1
|
Sugimoto R, Lee L, Tanaka Y, Morita Y, Hijioka M, Hisano T, Furukawa M. Zinc Deficiency as a General Feature of Cancer: a Review of the Literature. Biol Trace Elem Res 2024; 202:1937-1947. [PMID: 37658952 PMCID: PMC10955002 DOI: 10.1007/s12011-023-03818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Trace elements are minerals that are present in very low concentrations in the human body and yet are crucial for a wide range of physiological functions. Zinc, the second most abundant trace element, is obtained primarily from the diet. After being taken up in the intestine, zinc is distributed to various target organs, where it plays key roles in processes such as immunity, protein folding, apoptosis, and antioxidant activity. Given the important role of zinc in a wide range of enzymatic reactions and physiological processes, zinc deficiency has been identified in a variety of diseases, notably cancer. In recent years, multiple meta-analyses and reviews looking at zinc levels in individual cancer types have been published, as have a plethora of primary studies demonstrating a link between low zinc levels and specific types of cancer. In this review, we summarize recent evidence implicating low zinc concentrations in serum or tissues as a characteristic in a wide range of cancers. We also discuss preliminary findings indicating that zinc level measurement could ultimately become a useful clinical tool for cancer diagnosis and predicting outcomes in patients with cancer. Finally, we suggest future directions for further elucidating the role of zinc deficiency in cancer development and progression.
Collapse
Affiliation(s)
- Rie Sugimoto
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-Ku, Fukuoka, 811-1395, Japan.
| | - Lingaku Lee
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-Ku, Fukuoka, 811-1395, Japan
| | - Yuki Tanaka
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-Ku, Fukuoka, 811-1395, Japan
| | - Yusuke Morita
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-Ku, Fukuoka, 811-1395, Japan
| | - Masayuki Hijioka
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-Ku, Fukuoka, 811-1395, Japan
| | - Terumasa Hisano
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-Ku, Fukuoka, 811-1395, Japan
| | - Masayuki Furukawa
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-Ku, Fukuoka, 811-1395, Japan
| |
Collapse
|
2
|
Fong L, Huebner K, Jing R, Smalley K, Brydges C, Fiehn O, Farber J, Croce C. Zinc treatment reverses and anti-Zn-regulated miRs suppress esophageal carcinomas in vivo. Proc Natl Acad Sci U S A 2023; 120:e2220334120. [PMID: 37155893 PMCID: PMC10193985 DOI: 10.1073/pnas.2220334120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.
Collapse
Affiliation(s)
- Louise Y. Fong
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA19107
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA19107
| | - Kay Huebner
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Ruiyan Jing
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Karl J. Smalley
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA19107
| | - Christopher R. Brydges
- NIH West Coast Metabolomics Center, The Genome Center, University of California, Davis, CA95616
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, The Genome Center, University of California, Davis, CA95616
| | - John L. Farber
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| |
Collapse
|
3
|
Multi-omics evaluation of SARS-CoV-2 infected mouse lungs reveals dynamics of host responses. iScience 2022; 25:103967. [PMID: 35224468 PMCID: PMC8863311 DOI: 10.1016/j.isci.2022.103967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19) throughout the world has caused millions of death, while the dynamics of host responses and the underlying regulation mechanisms during SARS-CoV-2 infection are not well depicted. Lung tissues from a mouse model sensitized to SARS-CoV-2 infection were serially collected at different time points for evaluation of transcriptome, proteome, and phosphoproteome. We showed the ebb and flow of several host responses in the lung across the viral infection. The signaling pathways and kinases regulating networks were alternated at different phases of infection. This multiplex evaluation also revealed that many kinases of the CDK and MAPK family were interactive and served as functional hubs in mediating the signal transduction during SARS-CoV-2 infection. Our study not only revealed the dynamics of lung pathophysiology and their underlying molecular mechanisms during SARS-CoV-2 infection, but also highlighted some molecules and signaling pathways that might guide future investigations on COVID-19 therapies. Multi-omics analysis profiles temporal host responses in SARS-CoV-2 infected lungs Signaling pathways and kinase regulating networks are dynamically altered The CDK and MAPK family are interactive and involved in regulating host responses
Collapse
|
4
|
Pan H, Liu Q, Zhang F, Wang X, Wang S, Shi X. High STK40 Expression as an Independent Prognostic Biomarker and Correlated with Immune Infiltrates in Low-Grade Gliomas. Int J Gen Med 2021; 14:6389-6400. [PMID: 34675607 DOI: 10.2147/ijgm.s335821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background Expression of STK40 is observed in some cancer types, while its role in low-grade gliomas (LGG) is unclear. The present study aimed to demonstrate the relationship between STK40 and LGG based on The Cancer Genome Atlas (TCGA) database and bioinformatics analysis. Methods Kruskal-Wallis test, Wilcoxon sign-rank test, and logistic regression were used to evaluate the relationship between clinicopathological features and STK40 expression. Kaplan-Meier method and Cox regression analysis were used to evaluate prognostic factors. Gene set enrichment analysis (GSEA) and immuno-infiltration analysis were used to determine the significant involvement of STK40 in function. Results High STK40 expression in LGG was associated with WHO grade (P<0.001), IDH status (P<0.001), primary therapy outcome (P=0.027), 1p/19q codeletion (P<0.001) and histological type (P<0.001). High STK40 expression predicted a poorer overall survival (OS) (HR: 3.07; 95% CI: 2.09-4.51; P<0.001), progression-free survival (PFS) (HR:2.11; 95% CI: 1.59-2.81; P<0.001) and disease specific survival (DSS) (HR: 3.27; 95% CI: 2.17-4.92; P<0.001). STK40 expression (HR: 2.284; 95% CI: 1.125-4.637; P=0.022) was independently correlated with OS in LGG patients. GSEA demonstrated that pathways including cell cycle mitotic, neutrophil degranulation, signaling by Rho GTPases, signaling by interleukins, M phase, PI3K-Akt signaling pathway and naba secreted factors were differentially enriched in STK40 high expression phenotype. Immune infiltration analysis showed that STK40 expression was correlated with some types of immune infiltrating cells. Conclusion STK40 expression was significantly correlated with poor survival and immune infiltration in LGG, and it may be a promising prognostic biomarker in LGG.
