1
|
Elhariri A, Patel J, Mahadevia H, Albelal D, Ahmed AK, Jones JC, Borad MJ, Babiker H. Identifying Actionable Alterations in KRAS Wild-Type Pancreatic Cancer. Target Oncol 2024; 19:679-689. [PMID: 39123077 DOI: 10.1007/s11523-024-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The 5-year relative survival rate for pancreatic cancer is currently the lowest among all cancer types with a dismal 13%. A Kirsten rat sarcoma virus (KRAS) gene mutation is present in approximately 90% of patients with pancreatic cancer; however, KRAS-specific drugs are not yet widely used in clinical practice for pancreatic cancer, specifically the KRASG12D variant. Advances in genomic testing revealed an opportunity to detect genetic alterations in a subset of patients with no KRAS mutation termed KRAS wild-type. Patients with KRAS wild-type tumors have a propensity to express driver alterations, hence paving the way for utilizing a targeted therapy approach either via clinical trials or standard-of-care drugs. These alterations include fusions, amplifications, translocations, rearrangements and microsatellite instability-high tumors and can be as high as 11% in some studies. Here, we discuss some of the most notable alterations in KRAS wild-type and highlight promising clinical trials.
Collapse
Affiliation(s)
- Ahmed Elhariri
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jaydeepbhai Patel
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Himil Mahadevia
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Douaa Albelal
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ahmed K Ahmed
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jeremy C Jones
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Mitesh J Borad
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Hani Babiker
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
2
|
Puco K, Fagereng GL, Brabrand S, Niehusmann P, Støre Blix E, Samdal Steinskog ES, Haug Å, Fredvik Torkildsen C, Oppedal IA, Meltzer S, Flobak Å, Johansson KAM, Bjørge L, Hjortland GO, Dalhaug A, Lund JÅ, Gilje B, Grønlie Cameron M, Hovland R, Falk RS, Smeland S, Giercksky Russnes HE, Taskén K, Helland Å. IMPRESS-Norway: improving public cancer care by implementing precision medicine in Norway; inclusion rates and preliminary results. Acta Oncol 2024; 63:379-384. [PMID: 38779911 PMCID: PMC11332498 DOI: 10.2340/1651-226x.2024.28322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND PURPOSE In Norway, comprehensive molecular tumour profiling is implemented as part of the public healthcare system. A substantial number of tumours harbour potentially targetable molecular alterations. Therapy outcomes may improve if targeted treatments are matched with actionable genomic alterations. In the IMPRESS-Norway trial (NCT04817956), patients are treated with drugs outside the labelled indication based on their tumours molecular profile. PATIENTS AND METHODS IMPRESS-Norway is a national, prospective, non-randomised, precision cancer medicine trial, offering treatment to patients with advanced-stage disease, progressing on standard treatment. Comprehensive next-generation sequencing, TruSight Oncology 500, is used for screening. Patients with tumours harbouring molecular alterations with matched targeted therapies available in IMPRESS-Norway, are offered treatment. Currently, 24 drugs are available in the study. Primary study endpoints are percentage of patients offered treatment in the trial, and disease control rate (DCR) defined as complete or partial response or stable disease in evaluable patients at 16 weeks (W16) of treatment. Secondary endpoint presented is DCR in all treated patients. RESULTS Between April 2021 and October 2023, 1,167 patients were screened, and an actionable mutation with matching drug was identified for 358 patients. By the data cut off 186 patients have initiated treatment, 170 had a minimum follow-up time of 16 weeks, and 145 also had evaluable disease. In patients with evaluable disease, the DCR was 40% (58/145). Secondary endpoint analysis of DCR in all treated patients, showed DCR of 34% (58/170). INTERPRETATION Precision cancer medicine demonstrates encouraging clinical effect in a subset of patients included in the IMPRESS-Norway trial.
