaluated the usage of nano-medications in the treatment of some metastatic tumors.
Collapse
Affiliation(s)
- Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq; Advanced research center, Kut University College, Kut 52001, Wasit, Iraq.
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Eyhab Ali
- Pharmacy Department, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
17
|
Kraus FBT, Sultova E, Heinrich K, Jung A, Westphalen CB, Tauber CV, Kumbrink J, Rudelius M, Klauschen F, Greif PA, König A, Chelariu-Raicu A, Czogalla B, Burges A, Mahner S, Wuerstlein R, Trillsch F. Genetics and beyond: Precision Medicine Real-World Data for Patients with Cervical, Vaginal or Vulvar Cancer in a Tertiary Cancer Center. Int J Mol Sci 2024; 25:2345. [PMID: 38397025 PMCID: PMC10888648 DOI: 10.3390/ijms25042345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Advances in molecular tumor diagnostics have transformed cancer care. However, it remains unclear whether precision oncology has the same impact and transformative nature across all malignancies. We conducted a retrospective analysis of patients with human papillomavirus (HPV)-related gynecologic malignancies who underwent comprehensive molecular profiling and subsequent discussion at the interdisciplinary Molecular Tumor Board (MTB) of the University Hospital, LMU Munich, between 11/2017 and 06/2022. We identified a total cohort of 31 patients diagnosed with cervical (CC), vaginal or vulvar cancer. Twenty-two patients (fraction: 0.71) harbored at least one mutation. Fifteen patients (0.48) had an actionable mutation and fourteen (0.45) received a recommendation for a targeted treatment within the MTB. One CC patient received a biomarker-guided treatment recommended by the MTB and achieved stable disease on the mTOR inhibitor temsirolimus for eight months. Factors leading to non-adherence to MTB recommendations in other patient cases included informed patient refusal, rapid deterioration, stable disease, or use of alternative targeted but biomarker-agnostic treatments such as antibody-drug conjugates or checkpoint inhibitors. Despite a remarkable rate of actionable mutations in HPV-related gynecologic malignancies at our institution, immediate implementation of biomarker-guided targeted treatment recommendations remained low, and access to targeted treatment options after MTB discussion remained a major challenge.
Collapse
Affiliation(s)
- Fabian B. T. Kraus
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elena Sultova
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Andreas Jung
- Institute of Pathology, Comprehensive Cancer Center Munich, LMU University Hospital, Ludwig Maximilians University (LMU), 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - C. Benedikt Westphalen
- Department of Medicine III, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Christina V. Tauber
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Comprehensive Cancer Center Munich, LMU University Hospital, Ludwig Maximilians University (LMU), 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Comprehensive Cancer Center Munich, LMU University Hospital, Ludwig Maximilians University (LMU), 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Frederick Klauschen
- Institute of Pathology, Comprehensive Cancer Center Munich, LMU University Hospital, Ludwig Maximilians University (LMU), 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Philipp A. Greif
- Department of Medicine III, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Alexander König
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Rachel Wuerstlein
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center Munich, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
18
|
Hammad R, Selim M, Eldosoky MA, Elmadbouly AA, Abd El Hakam FEZ, Elshafei A, Fawzy M, Hammad M. Contribution of plasma MicroRNA-21, MicroRNA-155 and circulating monocytes plasticity to childhood neuroblastoma development and induction treatment outcome. Pathol Res Pract 2024; 254:155060. [PMID: 38194805 DOI: 10.1016/j.prp.2023.155060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Neuroblastoma (NB) accounts for 15% of all pediatric cancer fatalities (NB). Biomarkers that facilitate early NB detection are needed because by the time of diagnosis, over half of NBs had spread. MicroRNA-21(miR-21) and miR-155 are involved in cancer biology due to their immune modulation functions. Altered monocyte subset distribution is thought to be involved in a number of solid tumors due to its immunological role. We aimed to investigate the expression levels of miR-21 and miR-155 and their association with circulating monocytes subsets in NB and to evaluate if they correlate to the disease pathogenesis and outcome. PATIENTS AND METHODS This case control study involved 79 children classified into 39 newly diagnosed NB children and 40 age and sex matched healthy children. Real-time PCR was used to assess the expression of plasma miR-21 and miR-155. The frequency of circulating monocytes subsets was assessed by flow cytometry. RESULTS NB group showed significant up-regulation in expression of miR-21(20.9 folds) and miR-155 (1.8 folds) when compared to the control group (p < 0.001) and (p = 0.02) respectively. Also, frequency of circulating intermediate monocytes revealed significant up regulation in children with NB. In NB patients, there was a positive correlation between miR-21 and frequency of total and intermediate monocytes (r = 0.5 p < 0.001 and r = 0.7, p < 0.001, respectively). We found no discernible differences when we compared study markers between the high risk and intermediate risk groups. In addition, no significant difference was seen in study markers when patients were sub-grouped according to their induction treatment response. ROC curve analysis revealed that miR-21 up-regulation distinguished NB in childhood at an AUC of 0.94 (82% sensitivity and 100% specificity) while miR-155 up-regulation had less capacity to distinguish NB in childhood at an AUC of 0.65 (38% sensitivity and 93% specificity). CONCLUSION miR-21 can be utilized as a sensitive biomarker for childhood NB development. In pediatric NB, miR-21 was linked to intermediate monocyte plasticity. Both, miR-21 and miR-155 had no impact on NB outcome.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Mustafa Selim
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | | | - Ahmed Elshafei
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Fawzy
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
19
|
Nasu M, Khadka VS, Jijiwa M, Kobayashi K, Deng Y. Exploring Optimal Biomarker Sources: A Comparative Analysis of Exosomes and Whole Plasma in Fasting and Non-Fasting Conditions for Liquid Biopsy Applications. Int J Mol Sci 2023; 25:371. [PMID: 38203541 PMCID: PMC10779159 DOI: 10.3390/ijms25010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The study of liquid biopsy with plasma samples is being conducted to identify biomarkers for clinical use. Exosomes, containing nucleic acids and metabolites, have emerged as possible sources for biomarkers. To evaluate the effectiveness of exosomes over plasma, we analyzed the small non-coding RNAs (sncRNAs) and metabolites extracted from exosomes in comparison to those directly extracted from whole plasma under both fasting and non-fasting conditions. We found that sncRNA profiles were not affected by fasting in either exosome or plasma samples. Our results showed that exosomal sncRNAs were found to have more consistent profiles. The plasma miRNA profiles contained high concentrations of cell-derived miRNAs that were likely due to hemolysis. We determined that certain metabolites in whole plasma exhibited noteworthy concentration shifts in relation to fasting status, while others did not. Here, we propose that (1) fasting is not required for a liquid biopsy study that involves both sncRNA and metabolomic profiling, as long as metabolites that are not influenced by fasting status are selected, and (2) the utilization of exosomal RNAs promotes robust and consistent findings in plasma samples, mitigating the impact of batch effects derived from hemolysis. These findings advance the optimization of liquid biopsy methodologies for clinical applications.