Collapse
Affiliation(s)
- Heyue Pan
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Qirui Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Fuchi Zhang
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Xiaohua Wang
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Shouyong Wang
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Xiangsong Shi
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| |
Collapse
|
5
|
Zhang W, Zhu Y, Zhou Y, Wang J, Jiang P, Xue L. miRNA-31 increases radiosensitivity through targeting STK40 in colorectal cancer cells. Asia Pac J Clin Oncol 2021; 18:267-278. [PMID: 34170070 PMCID: PMC9291185 DOI: 10.1111/ajco.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
Objective To propose and verify that miRNA‐31 increases the radiosensitivity of colorectal cancer and explore its potential mechanism. Method A bioinformatics analysis was performed to confirm that the expression of miRNA‐31 was higher in colorectal cancer than in normal colorectal tissue. The expression of miRNA‐31 was detected to verify the change in its expression in a radiotherapy‐resistant cell line. Methylation was detected to explore the cause of the decrease in miRNA‐31 expression. Overexpression or inhibition of miRNA‐31 further confirmed the change in its expression in colorectal cancer cell lines. Bioinformatics methods were used to screen the downstream target genes and for experimental verification. A luciferase assay was performed to determine the miRNA‐31 binding site in STK40. Overexpression or inhibition of STK40 in colorectal cancer cell lines further confirmed the change in STK40 expression in vitro. Results The bioinformatics results showed higher expression of miRNA‐31 in tumors than in normal tissue, and miRNA‐31 mainly participated in the pathway related to cell replication. Next, we observed the same phenomenon: miRNA‐31 was expressed at higher levels in colorectal tumors than in normal colorectal tissue and its expression decreased in radiation‐resistant cell lines after radiation, implying that miRNA‐31 increased the radiosensitivity of colorectal cancer cell lines. No significant change in upstream methylation was observed. miRNA‐31 regulated the radiosensitivity of colorectal cancer cell lines by inhibiting STK40. Notably, miRNA‐31 played a role by binding to the 3′ untranslated region of SK40. STK40 negatively regulated the radiosensitivity of colorectal cancer cells. Conclusions miRNA‐31 increases the radiosensitivity of colorectal cancer cells by targeting STK40; miRNA‐31 and STK40 are expected to become potential biomarkers for increasing the sensitivity of tumor radiotherapy in clinical treatment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Peking University Third Hospital, Beijing, China
| | - Yuequan Zhu
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junjie Wang
- Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Celecoxib alleviates zinc deficiency-promoted colon tumorigenesis through suppressing inflammation. Aging (Albany NY) 2021; 13:8320-8334. [PMID: 33686969 PMCID: PMC8034938 DOI: 10.18632/aging.202642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/09/2020] [Indexed: 01/26/2023]
Abstract
Accumulating evidence has shown that dietary zinc deficiency (ZD) increases the risk of various cancers including esophageal and gastric cancer. However, the role of ZD in colon tumorigenesis is unknown and the related mechanisms need to be investigated. Apcmin/+ mice, widely used to mimic the spontaneous process of human intestinal tumor, were used to construct a ZD mice model in this study. Inflammatory mediators such as COX-2, TNF-α, CCL, CXCL, and IL chemokines families were evaluated using real-time PCR and Enzyme-linked immunosorbent assay (ELISA). Besides, the immunoreactivities of cyclin D1, PCNA, and COX-2 in the colon were detected by immunohistochemistry. We found that zinc deficiency could promote colon tumorigenesis in Apcmin/+ mice. The mechanisms are involved in the upregulation of inflammatory mediators: COX-2, TNF-α, CCL, CXCL, and IL chemokines families. Administration of celecoxib, a selective COX-2 inhibitor, decreased colon tumorigenesis in Apcmin/+ mice via inhibiting the inflammatory mediators. ZD plays an important role in the process of colon cancers of Apcmin/+ mice. Celecoxib attenuates ZD-induced colon tumorigenesis in Apcmin/+ mice by inhibiting the inflammatory mediators. Our novel finding would provide potential prevention of colorectal tumor-induced by ZD.
Collapse
|
7
|
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188491. [PMID: 33316377 PMCID: PMC7856203 DOI: 10.1016/j.bbcan.2020.188491] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and anti-tumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
Collapse
Affiliation(s)
- Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
8
|
Liao L, Yao Z, Fang W, He Q, Xu WW, Li B. Epigenetics in Esophageal Cancer: From Mechanisms to Therapeutics. SMALL METHODS 2020; 4:2000391. [DOI: 10.1002/smtd.202000391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Long Liao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Zi‐Ting Yao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wang‐Kai Fang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area Department of Biochemistry and Molecular Biology Shantou University Medical College Shantou 515041 China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| |
Collapse
|
9
|
Dragomir MP, Kopetz S, Ajani JA, Calin GA. Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut 2020; 69:748-763. [PMID: 32034004 DOI: 10.1136/gutjnl-2019-318279] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
One of the most unexpected discoveries in molecular oncology, in the last decades, was the identification of a new layer of protein coding gene regulation by transcripts that do not codify for proteins, the non-coding RNAs. These represent a heterogeneous category of transcripts that interact with many types of genetic elements, including regulatory DNAs, coding and other non-coding transcripts and directly to proteins. The final outcome, in the malignant context, is the regulation of any of the cancer hallmarks. Non-coding RNAs represent the most abundant type of hormones that contribute significantly to cell-to cell communication, revealing a complex interplay between tumour cells, tumour microenvironment cells and immune cells. Consequently, profiling their abundance in bodily fluids became a mainstream of biomarker identification. Therapeutic targeting of non-coding RNAs represents a new option for clinicians that is currently under development. This review will present the biology and translational value of three of the most studied categories on non-coding RNAs, the microRNAs, the long non-coding RNAs and the circular RNAs. We will also focus on some aspirational concepts that can help in the development of clinical applications related to non-coding RNAs, including using pyknons to discover new non-coding RNAs, targeting human-specific transcripts which are expressed specifically in the tumour cell and using non-coding RNAs to increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Mihnea Paul Dragomir
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George Adrian Calin
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Fong LY, Taccioli C, Palamarchuk A, Tagliazucchi GM, Jing R, Smalley KJ, Fan S, Altemus J, Fiehn O, Huebner K, Farber JL, Croce CM. Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proc Natl Acad Sci U S A 2020; 117:6075-6085. [PMID: 32123074 PMCID: PMC7084137 DOI: 10.1073/pnas.1920333117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-31 (miR-31) is overexpressed in esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary Zn deficiency and inflammation. In a Zn deficiency-promoted rat ESCC model with miR-31 up-regulation, cancer-associated inflammation, and a high ESCC burden following N-nitrosomethylbenzylamine (NMBA) exposure, systemic antimiR-31 delivery reduced ESCC incidence from 85 to 45% (P = 0.038) and miR-31 gene knockout abrogated development of ESCC (P = 1 × 10-6). Transcriptomics, genome sequencing, and metabolomics analyses in these Zn-deficient rats revealed the molecular basis of ESCC abrogation by miR-31 knockout. Our identification of EGLN3, a known negative regulator of nuclear factor κB (NF-κB), as a direct target of miR-31 establishes a functional link between oncomiR-31, tumor suppressor target EGLN3, and up-regulated NF-κB-controlled inflammation signaling. Interaction among oncogenic miR-31, EGLN3 down-regulation, and inflammation was also documented in human ESCCs. miR-31 deletion resulted in suppression of miR-31-associated EGLN3/NF-κB-controlled inflammatory pathways. ESCC-free, Zn-deficient miR-31-/- rat esophagus displayed no genome instability and limited metabolic activity changes vs. the pronounced mutational burden and ESCC-associated metabolic changes of Zn-deficient wild-type rats. These results provide conclusive evidence that miR-31 expression is necessary for ESCC development.