Collapse
Affiliation(s)
- Katarina Puco
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gro Live Fagereng
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Egil Støre Blix
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | | | - Åse Haug
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Irja Alida Oppedal
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Åsmund Flobak
- Department of Oncology, Trondheim University Hospital, Trondheim, Norway
| | | | - Line Bjørge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Jo-Åsmund Lund
- Clinic for Cancer Treatment and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | | | - Randi Hovland
- Department of Cancer Genomics, Haukeland University Hospital, Bergen, Norway
| | - Ragnhild S Falk
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Sigbjørn Smeland
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Hege Elisabeth Giercksky Russnes
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Kjetil Taskén
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Ferreira-Gonzalez A, Hocum B, Ko G, Shuvo S, Appukkuttan S, Babajanyan S. Next-Generation Sequencing Trends among Adult Patients with Select Advanced Tumor Types: A Real-World Evidence Evaluation. J Mol Diagn 2024; 26:292-303. [PMID: 38296192 DOI: 10.1016/j.jmoldx.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
There are limited data on the prevalence of next-generation sequencing (NGS) in the United States, especially in light of the increasing importance of identifying actionable oncogenic variants due to molecular biomarker-based therapy approvals. This retrospective study of adult patients with select metastatic solid tumors and central nervous system tumors from the Optum Clinformatics Data Mart US health care claims database (January 1, 2014, to June 30, 2021; N = 63,209) examined NGS use trends over time. A modest increase in NGS was observed across tumor types from 2015 (0.0% to 1.5%) to 2021 (2.1% to 17.4%). A similar increase in NGS rates was also observed across key periods; however, rates in the final key period remained <10% for patients with breast, colorectal, head and neck, soft tissue sarcoma, and thyroid cancers, as well as central nervous system tumors. The median time to NGS from diagnosis was shortest among patients with non-small-cell lung cancer and longest for patients with breast cancer. Predictors of NGS varied by tumor type; test rates for minorities in select tumor types appeared comparable to the White population. Despite improving payer policies to expand coverage of NGS and molecular biomarker-based therapy approvals, NGS rates remained low across tumor types. Given the potential for improved patient outcomes with molecular biomarker-based therapy, further efforts to improve NGS rates are warranted.
Collapse
Affiliation(s)
| | - Brian Hocum
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | - Gilbert Ko
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey.
| | - Sohul Shuvo
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | | |
Collapse
|
4
|
Dufresne A, Attignon V, Ferrari A, Tonon L, Boyault S, Tabone‐Eglinger S, Cassier P, Trédan O, Corradini N, Vinceneux A, Swalduz A, Viari A, Chabaud S, Pérol D, Blay JY, Saintigny P. Added value of whole-exome and RNA sequencing in advanced and refractory cancer patients with no molecular-based treatment recommendation based on a 90-gene panel. Cancer Med 2024; 13:e7115. [PMID: 38553950 PMCID: PMC10980928 DOI: 10.1002/cam4.7115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION The objective was to determine the added value of comprehensive molecular profile by whole-exome and RNA sequencing (WES/RNA-Seq) in advanced and refractory cancer patients who had no molecular-based treatment recommendation (MBTR) based on a more limited targeted gene panel (TGP) plus array-based comparative genomic hybridization (aCGH). MATERIALS AND METHODS In this retrospective analysis, we selected 50 patients previously included in the PROFILER trial (NCT01774409) for which no MBT could be recommended based on a targeted 90-gene panel and aCGH. For each patient, the frozen tumor sample mirroring the FFPE sample used for TGP/aCGH analysis were processed for WES and RNA-Seq. Data from TGP/aCGH were reanalyzed, and together with WES/RNA-Seq, findings were simultaneously discussed at a new molecular tumor board (MTB). RESULTS After exclusion of variants of unknown significance, a total of 167 somatic molecular alterations were identified in 50 patients (median: 3 [1-10]). Out of these 167 relevant molecular alterations, 51 (31%) were common to both TGP/aCGH and WES/RNA-Seq, 19 (11%) were identified by the TGP/aCGH only and 97 (58%) were identified by WES/RNA-Seq only, including two fusion transcripts in two patients. A MBTR was provided in 4/50 (8%) patients using the information from TGP/aCGH versus 9/50 (18%) patients using WES/RNA-Seq findings. Three patients had similar recommendations based on TGP/aCGH and WES/RNA-Seq. CONCLUSIONS In advanced and refractory cancer patients in whom no MBTR was recommended from TGP/aCGH, WES/RNA-Seq allowed to identify more alterations which may in turn, in a limited fraction of patients, lead to new MBTR.