Collapse
Affiliation(s)
- Masaki Nasu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Ken Kobayashi
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| |
Collapse
|
20
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Liu L, Chen G, Gong S, Huang R, Fan C. Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy. Front Immunol 2023; 14:1274547. [PMID: 38022518 PMCID: PMC10679371 DOI: 10.3389/fimmu.2023.1274547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Fan
- *Correspondence: Chunmei Fan, ; Rongfu Huang,
| |
Collapse
|
22
|
Bustos MA, Yokoe T, Shoji Y, Kobayashi Y, Mizuno S, Murakami T, Zhang X, Sekhar SC, Kim S, Ryu S, Knarr M, Vasilev SA, DiFeo A, Drapkin R, Hoon DSB. MiR-181a targets STING to drive PARP inhibitor resistance in BRCA- mutated triple-negative breast cancer and ovarian cancer. Cell Biosci 2023; 13:200. [PMID: 37932806 PMCID: PMC10626784 DOI: 10.1186/s13578-023-01151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms. METHODS Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA). Functional assays were performed in three BRCA-mutated TNBC cell lines. In-silico analysis were performed using multiple databases including The Cancer Genome Atlas, the Genotype-Tissue Expression, The Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Gene Omnibus Expression. RESULTS High miR-181a levels were identified in OlaR TNBC cell lines (p = 0.001) as well as in tumor tissues from TNBC patients (p = 0.001). We hypothesized that miR-181a downregulates the stimulator of interferon genes (STING) and the downstream proinflammatory cytokines to mediate PARPi resistance. BRCA1 mutated TNBC cell lines with miR-181a-overexpression were more resistant to olaparib and showed downregulation in STING and the downstream genes controlled by STING. Extracellular vesicles derived from PARPi-resistant TNBC cell lines horizontally transferred miR-181a to parental cells which conferred PARPi-resistance and targeted STING. In clinical settings, STING levels were positively correlated with interferon gamma (IFNG) response scores (p = 0.01). In addition, low IFNG response scores were associated with worse response to neoadjuvant treatment including PARPi for high-risk HER2 negative BC patients (p = 0.001). OlaR TNBC cell lines showed resistance to platinum-based drugs. OvCa cell lines resistant to platinum showed resistance to olaparib. Knockout of miR-181a significantly improved olaparib sensitivity in OvCa cell lines (p = 0.001). CONCLUSION miR-181a is a key factor controlling the STING pathway and driving PARPi and platinum-based drug resistance in TNBC and OvCa. The miR-181a-STING axis can be used as a potential marker for predicting PARPi responses in TNBC and OvCa tumors.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Takamichi Yokoe
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yoshiaki Shoji
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yuta Kobayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Shodai Mizuno
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Tomohiro Murakami
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Xiaoqing Zhang
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Sreeja C Sekhar
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - SooMin Kim
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Matthew Knarr
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Steven A Vasilev
- Department of Gynecologic Oncology Research, SJCI at SJHC, Santa Monica, CA, 90404, USA
| | - Analisa DiFeo
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA.
| |
Collapse
|
23
|
Zhong W, Lu Y, Han X, Yang J, Qin Z, Zhang W, Yu Z, Wu B, Liu S, Xu W, Zheng C, Schuchter LM, Karakousis GC, Mitchell TC, Amaravadi R, Flowers AJ, Gimotty PA, Xiao M, Mills G, Herlyn M, Dong H, Mitchell MJ, Kim J, Xu X, Guo W. Upregulation of exosome secretion from tumor-associated macrophages plays a key role in the suppression of anti-tumor immunity. Cell Rep 2023; 42:113224. [PMID: 37805922 PMCID: PMC10697782 DOI: 10.1016/j.celrep.2023.113224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Macrophages play a pivotal role in tumor immunity. We report that reprogramming of macrophages to tumor-associated macrophages (TAMs) promotes the secretion of exosomes. Mechanistically, increased exosome secretion is driven by MADD, which is phosphorylated by Akt upon TAM induction and activates Rab27a. TAM exosomes carry high levels of programmed death-ligand 1 (PD-L1) and potently suppress the proliferation and function of CD8+ T cells. Analysis of patient melanoma tissues indicates that TAM exosomes contribute significantly to CD8+ T cell suppression. Single-cell RNA sequencing analysis showed that exosome-related genes are highly expressed in macrophages in melanoma; TAM-specific RAB27A expression inversely correlates with CD8+ T cell infiltration. In a murine melanoma model, lipid nanoparticle delivery of small interfering RNAs (siRNAs) targeting macrophage RAB27A led to better T cell activation and sensitized tumors to anti-programmed cell death protein 1 (PD-1) treatment. Our study demonstrates tumors use TAM exosomes to combat CD8 T cells and suggests targeting TAM exosomes as a potential strategy to improve immunotherapies.