Collapse
Affiliation(s)
- Louise Y Fong
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107;
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro (PD), Italy
| | - Alexey Palamarchuk
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | - Ruiyan Jing
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Karl J Smalley
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Sili Fan
- NIH West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, CA 95616
| | - Joseph Altemus
- Office of Animal Resources, Thomas Jefferson University, Philadelphia, PA 19107
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, CA 95616
| | - Kay Huebner
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - John L Farber
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
11
|
Reid G, Johnson TG, van Zandwijk N. Manipulating microRNAs for the Treatment of Malignant Pleural Mesothelioma: Past, Present and Future. Front Oncol 2020; 10:105. [PMID: 32117755 PMCID: PMC7020748 DOI: 10.3389/fonc.2020.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are an important class of non-coding RNA that post-transcriptionally regulate the expression of most protein-coding genes. Their aberrant expression in tumors contributes to each of the hallmarks of cancer. In malignant pleural mesothelioma (MPM), in common with other tumor types, changes in miRNA expression are characterized by a global downregulation, although elevated levels of some miRNAs are also found. While an increasing number of miRNAs exhibit altered expression in MPM, relatively few have been functionally characterized. Of a growing number with tumor suppressor activity in vitro, miR-16, miR-193a, and miR-215 were also shown to have tumor suppressor activity in vivo. In the case of miR-16, the significant inhibitory effects on tumor growth following targeted delivery of miR-16-based mimics in a xenograft model was the basis for a successful phase I clinical trial. More recently overexpressed miRNAs with oncogenic activity have been described. Many of these changes in miRNA expression are related to the characteristic loss of tumor suppressor pathways in MPM tumors. In this review we will highlight the studies providing evidence for therapeutic effects of modulating microRNA levels in MPM, and discuss these results in the context of emerging approaches to miRNA-based therapy.
Collapse
Affiliation(s)
- Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Thomas G. Johnson
- The Asbestos Diseases Research Institute, Sydney, NSW, Australia
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia
- School of Medicine, The University of Sydney, Sydney, NSW, Australia
- Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nico van Zandwijk
- School of Medicine, The University of Sydney, Sydney, NSW, Australia
- Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
12
|
Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function. Eur J Med Chem 2020; 188:112008. [DOI: 10.1016/j.ejmech.2019.112008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
|
13
|
Fong LY, Jing R, Smalley KJ, Wang ZX, Taccioli C, Fan S, Chen H, Alder H, Huebner K, Farber JL, Fiehn O, Croce CM. Human-like hyperplastic prostate with low ZIP1 induced solely by Zn deficiency in rats. Proc Natl Acad Sci U S A 2018; 115:E11091-E11100. [PMID: 30397150 PMCID: PMC6255182 DOI: 10.1073/pnas.1813956115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Prostate cancer is a leading cause of cancer death in men over 50 years of age, and there is a characteristic marked decrease in Zn content in the malignant prostate cells. The cause and consequences of this loss have thus far been unknown. We found that in middle-aged rats a Zn-deficient diet reduces prostatic Zn levels (P = 0.025), increases cellular proliferation, and induces an inflammatory phenotype with COX-2 overexpression. This hyperplastic/inflammatory prostate has a human prostate cancer-like microRNA profile, with up-regulation of the Zn-homeostasis-regulating miR-183-96-182 cluster (fold change = 1.41-2.38; P = 0.029-0.0003) and down-regulation of the Zn importer ZIP1 (target of miR-182), leading to a reduction of prostatic Zn. This inverse relationship between miR-182 and ZIP1 also occurs in human prostate cancer tissue, which is known for Zn loss. The discovery that the Zn-depleted middle-aged rat prostate has a metabolic phenotype resembling that of human prostate cancer, with a 10-fold down-regulation of citric acid (P = 0.0003), links citrate reduction directly to prostatic Zn loss, providing the underlying mechanism linking dietary Zn deficiency with miR-183-96-182 overexpression, ZIP1 down-regulation, prostatic Zn loss, and the resultant citrate down-regulation, changes mimicking features of human prostate cancer. Thus, dietary Zn deficiency during rat middle age produces changes that mimic those of human prostate carcinoma and may increase the risk for prostate cancer, supporting the need for assessment of Zn supplementation in its prevention.