Collapse
Affiliation(s)
| | | | - Anthony Ferrari
- Platform of Bioinformatics Gilles‐ThomasCentre Léon BérardLyonFrance
| | - Laurie Tonon
- Platform of Bioinformatics Gilles‐ThomasCentre Léon BérardLyonFrance
| | | | | | | | - Olivier Trédan
- Department of Medical OncologyCentre Léon BérardLyonFrance
| | - Nadège Corradini
- Department of Pediatric Oncology, Institute of Pediatric Hematology and OncologyCentre Leon BérardLyonFrance
| | | | | | - Alain Viari
- Platform of Bioinformatics Gilles‐ThomasCentre Léon BérardLyonFrance
| | - Sylvie Chabaud
- Department of Clinical ResearchCentre Léon BérardLyonFrance
| | - David Pérol
- Department of Clinical ResearchCentre Léon BérardLyonFrance
| | - Jean Yves Blay
- Department of Medical OncologyCentre Léon BérardLyonFrance
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon BérardCancer Research Center of LyonLyonFrance
| | - Pierre Saintigny
- Department of Medical OncologyCentre Léon BérardLyonFrance
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon BérardCancer Research Center of LyonLyonFrance
| |
Collapse
|
5
|
Harada K, Ono S. Background and clinical significance of biomarker-based patient enrichment in non-small-cell lung cancer drug development. Sci Rep 2024; 14:7194. [PMID: 38531888 DOI: 10.1038/s41598-024-57556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Pharmaceutical companies have adopted biomarker-based enrichment (personalized) strategies to improve research and development productivity. We explored the background in which personalized strategies are adopted and examined whether their adoption is linked to improved efficacy of new drugs approved for non-small cell lung cancer (NSCLC) by US Food and Drug Administration (FDA). We extracted data from the first labels of drugs approved for NSCLC between May 2003 and February 2021, and performed a qualitative comparative analysis and meta-analysis. Personalized strategies were adopted in more than half of the trials (16/27) and were often used in trials aimed at obtaining first-line indications and in drugs that were not first-in-class. The meta-analysis showed that personalized trials had significantly improved progression-free survival (PFS) hazard ratio (HR) than trials without personalization but not for relative response rate ratio (RRR) or overall survival (OS) HR. Trials in which PFS HR was the primary endpoint tended to have improved PFS HR, and trials in which OS HR was the primary endpoint had worse PFS HR. The efficacy endpoints that are substantially affected by personalized strategies appear to differ, especially for new drugs with novel mechanism of action (MOA), because trial designs are employed to validate drug-specific advantages.
Collapse
Affiliation(s)
- Kenji Harada
- Laboratory of Pharmaceutical Regulatory Science, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Shunsuke Ono
- Laboratory of Pharmaceutical Regulatory Science, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
de Castilla EMR, Mayrides M, González H, Vidangossy F, Corbeaux T, Ortiz N, Amaya C, Nuñez A, Jimbo DFJ, Ayensa A, Galindo M, Ruiz K, Pérez JM. Implementing precision oncology in Latin America to improve patient outcomes: the status quo and a call to action for key stakeholders and decision-makers. Ecancermedicalscience 2024; 18:1653. [PMID: 38425763 PMCID: PMC10901631 DOI: 10.3332/ecancer.2024.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 03/02/2024] Open
Abstract
Background The advent of precision oncology (PO) has revolutionised diagnostic and follow up strategies and improved clinical outcomes for cancer patients. However, socio-economic inequalities in the level of implementation of PO in different countries is a prevailing issue. To improve this situation, the Latin America Patients Academy has gathered the recommendations of healthcare professionals and social civil members experienced in cancer management from Mexico, Guatemala, Costa Rica, Dominican Republic, Panama, Colombia, Chile, Ecuador, Peru and Argentina regarding the areas that need to be prioritised to improve the access to PO in Latin American (LATAM) countries. Methods This manuscript is the culmination of a series of educational campaigns and panel discussion aimed at improving the implementations of PO in LATAM that took place from June 2021 to January 2022. The status of PO in Latin America the level of PO implementation is generally low with some exceptions. The number of clinical trials and articles published with keywords related to PO from LATAM countries is drastically lower than in Europe and the United States. Despite sharing many complex challenges, progress is taking place in some countries in the region. Focus areas defined by the expert panel The expert panel determined the areas of PO that should be improved by LATAM countries to improve its implementation through cancer care plans, educational programs and collaborative strategies. These initiatives should increase awareness about PO in the region and eventually improve cancer control in the region.