Collapse
Affiliation(s)
- Wenqun Zhong
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youtao Lu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingbo Yang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiyuan Qin
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Zhang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ziyan Yu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Wu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shujing Liu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahron J Flowers
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phyllis A Gimotty
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Gordon Mills
- Division of Oncological Science, School of Medicine, and Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Haidong Dong
- Departments of Urology and Immunology, Mayo College of Medicine and Science, Rochester, MN 55905, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Liu M, Lai Z, Yuan X, Jin Q, Shen H, Rao D, Huang D. Role of exosomes in the development, diagnosis, prognosis and treatment of hepatocellular carcinoma. Mol Med 2023; 29:136. [PMID: 37848835 PMCID: PMC10580543 DOI: 10.1186/s10020-023-00731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is characterized by occult onset resulting in most patients being diagnosed at advanced stages and with poor prognosis. Exosomes are nanoscale vesicles with a lipid bilayer envelope released by various cells under physiological and pathological conditions, which play an important role in the biological information transfer between cells. There is growing evidence that HCC cell-derived exosomes may contribute to the establishment of a favorable microenvironment that supports cancer cell proliferation, invasion, and metastasis. These exosomes not only provide a versatile platform for diagnosis but also serve as a vehicle for drug delivery. In this paper, we review the role of exosomes involved in the proliferation, migration, and metastasis of HCC and describe their application in HCC diagnosis and treatment. We also discuss the prospects of exosome application in HCC and the research challenges.
Collapse
Affiliation(s)
- Meijin Liu
- Ganzhou Jingkai District People's Hospital, Ganzhou, China
| | - Zhonghong Lai
- Department of Traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoying Yuan
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
25
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
26
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
27
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
28
|
Mastrolia I, Catani V, Oltrecolli M, Pipitone S, Vitale MG, Masciale V, Chiavelli C, Bortolotti CA, Nasso C, Grisendi G, Sabbatini R, Dominici M. Chasing the Role of miRNAs in RCC: From Free-Circulating to Extracellular-Vesicle-Derived Biomarkers. BIOLOGY 2023; 12:877. [PMID: 37372161 DOI: 10.3390/biology12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system. The current therapeutic strategies are based on partial or total nephrectomy and/or targeted therapies based on immune checkpoint inhibitors to which patients are often refractory. Preventive and screening strategies do not exist and the few available biomarkers for RCC are characterized by a lack of sensitivity, outlining the need for novel noninvasive and sensitive biomarkers for early diagnosis and better disease monitoring. Blood liquid biopsy (LB) is a non- or minimally invasive procedure for a more representative view of tumor heterogeneity than a tissue biopsy, potentially allowing the real-time monitoring of cancer evolution. Growing interest is focused on the extracellular vesicles (EVs) secreted by either healthy or tumoral cells and recovered in a variety of biological matrices, blood included. EVs are involved in cell-to-cell crosstalk transferring their mRNAs, microRNAs (miRNAs), and protein content. In particular, transferred miRNAs may regulate tumorigenesis and proliferation also impacting resistance to apoptosis, thus representing potential useful biomarkers. Here, we present the latest efforts in the identification of circulating miRNAs in blood samples, focusing on the potential use of EV-derived miRNAs as RCC diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Virginia Catani
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | | - Cecilia Nasso
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Division of Oncology, S. Corona Hospital, 17027 Pietra Ligure, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
29
|
Skourti E, Volpe A, Lang C, Johnson P, Panagaki F, Fruhwirth GO. Spatiotemporal quantitative microRNA-155 imaging reports immune-mediated changes in a triple-negative breast cancer model. Front Immunol 2023; 14:1180233. [PMID: 37359535 PMCID: PMC10285160 DOI: 10.3389/fimmu.2023.1180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction MicroRNAs are small non-coding RNAs and represent key players in physiology and disease. Aberrant microRNA expression is central to the development and progression of cancer, with various microRNAs proposed as potential cancer biomarkers and drug targets. There is a need to better understand dynamic microRNA expression changes as cancers progress and their tumor microenvironments evolve. Therefore, spatiotemporal and non-invasive in vivo microRNA quantification in tumor models would be highly beneficial. Methods We developed an in vivo microRNA detector platform in which the obtained signals are positively correlated to microRNA presence, and which permitted stable expression in cancer cells as needed for long-term experimentation in tumor biology. It exploits a radionuclide-fluorescence dual-reporter for quantitative in vivo imaging of a microRNA of choice by radionuclide tomography and fluorescence-based downstream ex vivo tissue analyses. We generated and characterized breast cancer cells stably expressing various microRNA detectors and validated them in vitro. Results We found the microRNA detector platform to report on microRNA presence in cells specifically and accurately, which was independently confirmed by real-time PCR and through microRNA modulation. Moreover, we established various breast tumor models in animals with different levels of residual immune systems and observed microRNA detector read-outs by imaging. Applying the detector platform to the progression of a triple-negative breast cancer model, we found that miR-155 upregulation in corresponding tumors was dependent on macrophage presence in tumors, revealing immune-mediated phenotypic changes in these tumors as they progressed. Conclusion While applied to immunooncology in this work, this multimodal in vivo microRNA detector platform will be useful whenever non-invasive quantification of spatiotemporal microRNA changes in living animals is of interest.