Collapse
Affiliation(s)
- Louise Y Fong
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107;
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ruiyan Jing
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Karl J Smalley
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Cristian Taccioli
- Department of Animal Medicine, Health and Production, University of Padova, 35122 Padova PD, Italy
| | - Sili Fan
- National Institutes of Health West Coast Metabolomics Center, University of California Davis Genome Center, University of California, Davis, CA 95616
| | - Hongping Chen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Hansjuerg Alder
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - John L Farber
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California Davis Genome Center, University of California, Davis, CA 95616
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210;
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Increased total iron and zinc intake and lower heme iron intake reduce the risk of esophageal cancer: A dose-response meta-analysis. Nutr Res 2018; 59:16-28. [DOI: 10.1016/j.nutres.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023]
|
15
|
Yu T, Ma P, Wu D, Shu Y, Gao W. Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother 2018; 108:1162-1169. [PMID: 30372817 DOI: 10.1016/j.biopha.2018.09.132] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs can exhibit opposite functions in different tumors. MiR-31 is a representative example as it can not only enhance tumor development and progression in pancreatic cancer, colorectal cancer and so on, but also inhibit tumorigenesis and induce apoptosis in ovarian cancer, prostate cancer and etc. The mechanism underlying its' pleiotropy remains unknown. Several recent studies that focused on the global gene expression changes caused by aberrant miR-31 provided information on the upstream and downstream events associated with deregulated miR-31. MiR-31 might interact with a number of signaling pathways including RAS/MARK, PI3K/AKT and RB/E2F to play its opposite functions. This review summarizes the target genes and pathways associated with miR-31 and examines the mechanisms underlying the function of miR-31. The resulting hypothesis is possible that the tissue-specific features of adenocarcinoma and squamous cell cancer and the positive feedback loop consists of miR-31 and its upstream and downstream may account for the diversity of miR-31 functions.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
16
|
Yang Y, Alderman C, Sehlaoui A, Xiao Y, Wang W. MicroRNAs as Immunotherapy Targets for Treating Gastroenterological Cancers. Can J Gastroenterol Hepatol 2018; 2018:9740357. [PMID: 30046565 PMCID: PMC6038585 DOI: 10.1155/2018/9740357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 01/17/2023] Open
Abstract
Gastroenterological cancers are the most common cancers categorized by systems and are estimated to comprise 18.4% of all cancers in the United States in 2017. Gastroenterological cancers are estimated to contribute 26.2% of cancer-related death in 2017. Gastroenterological cancers are characterized by late diagnosis, metastasis, high recurrence, and being refractory to current therapies. Since the current targeted therapies provide limited benefit to the overall response and survival, there is an urgent need for developing novel therapeutic strategy to improve the outcome of gastroenterological cancers. Immunotherapy has been developed and underwent clinical trials, but displayed limited therapeutic benefit. Since aberrant expressions of miRNAs are found in gastroenterological cancers and miRNAs have been shown to regulate antitumor immunity, the combination therapy combining the traditional antibody-based immunotherapy and novel miRNA-based immunotherapy is promising for achieving clinical success. This review summarizes the current knowledge about the miRNAs and long noncoding RNAs that exhibit immunoregulatory roles in gastroenterological cancers and precancerous diseases of digestive system, as well as the miRNA-based clinical trials for gastroenterological cancers. This review also analyzes the ongoing challenge of identifying appropriate therapy candidates for complex and dynamic tumor microenvironment, ensuring efficient and targeted delivery to specific cancer tissues, and developing strategy for avoiding off-target effect.
Collapse
Affiliation(s)
- Yixin Yang
- College of Natural, Applied and Health Sciences, Kean University, 100 Morris Avenue, Union, NJ 07083, USA
| | - Christopher Alderman
- School of Medicine, University of Colorado, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Ayoub Sehlaoui
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, KS 66801, USA
| | - Yuan Xiao
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, KS 66801, USA
| | - Wei Wang
- Department of Thoracic Surgery III, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| |
Collapse
|
17
|
Luan L, Shi J, Yu Z, Andl T. The major miR-31 target genes STK40 and LATS2 and their implications in the regulation of keratinocyte growth and hair differentiation. Exp Dermatol 2018; 26:497-504. [PMID: 28419554 DOI: 10.1111/exd.13355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
Emerging evidence indicates that even subtle changes in the expression of key genes of signalling pathways can have profound effects. MicroRNAs (miRNAs) are masters of subtlety and generally have only mild effects on their target genes. The microRNA miR-31 is one of the major microRNAs in many cutaneous conditions associated with activated keratinocytes, such as the hyperproliferative diseases psoriasis, non-melanoma skin cancer and hair follicle growth. miR-31 is a marker of the hair growth phase, and in our miR-31 transgenic mouse model it impairs the function of keratinocytes. This leads to aberrant proliferation, apoptosis, and differentiation that results in altered hair growth, while the loss of miR-31 leads to increased hair growth. Through in vitro and in vivo studies, we have defined a set of conserved miR-31 target genes, including LATS2 and STK40, which serve as new players in the regulation of keratinocyte growth and hair follicle biology. LATS2 can regulate growth of keratinocytes and we have identified a function of STK40 that can promote the expression of key hair follicle programme regulators such as HR, DLX3 and HOXC13.
Collapse
Affiliation(s)
- Liming Luan
- Division of Dermatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jianyun Shi
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
18
|
Maubant S, Tahtouh T, Brisson A, Maire V, Némati F, Tesson B, Ye M, Rigaill G, Noizet M, Dumont A, Gentien D, Marty-Prouvost B, de Koning L, Mahmood SF, Decaudin D, Cruzalegui F, Tucker GC, Roman-Roman S, Dubois T. LRP5 regulates the expression of STK40, a new potential target in triple-negative breast cancers. Oncotarget 2018; 9:22586-22604. [PMID: 29854300 PMCID: PMC5978250 DOI: 10.18632/oncotarget.25187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) account for a large proportion of breast cancer deaths, due to the high rate of recurrence from residual, resistant tumor cells. New treatments are needed, to bypass chemoresistance and improve survival. The WNT pathway, which is activated in TNBCs, has been identified as an attractive pathway for treatment targeting. We analyzed expression of the WNT coreceptors LRP5 and LRP6 in human breast cancer samples. As previously described, LRP6 was overexpressed in TNBCs. However, we also showed, for the first time, that LRP5 was overexpressed in TNBCs too. The knockdown of LRP5 or LRP6 decreased tumorigenesis in vitro and in vivo, identifying both receptors as potential treatment targets in TNBC. The apoptotic effect of LRP5 knockdown was more robust than that of LRP6 depletion. We analyzed and compared the transcriptomes of cells depleted of LRP5 or LRP6, to identify genes specifically deregulated by LRP5 potentially implicated in cell death. We identified serine/threonine kinase 40 (STK40) as one of two genes specifically downregulated soon after LRP5 depletion. STK40 was found to be overexpressed in TNBCs, relative to other breast cancer subtypes, and in various other tumor types. STK40 depletion decreased cell viability and colony formation, and induced the apoptosis of TNBC cells. In addition, STK40 knockdown impaired growth in an anchorage-independent manner in vitro and slowed tumor growth in vivo. These findings identify the largely uncharacterized putative protein kinase STK40 as a novel candidate treatment target for TNBC.