Collapse
Affiliation(s)
| | | | - Haydée González
- Linfomas Argentinas, Tucumán 731, Buenos Aires 1049, Argentina
| | | | | | - Nancy Ortiz
- Foro Nacional de Cancer Chile, Santiago 755000, Chile
| | - Claudia Amaya
- Fundacion SENOSama Bucaramanga, Santander 680002, Colombia
| | - Alexandra Nuñez
- Asociación Unidos Contra el Cáncer, San Jose 10103, Costa Rica
| | | | - Adela Ayensa
- Salvati, Calle Eugenia No 13 – 102, Col Nápoles, Benito Juarez, Ciudad de México 03810, México
| | - Mayra Galindo
- Asociación Mexicana de Lucha contra el Cáncer, Zacatecas No 24-4to piso, interior 404, Roma Nte, Cuauhtémoc, Ciudad de México 06700, México
| | - Karla Ruiz
- Calle Conde de la Monclova 363 of 306, San Isidro, Lima 15073, Peru
| | - Juan Manuel Pérez
- Fundación Un Amigo como Tu, Ave Correa y Cidrón Esq Abraham Lincoln, Edif Profesionales Unidos, Suite 303, Santo Domingo, DN, Santo Domingo 10102, Dominican Republic
| |
Collapse
|
7
|
Cui T, Corrales-Guerrero S, Castro-Aceituno V, Nair S, Maneval DC, Monnig C, Kearney P, Ellis S, Raheja N, Raheja N, Williams TM. JNTX-101, a novel albumin-encapsulated gemcitabine prodrug, is efficacious and operates via caveolin-1-mediated endocytosis. Mol Ther Oncolytics 2023; 30:181-192. [PMID: 37674628 PMCID: PMC10477748 DOI: 10.1016/j.omto.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Albumin is an attractive candidate carrier for the development of novel therapeutic drugs. Gemcitabine has been FDA approved for the treatment of solid tumors; however, new drugs that optimize gemcitabine delivery are not available for clinical use. The aim of this study was to test the efficacy of a novel albumin-encapsulated gemcitabine prodrug, JNTX-101, and investigate whether Cav-1 expression predicts the therapeutic efficacy of JNTX-101. We first determined the treatment efficacy of JNTX-101 in a panel of pancreatic/lung cancer cell lines and found that increases in Cav-1 expression resulted in higher uptake of albumin, while Cav-1 depletion attenuated the sensitivity of cells to JNTX-101. In addition, decreased Cav-1 expression markedly reduced JNTX-101-induced apoptotic cell death in a panel of cells, particularly in low-serum conditions. Furthermore, we tested the therapeutic efficacy of JNTX-101 in xenograft models and the role of Cav-1 in JNTX-101 sensitivity using a Tet-on-inducible tumor model in vivo. Our data suggest that JNTX-101 effectively inhibits cell viability and tumor growth, and that Cav-1 expression dictates optimal sensitivity to JNTX-101. These data indicate that Cav-1 correlates with JNTX-101 sensitivity, especially under nutrient-deprived conditions, and supports a role for Cav-1 as a predictive biomarker for albumin-encapsulated therapeutics such as JNTX-101.