Collapse
Affiliation(s)
- Elena Skourti
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Alessia Volpe
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Cameron Lang
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Preeth Johnson
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Fani Panagaki
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Department of Physics, King’s College London, London, United Kingdom
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
30
|
Chao F, Zhang Y, Lv L, Wei Y, Dou X, Chang N, Yi Q, Li M. Extracellular Vesicles Derived circSH3PXD2A Inhibits Chemoresistance of Small Cell Lung Cancer by miR-375-3p/YAP1. Int J Nanomedicine 2023; 18:2989-3006. [PMID: 37304971 PMCID: PMC10256819 DOI: 10.2147/ijn.s407116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Small cell lung cancer (SCLC) is a subtype of lung cancer with high malignancy and poor prognosis. Rapid acquisition of chemoresistance is one of the main reasons leading to clinical treatment failure of SCLC. Studies have indicated that circRNAs participate in multiple processes of tumor progression, including chemoresistance. However, the molecular mechanisms of circRNAs driving the chemoresistance of SCLC are not well specified. Methods The differentially expressed circRNAs were screened by transcriptome sequencing of chemoresistant and chemosensitive SCLC cells. The EVs of SCLC cells were isolated and identified by ultracentrifugation, Western blotting, transmission electron microscopy, nanoparticle tracking analysis and EVs uptake assays. The expression levels of circSH3PXD2A in serum and EVs of SCLC patients and healthy individuals were detected by qRT‒PCR. The characteristics of circSH3PXD2A were detected by Sanger sequencing, RNase R assay, nuclear-cytoplasmic fraction assay, and fluorescence in situ hybridization assay. The mechanisms of circSH3PXD2A inhibiting SCLC progression were studied by bioinformatics analysis, chemoresistance assay, proliferation assay, apoptosis assay, transwell assay, pull-down assay, luciferase reporting assay, and mouse xenograft assay. Results It was identified that the circSH3PXD2A was a prominently downregulated circRNA in chemoresistant SCLC cells. The expression level of circSH3PXD2A in EVs of SCLC patients was negatively associated with chemoresistance, and the combination of EVs-derived circSH3PXD2A and serum ProGRP (Progastrin-releasing peptide) levels had better indications for DDP-resistant SCLC patients. CircSH3PXD2A inhibited the chemoresistance, proliferation, migration, and invasion of SCLC cells through miR-375-3p/YAP1 axis in vivo and in vitro. SCLC cells cocultured with EVs secreted by circSH3PXD2A-overexpressing cells exhibited decreased chemoresistance and cell proliferation. Conclusion Our results manifest that EVs-derived circSH3PXD2A inhibits the chemoresistance of SCLC through miR-375-3p/YAP1 axis. Moreover, EVs-derived circSH3PXD2A may serve as a predictive biomarker for DDP-resistant SCLC patients.
Collapse
Affiliation(s)
- Fengmei Chao
- Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Yang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, People's Republic of China
| | - Lei Lv
- Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Yaqin Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, People's Republic of China
| | - Xiaoyan Dou
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, People's Republic of China
| | - Na Chang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, People's Republic of China
| |
Collapse
|
31
|
Si MY, Rao DY, Xia Y, Sang CP, Mao KY, Liu XJ, Zhang ZX, Tang ZX. Role of exosomal noncoding RNA in esophageal carcinoma. Front Oncol 2023; 13:1126890. [PMID: 37234976 PMCID: PMC10206631 DOI: 10.3389/fonc.2023.1126890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 05/28/2023] Open
Abstract
Esophageal cancer is a common malignant tumor with a high degree of malignancy. Understanding its pathogenesis and identifying early diagnostic biomarkers can significantly improve the prognosis of esophageal cancer patients. Exosomes are small double-membrane vesicles found in various body fluids containing various components (DNA, RNA, and proteins) that mediate intercellular signal communication. Non-coding RNAs are a class of gene transcription products that encode polypeptide functions and are widely detected in exosomes. There is growing evidence that exosomal non-coding RNAs are involved in cancer growth, metastasis and angiogenesis, and can also be used as diagnostic and prognostic markers. This article reviews the recent progress in exosomal non-coding RNAs in esophageal cancer, including research progress, diagnostic value, proliferation, migration, invasion, and drug resistance, provide new ideas for the precise treatment of esophageal cancer.
Collapse
Affiliation(s)
- Mao-Yan Si
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Ding-Yu Rao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yao Xia
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Cheng-Peng Sang
- Department of Cardiothoracic Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Kai-Yun Mao
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Xiang-Jin Liu
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Zu-Xiong Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhi-Xian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
32
|
Liu CG, Chen J, Goh RMWJ, Liu YX, Wang L, Ma Z. The role of tumor-derived extracellular vesicles containing noncoding RNAs in mediating immune cell function and its implications from bench to bedside. Pharmacol Res 2023; 191:106756. [PMID: 37019192 DOI: 10.1016/j.phrs.2023.106756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.