Collapse
Affiliation(s)
- Sylvie Maubant
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Tania Tahtouh
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Amélie Brisson
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Virginie Maire
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Fariba Némati
- Institut Curie, PSL Research University, Translational Research Department, Preclinical Investigation Laboratory, Paris, France
| | - Bruno Tesson
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France.,Institut Curie, PSL Research University, INSERM U900, Paris, France
| | - Mengliang Ye
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR 1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France.,Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Évry, France
| | - Maïté Noizet
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Aurélie Dumont
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - David Gentien
- Institut Curie, PSL Research University, Translational Research Department, Genomics Platform, Paris, France
| | - Bérengère Marty-Prouvost
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Leanne de Koning
- Institut Curie, PSL Research University, Translational Research Department, Reverse-Phase Protein Array Platform, Paris, France
| | - Sardar Faisal Mahmood
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Didier Decaudin
- Institut Curie, PSL Research University, Translational Research Department, Preclinical Investigation Laboratory, Paris, France
| | - Francisco Cruzalegui
- Oncology Research and Development Unit, Institut de Recherches SERVIER, Croissy-Sur-Seine, France
| | - Gordon C Tucker
- Oncology Research and Development Unit, Institut de Recherches SERVIER, Croissy-Sur-Seine, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Thierry Dubois
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| |
Collapse
|
19
|
Fong LY, Farber JL, Croce CM. Zinc intake, microRNA dysregulation, and esophageal cancer. Aging (Albany NY) 2018; 8:1161-2. [PMID: 27280381 PMCID: PMC4931822 DOI: 10.18632/aging.100978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Louise Y Fong
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John L Farber
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carlo M Croce
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
20
|
Fong LY, Taccioli C, Jing R, Smalley KJ, Alder H, Jiang Y, Fadda P, Farber JL, Croce CM. MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency. Oncotarget 2017; 7:10723-38. [PMID: 26918602 PMCID: PMC4905434 DOI: 10.18632/oncotarget.7561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC), and marginal ZD is prevalent in humans. In rats, marked-ZD (3 mg Zn/kg diet) induces a proliferative esophagus with a 5-microRNA signature (miR-31, -223, -21, -146b, -146a) and promotes ESCC. Here we report that moderate and mild-ZD (6 and 12 mg Zn/kg diet) also induced esophageal hyperplasia, albeit less pronounced than induced by marked-ZD, with a 2-microRNA signature (miR-31, -146a). On exposure to an environmental carcinogen, ∼16% of moderate/mild-ZD rats developed ESCC, a cancer incidence significantly greater than for Zn-sufficient rats (0%) (P ≤ 0.05), but lower than marked-ZD rats (68%) (P < 0.001). Importantly, the high ESCC, marked-ZD esophagus had a 15-microRNA signature, resembling the human ESCC miRNAome, with miR-223, miR-21, and miR-31 as the top-up-regulated species. This signature discriminated it from the low ESCC, moderate/mild-ZD esophagus, with a 2-microRNA signature (miR-31, miR-223). Additionally, Fbxw7, Pdcd4, and Stk40 (tumor-suppressor targets of miR-223, -21, and -31) were downregulated in marked-ZD cohort. Bioinformatics analysis predicted functional relationships of the 3 tumor-suppressors with other cancer-related genes. Thus, microRNA dysregulation and ESCC progression depend on the extent of dietary Zn deficiency. Our findings suggest that even moderate ZD may promote esophageal cancer and dietary Zn has preventive properties against ESCC. Additionally, the deficiency-associated miR-223, miR-21, and miR-31 may be useful therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Louise Y Fong
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cristian Taccioli
- Animal Medicine, Production and Health Department, University of Padua, Padua, Italy
| | - Ruiyan Jing
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karl J Smalley
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yubao Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paolo Fadda
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - John L Farber
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Liu CM, Liang D, Jin J, Li DJ, Zhang YC, Gao ZY, He YT. Research progress on the relationship between zinc deficiency, related microRNAs, and esophageal carcinoma. Thorac Cancer 2017; 8:549-557. [PMID: 28892299 PMCID: PMC5668500 DOI: 10.1111/1759-7714.12493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/06/2023] Open
Abstract
Esophageal cancer (EC) is a common malignant tumor of the gastrointestinal tract with a high incidence in China. Zinc (Zn) deficiency is a key risk factor for the occurrence and development of EC and affects progression by regulating microRNA (miRNA, miR) expression. In addition, the dysregulation of miRNAs is accompanied by the dysregulation of their target genes in EC. In this paper, we review the potential molecular mechanisms between Zn deficiency and EC with the aim of providing new strategies and methods for early diagnosis, targeted therapy, and prognostic evaluation.
Collapse
Affiliation(s)
- Cong-Min Liu
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Di Liang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Jing Jin
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Dao-Juan Li
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Ya-Chen Zhang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Zhao-Yu Gao
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Yu-Tong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
22
|
Martinez EC, Lilyanna S, Wang P, Vardy LA, Jiang X, Armugam A, Jeyaseelan K, Richards AM. MicroRNA-31 promotes adverse cardiac remodeling and dysfunction in ischemic heart disease. J Mol Cell Cardiol 2017; 112:27-39. [PMID: 28865712 DOI: 10.1016/j.yjmcc.2017.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
RATIONALE Myocardial infarction (MI) triggers a dynamic microRNA response with the potential of yielding therapeutic targets. OBJECTIVE We aimed to identify novel aberrantly expressed cardiac microRNAs post-MI with potential roles in adverse remodeling in a rat model, and to provide post-ischemic therapeutic inhibition of a candidate pathological microRNA in vivo. METHODS AND RESULTS Following microRNA array profiling in rat hearts 2 and 14days post-MI, we identified a time-dependent up-regulation of miR-31 compared to sham-operated rats. A progressive increase of miR-31 (up to 91.4±11.3 fold) was detected in the infarcted myocardium by quantitative real-time PCR. Following target prediction analysis, reporter gene assays confirmed that miR-31 targets the 3´UTR of cardiac troponin-T (Tnnt2), E2F transcription factor 6 (E2f6), mineralocorticoid receptor (Nr3c2) and metalloproteinase inhibitor 4 (Timp4) mRNAs. In vitro, hypoxia and oxidative stress up-regulated miR-31 and suppressed target genes in cardiac cell cultures, whereas LNA-based oligonucleotide inhibition of miR-31 (miR-31i) reversed its repressive effect on target mRNAs. Therapeutic post-ischemic administration of miR-31i in rats silenced cardiac miR-31 and enhanced expression of target genes, while preserving cardiac structure and function at 2 and 4weeks post-MI. Left ventricular ejection fraction (EF) improved by 10% (from day 2 to 30 post-MI) in miR-31i-treated rats, whereas controls receiving scrambled LNA inhibitor or placebo incurred a 17% deterioration in EF. miR-31i decreased end-diastolic pressure and infarct size; attenuated interstitial fibrosis in the remote myocardium and enhanced cardiac output. CONCLUSION miR-31 induction after MI is deleterious to cardiac function while its therapeutic inhibition in vivo ameliorates cardiac dysfunction and prevents the development of post-ischemic adverse remodeling.