Collapse
Affiliation(s)
- Tiantian Cui
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | - Sindhu Nair
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | - Sam Ellis
- January Therapeutics, San Diego, CA 92121, USA
| | | | - Neil Raheja
- January Therapeutics, San Diego, CA 92121, USA
| | - Terence M. Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Leroy K, Audigier Valette C, Alexandre J, Boussemart L, Chiesa J, Deldycke C, Gomez-Rocca C, Hollebecque A, Lehmann-Che J, Lemoine A, Mansard S, Medioni J, Monnet I, Mourah S, Pierret T, Spaëth D, Civet A, Galoin S, Italiano A. Retrospective analysis of real-world data to evaluate actionability of a comprehensive molecular profiling panel in solid tumor tissue samples (REALM study). PLoS One 2023; 18:e0291495. [PMID: 37708140 PMCID: PMC10501576 DOI: 10.1371/journal.pone.0291495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Considering the growing interest in matched cancer treatment, our aim was to evaluate the ability of a comprehensive genomic profiling (CGP) assay to propose at least one targeted therapy given an identified genomic alteration or signature (actionability), and to collect the treatment modifications based on the CGP test results in clinical practise for solid tumors. METHODS This retrospective, multicentre French study was conducted among 25 centres that participated in a free of charge program between 2017 and 2019 for a tissue CGP test. Data were collected on the patient, disease, tumor genomic profile, treatment suggested in the report (related to the genomic profile results) and subsequent therapeutic decisions according to the physician's declaration. RESULTS Among the 416 patients, most had lung cancer (35.6%), followed by biliary tract cancer (11.5%) or rare cancers (11.1%); 75% had a metastatic disease. The actionability was 75.0% (95% CI [70.6%-78.9%]) for all patients, 85.1% and 78.4%, respectively in lung cancer and metastatic patients. After exclusion of clinical trial suggestions, the actionability decreased to 62.3% (95% CI [57.5%-66.8%]). Treatment modification based on the test results was observed in 17.3% of the patients and was more frequent in metastatic disease (OR = 2.73, 95% CI [1.31-5.71], p = 0.007). The main reasons for no treatment modification were poor general condition (33.2%) and stable disease or remission (30.2%). The genomic-directed treatment changes were performed mostly during the first six months after the CGP test, and interestingly a substantial part was observed from six to 24 months after the genomic profiling. CONCLUSION This French study provides information on the real-life actionability of a CGP test based on tissue samples, and trends to confirm its utility in clinical practice across the course of the disease, in particularly for patients with lung cancer and/or advanced disease.
Collapse
Affiliation(s)
- Karen Leroy
- Université Paris Cité, Sorbonne Université, Inserm, Centre de Recherche des Cordeliers, Paris, France
- Département de Médecine Génomique des Tumeurs et Cancers, Service de Biochimie, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Jérôme Alexandre
- Université Paris Cité, Sorbonne Université, Inserm, Centre de Recherche des Cordeliers, Paris, France
- Service d’Oncologie, AP-HP, Hôpital Cochin, Paris, France
| | - Lise Boussemart
- Service de Dermatologie, CHU de Nantes—Hôtel Dieu, Nantes, France
| | - Jean Chiesa
- UF de Cytogénétique et Génétique Médicale, Hôpital Universitaire Carémeau, Nîmes, France
| | | | | | | | - Jacqueline Lehmann-Che
- Université Paris Cité, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Paris, France
- UF Oncologie Moléculaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Antoinette Lemoine
- Biochimie et Oncogénétique–Inserm UMRS 1193, Hôpital Paul Brousse, AP-HP, Paris, France
| | | | - Jacques Medioni
- Centre d’Essais Précoces en Cancérologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Isabelle Monnet
- Service de Pneumologie, Hôpital Intercommunal de Créteil, Créteil, France
| | - Samia Mourah
- Université Paris Cité, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Paris, France
- Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Dominique Spaëth
- Centre d’Oncologie de Gentilly, Institut Interrégional de Cancérologie, Nancy, France
| | - Alexandre Civet
- Centre de Données Médicales, Roche S.A.S, Boulogne-Billancourt, France
| | - Sandrine Galoin
- Affaires Médicales, Roche S.A.S, Boulogne-Billancourt, France
| | - Antoine Italiano
- Unité d’études de Phases Précoces, Institut Bergonié, Bordeaux, France
| |
Collapse
|
9
|