Collapse
|
33
|
MicroRNAs as prospective biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma. Mol Biol Rep 2023; 50:1895-1912. [PMID: 36520359 DOI: 10.1007/s11033-022-08137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuroblastomas, the most prevalent malignant solid neoplasms of childhood, originate from progenitor cells of the sympathetic nervous system. Their genetic causation is diverse and involves multiple molecular mechanisms. This review highlights multiple roles of microRNA in neuroblastoma pathogenesis and discusses the prospects of harnessing these important natural regulator molecules as biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma.
Collapse
|
34
|
Bhavsar SP. Recent advances in the roles of exosomal microRNAs in neuroblastoma. Front Oncol 2023. [DOI: 10.3389/fonc.2023.1091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exosomal miRNAs (exo-miRs), universally found in biofluids, tissues, and/or conditioned medium of the cell cultures play a significant role in cell - cell communication, thus driving cancer progression and metastasis. Very few studies have explored the role of exo-miRs in the progression of children’s cancer - neuroblastoma. In this mini review, I briefly summarize the existing literature on the role of exo-miRs in the pathogenesis of neuroblastoma.
Collapse
|
35
|
Bhavsar SP. Recent advances in the roles of exosomal microRNAs in neuroblastoma. Front Oncol 2023; 12:1091847. [PMID: 36793342 PMCID: PMC9923722 DOI: 10.3389/fonc.2022.1091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023] Open
Abstract
Exosomal miRNAs (exo-miRs), universally found in biofluids, tissues, and/or conditioned medium of the cell cultures play a significant role in cell - cell communication, thus driving cancer progression and metastasis. Very few studies have explored the role of exo-miRs in the progression of children's cancer - neuroblastoma. In this mini review, I briefly summarize the existing literature on the role of exo-miRs in the pathogenesis of neuroblastoma.
Collapse
|
36
|
Meng Q, Deng Y, Lu Y, Wu C, Tang S. Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. J Cancer Res Clin Oncol 2023; 149:423-439. [PMID: 36378341 DOI: 10.1007/s00432-022-04432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that perform post-transcriptional gene regulation. This review focuses on the role of tumor cell-derived miRNAs in the regulation of the tumor microenvironment (TME) via receptor cell recoding, including angiogenesis, expression of immunosuppressive molecules, formation of radiation resistance, and chemoresistance. Furthermore, we discuss the potential of these molecules as adjuvant therapies in combination with chemotherapy, radiotherapy, or immunotherapy, as well as their advantages as efficacy predictors for personalized therapy. MiRNA-based therapeutic agents for tumors are currently in clinical trials, and while challenges remain, additional research on tumor-derived miRNAs is warranted, which may provide significant clinical benefits to cancer patients.
Collapse
Affiliation(s)
- Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Yaoming Deng
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Yu Lu
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Chunfeng Wu
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Shifu Tang
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China. .,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China.
| |
Collapse
|
37
|
Samad AFA, Kamaroddin MF. Innovative approaches in transforming microRNAs into therapeutic tools. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1768. [PMID: 36437633 DOI: 10.1002/wrna.1768] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
MicroRNA (miRNA) is regarded as a prominent genetic regulator, as it can fine-tune an entire biological pathway by targeting multiple target genes. This characteristic makes miRNAs promising therapeutic tools to reinstate cell functions that are disrupted as a consequence of diseases. Currently, miRNA replacement by miRNA mimics and miRNA inhibition by anti-miRNA oligonucleotides are the main approaches to utilizing miRNA molecules for therapeutic purposes. Nevertheless, miRNA-based therapeutics are hampered by major issues such as off-target effects, immunogenicity, and uncertain delivery platforms. Over the past few decades, several innovative approaches have been established to minimize off-target effects, reduce immunostimulation, and provide efficient transfer to the target cells in which these molecules exert their function. Recent achievements have led to the testing of miRNA-based drugs in clinical trials, and these molecules may become next-generation therapeutics for medical intervention. Despite the achievement of exciting milestones, the dosage of miRNA administration remains unclear, and ways to address this issue are proposed. Elucidating the current status of the main factors of therapeutic miRNA would allow further developments and innovations to achieve safe therapeutic tools. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Abdul Fatah A Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
38
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Zhou X, Wang X, Li N, Guo Y, Yang X, Lei Y. Therapy resistance in neuroblastoma: Mechanisms and reversal strategies. Front Pharmacol 2023; 14:1114295. [PMID: 36874032 PMCID: PMC9978534 DOI: 10.3389/fphar.2023.1114295] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric solid tumors that threaten the health of children, accounting for about 15% of childhood cancer-related mortality in the United States. Currently, multiple therapies have been developed and applied in clinic to treat neuroblastoma including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, the resistance to therapies is inevitable following long-term treatment, leading to treatment failure and cancer relapse. Hence, to understand the mechanisms of therapy resistance and discover reversal strategies have become an urgent task. Recent studies have demonstrated numerous genetic alterations and dysfunctional pathways related to neuroblastoma resistance. These molecular signatures may be potential targets to combat refractory neuroblastoma. A number of novel interventions for neuroblastoma patients have been developed based on these targets. In this review, we focus on the complicated mechanisms of therapy resistance and the potential targets such as ATP-binding cassette transporters, long non-coding RNAs, microRNAs, autophagy, cancer stem cells, and extracellular vesicles. On this basis, we summarized recent studies on the reversal strategies to overcome therapy resistance of neuroblastoma such as targeting ATP-binding cassette transporters, MYCN gene, cancer stem cells, hypoxia, and autophagy. This review aims to provide novel insight in how to improve the therapy efficacy against resistant neuroblastoma, which may shed light on the future directions that would enhance the treatment outcomes and prolong the survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Xia Zhou
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China.,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaolin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
40
|
Chen QY, Gao B, Tong D, Huang C. Crosstalk between extracellular vesicles and tumor-associated macrophage in the tumor microenvironment. Cancer Lett 2023; 552:215979. [PMID: 36306939 DOI: 10.1016/j.canlet.2022.215979] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