Collapse
Affiliation(s)
- Eliana C Martinez
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Interdisciplinary Stem Cell Institute, Department of Pediatrics, Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Shera Lilyanna
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Leah A Vardy
- A*STAR Institute of Medical Biology, Singapore; Department of Biological Sciences, Nanyang Technological University, Singapore
| | - Xiaofei Jiang
- Cardiovascular Research Institute, National University Health System, Singapore
| | - Arunmozhiarasi Armugam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kandiah Jeyaseelan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiac Department, National University Health System, Singapore; Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| |
Collapse
|
23
|
|
24
|
Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model. Oncogene 2017; 36:6617-6626. [PMID: 28783166 DOI: 10.1038/onc.2017.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Dysregulation of microRNAs (miRNAs) plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). The Eμ-TCL1 transgenic mouse develops a form of leukemia that is similar to the aggressive type of human B-CLL, and this valuable model has been widely used for testing novel therapeutic approaches. Here, we adopted this model to investigate the potential effects of miR-26a, miR-130an and antimiR-155 in CLL therapy. Improved delivery of miRNA molecules into CLL cells was obtained by developing a novel system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody. This methodology has proven to be highly effective in delivering miRNA molecules into leukemic cells. Short- and long-term experiments showed that miR-26a, miR-130a and anti-miR-155 increased apoptosis after in vitro and in vivo treatment. Of this miRNA panel, miR-26a was the most effective in reducing leukemic cell expansion. Following long-term treatment, apoptosis was readily detectable by analyzing cleavage of PARP and caspase-7. These effects could be directly attributed to miR-26a, as confirmed by significant downregulation of its proven targets, namely cyclin-dependent kinase 6 and Mcl1. The results of this study are relevant to two distinct areas. The first is related to the design of a technical strategy and to the selection of CD38 as a molecular target on CLL cells, both consenting efficient and specific intracellular transfer of miRNA. The original scientific finding inferred from the above approach is that miR-26a can elicit in vivo anti-leukemic activities mediated by increased apoptosis.
Collapse
|
25
|
Identification of aminosulfonylarylisoxazole as microRNA-31 regulators. PLoS One 2017; 12:e0182331. [PMID: 28783765 PMCID: PMC5544221 DOI: 10.1371/journal.pone.0182331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/17/2017] [Indexed: 12/28/2022] Open
Abstract
The discovery of small-molecule regulators of microRNAs remains challenging, but a few have been reported. Herein, we describe small-molecule inhibitors of miR-31, a tumor-associated microRNA (miRNA), identified by high-throughput screening using a cell-based reporter assay. Aminosulfonylarylisoxazole compounds exhibited higher specificity for miR-31 than for six other miRNAs, i.e., miR-15a, miR-16, miR-21, miR-92a-1, miR-146a, and miR-155, and increased the expression of miR-31 target genes. The down-regulation of mature miR-31 was observed, while its precursor form increased following treatment with the compounds. Thus, the compounds may target the processing of pre-miR-31 into mature miR-31 and thereby inhibit the production of mature miR-31.
Collapse
|
26
|
Sundaram GM, Veera Bramhachari P. Molecular interplay of pro-inflammatory transcription factors and non-coding RNAs in esophageal squamous cell carcinoma. Tumour Biol 2017; 39:1010428317705760. [PMID: 28618941 DOI: 10.1177/1010428317705760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Esophageal squamous cell carcinoma is the sixth most common cancer in the developing world. The aggressive nature of esophageal squamous cell carcinoma, its tendency for relapse, and the poor survival prospects of patients diagnosed at advanced stages, represent a pressing need for the development of new therapies for this disease. Chronic inflammation is known to have a causal link to cancer pre-disposition. Nuclear factor kappa B and signal transducer and activator of transcription 3 are transcription factors which regulate immunity and inflammation and are emerging as key regulators of tumor initiation, progression, and metastasis. Although these pro-inflammatory factors in esophageal squamous cell carcinoma have been well-characterized with reference to protein-coding targets, their functional interactions with non-coding RNAs have only recently been gaining attention. Non-coding RNAs, especially microRNAs and long non-coding RNAs demonstrate potential as biomarkers and alternative therapeutic targets. In this review, we summarize the recent literature and concepts on non-coding RNAs that are regulated by/regulate nuclear factor kappa B and signal transducer and activator of transcription 3 in esophageal cancer progression. We also discuss how these recent discoveries can pave way for future therapeutic options to treat esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Gopinath M Sundaram
- 1 Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | | |
Collapse
|
27
|
Fong LY, Jing R, Smalley KJ, Taccioli C, Fahrmann J, Barupal DK, Alder H, Farber JL, Fiehn O, Croce CM. Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia. Oncotarget 2017; 8:81910-81925. [PMID: 29137232 PMCID: PMC5669858 DOI: 10.18632/oncotarget.18434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) in humans is a deadly disease associated with dietary zinc (Zn)-deficiency. In the rat esophagus, Zn-deficiency induces cell proliferation, alters mRNA and microRNA gene expression, and promotes ESCC. We investigated whether Zn-deficiency alters cell metabolism by evaluating metabolomic profiles of esophageal epithelia from Zn-deficient and replenished rats vs sufficient rats, using untargeted gas chromatography time-of-flight mass spectrometry (n = 8/group). The Zn-deficient proliferative esophagus exhibits a distinct metabolic profile with glucose down 153-fold and lactic acid up 1.7-fold (P < 0.0001), indicating aerobic glycolysis (the “Warburg effect”), a hallmark of cancer cells. Zn-replenishment rapidly increases glucose content, restores deregulated metabolites to control levels, and reverses the hyperplastic phenotype. Integration of metabolomics and our reported transcriptomic data for this tissue unveils a link between glucose down-regulation and overexpression of HK2, an enzyme that catalyzes the first step of glycolysis and is overexpressed in cancer cells. Searching our published microRNA profile, we find that the tumor-suppressor miR-143, a negative regulator of HK2, is down-regulated in Zn-deficient esophagus. Using in situ hybridization and immunohistochemical analysis, the inverse correlation between miR-143 down-regulation and HK2 overexpression is documented in hyperplastic Zn-deficient esophagus, archived ESCC-bearing Zn-deficient esophagus, and human ESCC tissues. Thus, to sustain uncontrolled cell proliferation, Zn-deficiency reprograms glucose metabolism by modulating expression of miR-143 and its target HK2. Our work provides new insight into critical roles of Zn in ESCC development and prevention.