Dietz MV, van Kooten JP, Paats MS, Aerts JGVJ, Verhoef C, Madsen EVE, Dubbink HJ, von der Thüsen JH. Molecular alterations and potential actionable mutations in peritoneal mesothelioma: a scoping review of high-throughput sequencing studies. ESMO Open 2023; 8:101600. [PMID: 37453150 PMCID: PMC10368826 DOI: 10.1016/j.esmoop.2023.101600] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Peritoneal mesothelioma (PeM) is a rare malignancy with a poor prognosis. Currently there is a lack of effective systemic therapies. Due to the rarity of PeM, it is challenging to study new treatment options. Off-label use of targeted drugs could be an effective approach. This scoping review aims to explore the genomic landscape of PeM to identify potential therapeutic targets. MATERIALS AND METHODS A systematic literature search of Embase, Medline, Web of Science, the Cochrane Library, and Google Scholar was carried out up to 1 November 2022. Studies that reported on molecular alterations in PeM detected by high-throughput sequencing techniques were included. Genes that were altered in ≥1% of PeMs were selected for the identification of potential targeted therapies. RESULTS Thirteen articles were included, comprising 824 PeM patients. In total, 142 genes were altered in ≥1% of patients, of which 7 genes were altered in ≥10%. BAP1 was the most commonly altered gene (50%). Other commonly altered genes were NF2 (25%), CDKN2A (23%), CDKN2B (17%), PBRM1 (15%), TP53 (14%), and SETD2 (13%). In total, 17% of PeM patients were carriers of a germline mutation, mainly in BAP1 (7%). CONCLUSIONS This scoping review provides an overview of the mutational landscape of PeM. Germline mutations might be a larger contributor to the incidence of PeM than previously thought. Currently available targeted therapy options are limited, but several targeted agents [such as poly (ADP-ribose) polymerase (PARP), enhancer of zeste homolog 2 (EZH2), and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors] were identified that might provide new targeted therapy options in the future.
Collapse
Affiliation(s)
| | | | - M S Paats
- Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam
| | - J G V J Aerts
- Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam
| | | | | | - H J Dubbink
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
10
|
Lam TC, Cho WCS, Au JSK, Ma ESK, Lam STS, Loong HHF, Wong JWH, Wong SM, Lee VHF, Leung RCY, Lau JKS, Kam MTY, Mok FST, Lim FMY, Nyaw JSF, Tin WWY, Cheung KM, Chan OSH, Kwong PWK, Cheung FY, Poon DM, Chik JYK, Lam MHC, Chan LWC, Wong SCC, Cao YB, Hui CV, Chen JZJ, Chang JH, Kong SFM, El Helali A. Consensus Statements on Precision Oncology in the China Greater Bay Area. JCO Precis Oncol 2023; 7:e2200649. [PMID: 37315266 PMCID: PMC10309548 DOI: 10.1200/po.22.00649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Next-generation sequencing comprehensive genomic panels (NGS CGPs) have enabled the delivery of tailor-made therapeutic approaches to improve survival outcomes in patients with cancer. Within the China Greater Bay Area (GBA), territorial differences in clinical practices and health care systems and strengthening collaboration warrant a regional consensus to consolidate the development and integration of precision oncology (PO). Therefore, the Precision Oncology Working Group (POWG) formulated standardized principles for the clinical application of molecular profiling, interpretation of genomic alterations, and alignment of actionable mutations with sequence-directed therapy to deliver clinical services of excellence and evidence-based care to patients with cancer in the China GBA. METHODS Thirty experts used a modified Delphi method. The evidence extracted to support the statements was graded according to the GRADE system and reported according to the Revised Standards for Quality Improvement Reporting Excellence guidelines, version 2.0. RESULTS The POWG reached consensus in six key statements: harmonization of reporting and quality assurance of NGS; molecular tumor board and clinical decision support systems for PO; education and training; research and real-world data collection, patient engagement, regulations, and financial reimbursement of PO treatment strategies; and clinical recommendations and implementation of PO in clinical practice. CONCLUSION POWG consensus statements standardize the clinical application of NGS CGPs, streamline the interpretation of clinically significant genomic alterations, and align actionable mutations with sequence-directed therapies. The POWG consensus statements may harmonize the utility and delivery of PO in China's GBA.