In concert with hijacking key genes to drive tumor progression, cancer cells also have the unique ability to dynamically interact with host microenvironment and discreetly manipulate the surrounding stroma, also known as the tumor microenvironment (TME), to provide optimal conditions for tumor cells to thrive and evade host immunity. Complex cellular crosstalk and molecular signaling between cancer cells, surrounding non-malignant cells, and non-cellular components are involved in this process. While intercellular communication traditionally centers around chemokines, cytokines, inflammatory mediators, and growth factors, emerging pathways involving extracellular vesicles (EVs) are gaining increasing attention. The immunosuppressive TME is created and maintained in part by the large abundance of tumor-associated macrophages (TMAs), which are associated with drug resistance, poor prognosis, and have emerged as potential targets for cancer immunotherapy. TMAs are highly dynamic, and can be polarized into either M1 or M2-like macrophages. EVs are efficient cell-cell communication molecules that have been catapulted to the center of TMA polarization. In this article, we provide detailed examination of the determinative role of EVs in sustaining the TME through mediating crosstalk between tumor cells and tumor-associated macrophages.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Beibei Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Environmenta and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
41
|
Yang Q, Xu J, Gu J, Shi H, Zhang J, Zhang J, Chen Z, Fang X, Zhu T, Zhang X. Extracellular Vesicles in Cancer Drug Resistance: Roles, Mechanisms, and Implications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201609. [PMID: 36253096 PMCID: PMC9731723 DOI: 10.1002/advs.202201609] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized vesicles that mediate cell-to-cell communication via transporting bioactive molecules and thus are critically involved in various physiological and pathological conditions. EVs contribute to different aspects of cancer progression, such as cancer growth, angiogenesis, metastasis, immune evasion, and drug resistance. EVs induce the resistance of cancer cells to chemotherapy, radiotherapy, targeted therapy, antiangiogenesis therapy, and immunotherapy by transferring specific cargos that affect drug efflux and regulate signaling pathways associated with epithelial-mesenchymal transition, autophagy, metabolism, and cancer stemness. In addition, EVs modulate the reciprocal interaction between cancer cells and noncancer cells in the tumor microenvironment (TME) to develop therapy resistance. EVs are detectable in many biofluids of cancer patients, and thus are regarded as novel biomarkers for monitoring therapy response and predicting prognosis. Moreover, EVs are suggested as promising targets and engineered as nanovehicles to deliver drugs for overcoming drug resistance in cancer therapy. In this review, the biological roles of EVs and their mechanisms of action in cancer drug resistance are summarized. The preclinical studies on using EVs in monitoring and overcoming cancer drug resistance are also discussed.
Collapse
Affiliation(s)
- Qiurong Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jing Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory MedicineNantong Tumor HospitalNantongJiangsu226361China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical PharmacologySchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Xinjian Fang
- Department of OncologyLianyungang Hospital Affiliated to Jiangsu UniversityLianyungangJiangsu222000China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care MedicineYixing Hospital affiliated to Jiangsu UniversityYixingJiangsu214200China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
42
|
Reale A, Khong T, Spencer A. Extracellular Vesicles and Their Roles in the Tumor Immune Microenvironment. J Clin Med 2022; 11:jcm11236892. [PMID: 36498469 PMCID: PMC9737553 DOI: 10.3390/jcm11236892] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor cells actively incorporate molecules (e.g., proteins, lipids, RNA) into particles named extracellular vesicles (EVs). Several groups have demonstrated that EVs can be transferred to target (recipient) cells, making EVs an important means of intercellular communication. Indeed, EVs are able to modulate the functions of target cells by reprogramming signaling pathways. In a cancer context, EVs promote the formation of a supportive tumor microenvironment (TME) and (pre)metastatic niches. Recent studies have revealed that immune cells, tumor cells and their secretome, including EVs, promote changes in the TME and immunosuppressive functions of immune cells (e.g., natural killer, dendritic cells, T and B cells, monocytes, macrophages) that allow tumor cells to establish and propagate. Despite the growing knowledge on EVs and on their roles in cancer and as modulators of the immune response/escape, the translation into clinical practice remains in its early stages, hence requiring improved translational research in the EVs field. Here, we comprehensively review the current knowledge and most recent research on the roles of EVs in tumor immune evasion and immunosuppression in both solid tumors and hematological malignancies. We also highlight the clinical utility of EV-mediated immunosuppression targeting and EV-engineering. Importantly, we discuss the controversial role of EVs in cancer biology, current limitations and future perspectives to further the EV knowledge into clinical practice.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Malignant Haematology and Stem Cell Transplantation, Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Clinical Hematology, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| |
Collapse
|
43
|
Wang SE. Extracellular vesicles in cancer therapy. Semin Cancer Biol 2022; 86:296-309. [PMID: 35688334 PMCID: PMC10431950 DOI: 10.1016/j.semcancer.2022.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), including a variety of membrane-enclosed nanosized particles carrying cell-derived cargo, mediate a major type of intercellular communication in physiological and pathological processes. Both cancer and non-cancer cells secrete EVs, which can travel to and influence various types of cells at the primary tumor site as well as in distant organs. Tumor-derived EVs contribute to cancer cell plasticity and resistance to therapy, adaptation of tumor microenvironment, local and systemic vascular remodeling, immunomodulation, and establishment of pre-metastatic niches. Therefore, targeting the production, uptake, and function of tumor-derived EVs has emerged as a new strategy for stand-alone or combinational therapy of cancer. On the other hand, as EV cargo partially reflects the genetic makeup and phenotypic properties of the secreting cell, EV-based biomarkers that can be detected in biofluids are being developed for cancer diagnosis and for predicting and monitoring tumor response to therapy. Meanwhile, EVs from presumably safe sources are being developed as delivery vehicles for anticancer therapeutic agents and as anticancer vaccines. Numerous reviews have discussed the biogenesis and characteristics of EVs and their functions in cancer. Here, I highlight recent advancements in translation of EV research outcome towards improved care of cancer, including developments of non-invasive EV-based biomarkers and therapeutic agents targeting tumor-derived EVs as well as engineering of therapeutic EVs.