Collapse
Affiliation(s)
- Louise Y Fong
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Center for Molecular Carcinogenesis, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruiyan Jing
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karl J Smalley
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cristian Taccioli
- Animal Medicine, Production and Health Department, University of Padua, Padua, Italy
| | - Johannes Fahrmann
- University of California, Davis, West Coast Metabolomics Center, Davis, CA, USA
| | - Dinesh K Barupal
- University of California, Davis, West Coast Metabolomics Center, Davis, CA, USA
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - John L Farber
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Oliver Fiehn
- University of California, Davis, West Coast Metabolomics Center, Davis, CA, USA.,Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Durzynska I, Xu X, Adelmant G, Ficarro SB, Marto JA, Sliz P, Uljon S, Blacklow SC. STK40 Is a Pseudokinase that Binds the E3 Ubiquitin Ligase COP1. Structure 2017; 25:287-294. [PMID: 28089446 DOI: 10.1016/j.str.2016.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/17/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023]
Abstract
Serine/threonine kinase 40 (STK40) was originally identified as a distant homolog of Tribbles-family proteins. Despite accumulating data attesting to the importance of STK40 in a variety of different physiologic processes, little is known about its biological activity or mechanism of action. Here, we show that STK40 interacts with Constitutive Photomorphogenic Protein 1 (COP1), relying primarily on a C-terminal sequence analogous to the motif found in Tribbles proteins. In order to further elucidate structure-function relationships in STK40, we determined the crystal structure of the STK40 kinase homology domain at 2.5 Å resolution. The structure, together with ATP-binding assay results, show that STK40 is a pseudokinase, in which substitutions of conserved residues within the kinase domain prevent ATP binding. Although the structure of the kinase homology domain diverges from the analogous region of Trib1, the results reported here suggest functional parallels between STK40 and Tribbles-family proteins as COP1 adaptors.
Collapse
Affiliation(s)
- Izabela Durzynska
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiang Xu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Piotrek Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sacha Uljon
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA.
| | - Stephen C Blacklow
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Tian C, Yao S, Liu L, Ding Y, Ye Q, Dong X, Gao Y, Yang N, Li Q. Klf4 inhibits tumor growth and metastasis by targeting microRNA-31 in human hepatocellular carcinoma. Int J Mol Med 2016; 39:47-56. [PMID: 27909734 PMCID: PMC5179175 DOI: 10.3892/ijmm.2016.2812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are short, endogenous non-coding RNA molecules, demonstrating abnormal expression in cancer initiation and progression. In this study, we profiled 18 differentially regulated miRNAs, including miRNA-31, using miRNA array. Kruppel (or Krüppel)-like factor 4 (Klf4) is a transcription factor and putative tumor suppressor. Both were found to be significantly downregulated in liver cancer tissues and cells. However, little is known about the correlation between Klf4 and miRNA-31 in hepatocellular carcinoma (HCC). The mRNA expression of Klf4 was decreased and inversely associated with the clinical stage, T classification and hepatitis B in patients with HCC, while the expression of miR-31 was lower (r=0.326, P=0.018). Using cell counting kit 8 (CCK8) and Transwell migration assays, we found that Klf4 and miR-31 inhibited the proliferation and metastasis of liver cancer cells. Moreover, we demonstrated that Klf4 directly binds to the promoter of miR-31 and activates its transcription. In vitro experiments confirmed that Klf4 regulated miR-31 and thereby inhibited HCC cell growth and metastasis. Taken together, our findings indicate that Klf4 directly regulates miR-31 in HCC. Thus, miR-31 may serve as a potential diagnostic marker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Chuan Tian
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Shanshan Yao
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Li Liu
- Department of Pharmacy, Guiyang Hospital of Guizhou Aviation Industry Group, Guiyang, Guizhou, P.R. China
| | - Youcheng Ding
- Department of General Surgery, Shanghai East Hospital, Tongji University, Shanghai, P.R. China
| | - Qingwang Ye
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Xiao Dong
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, P.R. China
| | - Ning Yang
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Qi Li
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
30
|
Xiong Z, He J, Chen XL. New strategies in esophageal carcinoma: promises and problems. J Thorac Dis 2016; 8:E1501-E1504. [PMID: 28066643 DOI: 10.21037/jtd.2016.11.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Jingxi He
- Department of Thoracic Surgery, Ningxia Medical University General Hospital, Yinchuan 750004, China
| | - Xiaoxin Luke Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;; Center for Esophageal Disease and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519, USA
| |
Collapse
|
31
|
Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, Qin N, Zheng J, Zhang J, Xu L. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol 2016; 7:389. [PMID: 27774091 PMCID: PMC5054040 DOI: 10.3389/fimmu.2016.00389] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023] Open
Abstract
Recent evidence showed that microRNA-7 (miR-7) played an important role in the pathologies of lung-related diseases. However, the potential role of miR-7 in acute lung injury (ALI) still remains poorly understood. Here, we assessed the effect of miR-7 deficiency on the pathology of ALI. We, first, found that the expression of miR-7 was upregulated in lung tissue in murine LPS-induced ALI model. Notably, we generated miR-7 knock down mice by using miRNA-Sponge technique and found that miR-7 deficiency could ameliorate the pathologies of lung as evidenced by accelerated body weight recovery, reduced level of bronchoalveolar lavage (BAL) proinflammatory cytokines and decreased number of BAL cells in ALI mice. Moreover, the proportion and number of various immune cells in BAL, including innate immune cell F4/80+ macrophages, γδT cells, NK1.1+ T cells, and CD11c+DCs, as well as adaptive immune cell CD4+ T cells and CD8+ T cells, also significantly changed, respectively. Mechanistic evidence showed that KLF4, a target molecule of miR-7, was upregulated in lung tissues in ALI model, accompanied by altered transduction of NF-κB, AKT, and ERK pathway. These data provided a previously unknown role of miR-7 in pathology of ALI, which could ultimately aid the understanding of development of ALI and the development of new therapeutic strategies against clinical inflammatory lung diseases.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Yijin Tao