Collapse
Affiliation(s)
- Shizhen Emily Wang
- Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
44
|
Gomez RL, Ibragimova S, Ramachandran R, Philpott A, Ali FR. Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188805. [PMID: 36162542 DOI: 10.1016/j.bbcan.2022.188805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates.
| |
Collapse
|
45
|
Bottino C, Della Chiesa M, Sorrentino S, Morini M, Vitale C, Dondero A, Tondo A, Conte M, Garaventa A, Castriconi R. Strategies for Potentiating NK-Mediated Neuroblastoma Surveillance in Autologous or HLA-Haploidentical Hematopoietic Stem Cell Transplants. Cancers (Basel) 2022; 14:cancers14194548. [PMID: 36230485 PMCID: PMC9559312 DOI: 10.3390/cancers14194548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary High-risk neuroblastomas (HR-NB) are malignant tumors of childhood that are treated with a very aggressive and life-threatening approach; this includes autologous hemopoietic stem cell transplantation (HSCT) and the infusion of a mAb targeting the GD2 tumor-associated antigen. Although the current treatment provided benefits, the 5-year overall survival remains below 50% due to relapses and refractoriness to therapy. Thus, there is an urgent need to ameliorate the standard therapeutic protocol, particularly improving the immune-mediated anti-tumor responses. Our review aims at summarizing and critically discussing novel immunotherapeutic strategies in HR-NB, including NK cell-based therapies and HLA-haploidentical HSCT from patients’ family. Abstract High-risk neuroblastomas (HR-NB) still have an unacceptable 5-year overall survival despite the aggressive therapy. This includes standardized immunotherapy combining autologous hemopoietic stem cell transplantation (HSCT) and the anti-GD2 mAb. The treatment did not significantly change for more than one decade, apart from the abandonment of IL-2, which demonstrated unacceptable toxicity. Of note, immunotherapy is a promising therapeutic option in cancer and could be optimized by several strategies. These include the HLA-haploidentical αβT/B-depleted HSCT, and the antibody targeting of novel NB-associated antigens such as B7-H3, and PD1. Other approaches could limit the immunoregulatory role of tumor-derived exosomes and potentiate the low antibody-dependent cell cytotoxicity of CD16 dim/neg NK cells, abundant in the early phase post-transplant. The latter effect could be obtained using multi-specific tools engaging activating NK receptors and tumor antigens, and possibly holding immunostimulatory cytokines in their construct. Finally, treatments also consider the infusion of novel engineered cytokines with scarce side effects, and cell effectors engineered with chimeric antigen receptors (CARs). Our review aims to discuss several promising strategies that could be successfully exploited to potentiate the NK-mediated surveillance of neuroblastoma, particularly in the HSCT setting. Many of these approaches are safe, feasible, and effective at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-01056363855
| | - Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology/Oncology and HSCT, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Massimo Conte
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alberto Garaventa
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
46
|
Extracellular Vesicles: A Novel Tool in Nanomedicine and Cancer Treatment. Cancers (Basel) 2022; 14:cancers14184450. [PMID: 36139610 PMCID: PMC9497055 DOI: 10.3390/cancers14184450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are plasma-membrane-encased particles with various biomolecules. Recent studies have demonstrated that EVs play a role in homeostasis and disease progression, and therefore may be important disease biomarkers. In cancer, EVs mediate inflammatory responses, oxidative stress, and contribute to altering the microenvironment. Additionally, EVs function as mediators in neurodegenerative diseases. Interestingly, EVs also promote stem cell differentiation, intercellular communication, and wound healing. These functions suggest that EVs can be utilized in medicine as therapeutic tools. Moreover, their endogenous nature and ability to carry intact biomolecules of different sizes to their target site due to their lipid bilayer makes them perfect drug transport systems that can be utilized in the treatment of many diseases, with higher efficacy and fewer side effects than other treatments as they can only target diseased cells and not healthy nearby cells, which occurs in conventional chemotherapy, for example. As such, their role in drug delivery has great potential. Abstract Extracellular vesicles are membrane-bound vesicles released by cells to mediate intercellular communication and homeostasis. Various external stimuli as well as inherent abnormalities result in alterations in the extracellular vesicle milieu. Changes to cells result in alterations in the content of the extracellular vesicle biogenesis, which may affect proximal and distal cells encountering these altered extracellular vesicles. Therefore, the examination of changes in the extracellular vesicle signature can be used to follow disease progression, reveal possible targets to improve therapy, as well as to serve as mediators of therapy. Furthermore, recent studies have developed methods to alter the cargo of extracellular vesicles to restore normal function or deliver therapeutic agents. This review will examine how extracellular vesicles from cancer cells differ from normal cells, how these altered extracellular vesicles can contribute to cancer progression, and how extracellular vesicles can be used as a therapeutic agent to target cancer cells and cancer-associated stroma. Here we present extracellular vesicles as a novel tool in nanomedicine.
Collapse
|
47
|
Pathania AS, Prathipati P, Pandey MK, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. The emerging role of non-coding RNAs in the epigenetic regulation of pediatric cancers. Semin Cancer Biol 2022; 83:227-241. [PMID: 33910063 DOI: 10.1016/j.semcancer.2021.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023]
Abstract
Epigenetics is a process that involves the regulation of gene expression without altering the sequence of DNA. Numerous studies have documented that epigenetic mechanisms play a critical role in cell growth, differentiation, and cancer over the past decade. The well-known epigenetic modifications are either on DNA or at the histone proteins. Although several studies have focused on regulating gene expression by non-coding RNAs, the current understanding of their biological functions in various human diseases, particularly in cancers, is inadequate. Only about two percent of DNA is involved in coding the protein-coding genes, and leaving the rest 98 percent is non-coding and the scientific community regarded as junk or noise with no known purpose. Most non-coding RNAs are derived from such junk DNA and are known to be involved in various signaling pathways involving cancer initiation, progression, and the development of therapy resistance in many human cancer types. Recent studies have suggested that non-coding RNAs, especially microRNAs, piwi-interactingRNAs, and long non-coding RNAs, play a significant role in controlling epigenetic mechanism(s), indicating the potential effect of epigenetic modulation of non-coding RNAs on cancer progression. In this review article, we briefly presented epigenetic marks' characteristics, crosstalk between epigenetic modifications and microRNAs, piwi-interactingRNAs, and long non-coding RNAs to uncover the effect on the phenotype of pediatric cancers. Further, current knowledge on understanding the RNA epigenetics will help design novel therapeutics that target epigenetic regulatory networks to benefit cancer patients in the clinic.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Siddappa N Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Children's Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
48
|
The Regulatory Effects of MicroRNAs on Tumor Immunity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2121993. [PMID: 35909469 PMCID: PMC9329000 DOI: 10.1155/2022/2121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs are endogenous noncoding small RNAs that posttranscriptionally regulate the expressions of their target genes. Accumulating research shows that miRNAs are crucial regulators of immune cell growth and antitumor immune response. Studies on miRNAs and tumors primarily focus on the tumor itself. At the same time, relatively few studies on the indirect regulatory effects of miRNAs in the development of tumors are achieved by affecting the immune system of tumor hosts and altering their immune responses. This review discusses the influence of miRNAs on the antitumor immune system.
Collapse
|
49
|
Plousiou M, De Vita A, Miserocchi G, Bandini E, Vannini I, Melloni M, Masalu N, Fabbri F, Serra P. Growth Inhibition of Retinoblastoma Cell Line by Exosome-Mediated Transfer of miR-142-3p. Cancer Manag Res 2022; 14:2119-2131. [PMID: 35791342 PMCID: PMC9250773 DOI: 10.2147/cmar.s351979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Retinoblastoma (Rb) is the most common ocular paediatric malignancy and is caused by a mutation of the two alleles of the tumor suppressor gene, RB1. The tumor microenvironment (TME) represents a complex system whose function is not yet well defined and where microvesicles, such as exosomes, play a key role in intercellular communication. Micro-RNAs (mRNAs) have emerged as important modifiers of biological mechanisms involved in cancer and been able to regulate tumor progression. Methods Co-culture of monocytes with retinoblastoma cell lines, showed a significant growth decrease. Given the interaction between Rb cells and monocytes, we investigated the role of the supernatant in the cross-talk between cell lines, by taking the product of the co-culture and then using it as a culture medium for Rb cells. Results miR-142-3p showed to be particularly over-expressed both in the Rb cell line and in the medium used for their culture, comparing to control cell line and the normal supernatant, respectively. Therefore, we provided evidence that miR-142-3p is released by monocytes in the co-culture medium’s exosomes and that it is subsequently up-taken by Rb cells, causing the inhibition of proliferation of Rb cell line by affecting cell cycle progression. Conclusion This study highlights the role of exosomic miR-142-3p in the TME of Rb and identifies new molecular targets, which are able to control tumor growth aiming the development of a forward-looking miR-based strategy.
Collapse
Affiliation(s)
- Meropi Plousiou
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory IRCCS Istituto Romagnolo Per lo Studio dei Tumori (IRST), "Dino Amadori", 47014 Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory IRCCS Istituto Romagnolo Per lo Studio dei Tumori (IRST), "Dino Amadori", 47014 Meldola, Italy
| | - Erika Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Mattia Melloni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Nestory Masalu
- Unit of Biostatistics and Clinical Trials, Bioscience Laboratory IRCCS Istituto Romagnolo Per lo Studio dei Tumori (IRST), "Dino Amadori", 47014 Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Patrizia Serra
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Scientifico Romagnolo Per lo Studio dei Tumori (IRST), "Dino Amadori", Meldola, Italy
| |
Collapse
|
50
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| |
Collapse
|