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - PanPan Cui
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College , Guizhou , China
| | - Nalin Qin
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Jing Zheng
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College , Guizhou , China
| |
Collapse
|
32
|
Jin L, Yi J, Gao Y, Han S, He Z, Chen L, Song H. MiR-630 inhibits invasion and metastasis in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2016; 48:810-9. [PMID: 27563011 DOI: 10.1093/abbs/gmw073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most aggressive malignancies and has a high incidence in China. MicroRNAs (miRNAs) are small endogenous RNAs that regulate multiple tumorigenic processes, including proliferation, invasion, metastasis and prognosis. Using miRNA expression profiling analysis, we found that miR-630 was markedly down-regulated in three ESCC tissue samples compared with that in paired normal esophageal tissues. Differential miR-630 expression was subsequently confirmed using quantitative real-time PCR. To determine whether miR-630 down-regulation could be considered as a diagnostic indicator and adverse prognostic factor, we investigated the association between miR-630 and clinicopathological characteristics in patients with ESCC. It was found that decreased miR-630 expression was associated with poor overall survival in these patients. In addition, we also explored the biological function of miR-630 by targeting Slug and investigated the correlation between miR-630 expression and epithelial-mesenchymal transition (EMT) progression in vivo and in vitro Ectopic miR-630 expression could inhibit proliferation, invasion and metastasis, whereas miR-630 knockdown induced proliferation, invasion, metastasis and EMT traits. Overall, our study supports a role for miR-630 as a critical novel modulator in ESCC.
Collapse
Affiliation(s)
- Li Jin
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Yanping Gao
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Zhenyue He
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
33
|
STEPICHEVA NADEZDAA, SONG JIAL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev 2016; 83:654-74. [PMID: 27405090 PMCID: PMC6040227 DOI: 10.1002/mrd.22678] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that orchestrate numerous cellular processes both under normal physiological conditions as well as in diseases. This review summarizes the functional roles and transcriptional regulation of the highly evolutionarily conserved miRNA, microRNA-31 (miR-31). miR-31 is an important regulator of embryonic implantation, development, bone and muscle homeostasis, and immune system function. Its own regulation is disrupted during the onset and progression of cancer and autoimmune disorders such as psoriasis and systemic lupus erythematosus. Limited studies suggest that miR-31 is transcriptionally regulated by epigenetics, such as methylation and acetylation, as well as by a number of transcription factors. Overall, miR-31 regulates diverse cellular and developmental processes by targeting genes involved in cell proliferation, apoptosis, cell differentiation, and cell motility. Mol. Reprod. Dev. 83: 654-674, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - JIA L. SONG
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
34
|
Ahmadi S, Sharifi M, Salehi R. Locked nucleic acid inhibits miR-92a-3p in human colorectal cancer, induces apoptosis and inhibits cell proliferation. Cancer Gene Ther 2016; 23:199-205. [PMID: 27199220 DOI: 10.1038/cgt.2016.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a type of small noncoding RNAs that have a vital role in basic biological processes such as cellular growth, division and apoptosis. A change in the expression of miRNAs can induce many diseases. Recently, the role of miRNA in some of the cancers as a tumor suppressor and oncogene has been recognized. Several studies have proved that miR-92a-3p acts as an oncogene in colorectal cancer (CRC). We studied CRC by inhibiting miR-92a-3p in SW48 cells (human colorectal cancer cell line) that were transfected with locked nucleic acid (LNA). At different times, the expression level of miR-92a-3p, cell vitality, apoptosis and necrosis were studied by qRT-PCR, MTT, Annexin-V and propidiumiodide. Our results showed that the expression of miR-92a-3p and proliferation of SW48 cells were decreased, and also a high percentage of SW48 cells were exposed to apoptosis and necrosis (P⩽0.005). Our study showed that the inhibition of miR-92a-3p with LNA inhibited cell proliferation and induced apoptosis and necrosis in CRC.
Collapse
Affiliation(s)
- S Ahmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Ma G, Zhang F, Dong X, Wang X, Ren Y. Low expression of microRNA-202 is associated with the metastasis of esophageal squamous cell carcinoma. Exp Ther Med 2016; 11:951-956. [PMID: 26998018 DOI: 10.3892/etm.2016.3014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 11/25/2015] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to determine the expression levels and biological functions of microRNA-202 (miR-202) in patients with esophageal squamous cell carcinoma (ESCC). A total of 60 patients with ESCC and 30 healthy individuals were enrolled and reverse transcription-quantitative polymerase chain reaction was performed to measure the expression levels of miR-202. In order to investigate the effects of miR-202 expression levels on the proliferative, migratory and invasive abilities of ESCC cells, methylthiazolyl-tetrazolium bromide proliferation, in vitro scratch and Transwell® chamber assays were performed. Expression levels of miR-202 were significantly decreased in the peripheral blood of patients with ESCC, which is associated with the degree of cell differentiation and lymph node metastasis (P<0.05). Following miR-202 transfection, cell proliferation was significantly inhibited (P<0.05). Cell migration and invasion was also significantly inhibited by miR-202 transfection (P<0.05). The results of the present study demonstrated that the expression of miR-202 inhibited the proliferation, migration and invasion of ESCC cells. Furthermore, low expression levels of miR-202 were detected in the peripheral blood of patients with ESCC, which is associated with the development, invasion and metastasis of ESCC.
Collapse
Affiliation(s)
- Guoliang Ma
- Department of Clinical Laboratory, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Fengmei Zhang
- Department of Endocrinology, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Xueguang Dong
- Department of Clinical Laboratory, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Xiaoli Wang
- Department of Clinical Laboratory, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Yuguo Ren
- Department of Clinical Laboratory, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| |
Collapse
|