Collapse
Affiliation(s)
- Tai-Chung Lam
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Joseph Siu-Kie Au
- Adventist Oncology Centre, Hong Kong Adventist Hospital, Hong Kong SAR, China
| | - Edmond Shiu-Kwan Ma
- Clinical and Molecular Pathology and Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Stephen Tak-Sum Lam
- Clinical Genetic Service Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Herbert Ho-Fung Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - S.N. Michael Wong
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | - Michael Tsz-Yeung Kam
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | | | - Fiona Mei-Ying Lim
- Department of Clinical Oncology, Princess Margaret Hospital, Hong Kong SAR, China
| | | | | | - Ka-Man Cheung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | | | | | - Foon-Yiu Cheung
- Hong Kong International Oncology Centre, Hong Kong SAR, China
| | - Darren M.C. Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | | | | | - Lawrence Wing-Chi Chan
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sze-Chuen Cesar Wong
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ya-Bing Cao
- Department of Radiology & Oncology, Kiang Wu Hospital, Macao SAR, China
| | - Cheng-Vai Hui
- Department of Clinical Oncology, Centro Hospitalar Conde de São Januário, Macao SAR, China
| | - Jack Zhi-Jian Chen
- Department of Radiation Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Jian-Hua Chang
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Spring Feng-Ming Kong
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aya El Helali
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Foster KI, Shaw KRM, Jin J, Westin SN, Yap TA, Glassman DM, Jazaeri AA, Rauh-Hain JA, Lee S, Fellman BM, Ju Z, Liu Y, Fleming ND, Sood AK. Clinical implications of tumor-based next-generation sequencing in high-grade epithelial ovarian cancer. Cancer 2023; 129:1672-1680. [PMID: 36930815 DOI: 10.1002/cncr.34724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Tumor-based next-generation sequencing is used inconsistently as a tool to tailor treatment of ovarian cancer, yet beyond detection of somatic BRCA1 and BRCA2 mutations, the clinical benefit is not well established. This study aimed to assess the clinical relevance of tumor-based next-generation sequencing (tbNGS) in patients with ovarian cancer. METHODS This retrospective study included patients with high-grade epithelial ovarian carcinoma. tbNGS results were identified in the electronic medical record using optical character recognition and natural language processing. Genetic, clinical, and demographic information was collected. Progression-free survival (PFS) and overall survival were calculated and compared using log-rank tests. Multivariate Cox regression and clustering analyses were used to identify patterns of genetic alterations associated with survival. RESULTS Of 1092 patients in the described population, 409 (37.5%) had tbNGS results. Nearly all (96.1% [393/409]) had one or more genetic alterations. In 25.9% (106/409) of patients, an alteration that aligned with a targeted treatment was identified, and in an additional 48.7% (199/409), tbNGS results suggested eligibility for an investigational agent or clinical trial. The most frequent alterations were TP53, PIK3CA, and NF1 mutations, and CCNE1 amplification. Together, BRCA1 and BRCA2 mutations were associated with longer PFS (hazard ratio [HR], 0.62; 95% confidence interval [CI], 0.42-0.92; p = .02), whereas AKT2 amplification was associated with shorter PFS (HR, 3.86; 95% CI, 1.002-14.88; p < .05). Multivariate Cox regression and clustering analyses identified several combinations of genetic alterations that corresponded to outcomes in patients with high-grade serous carcinoma. CONCLUSIONS tbNGS often yields clinically relevant information. Detailed analysis of population-level tumor genomics may help to identify therapeutic targets and guide development of clinical decision support tools. PLAIN LANGUAGE SUMMARY Although more and more patients with ovarian cancer are undergoing tumor-based next-generation sequencing to identify genetic mutations in their tumors, the benefits of such testing are not well established. In a group of over 400 patients with ovarian cancer who underwent tumor-based next-generation sequencing in the course of their treatment, nearly all patients had one or more genetic alterations detected, and one out of four patients had a mutation that qualified them for a personalized treatment option.
Collapse
Affiliation(s)
| | - Kenna R M Shaw
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeff Jin
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shannon N Westin
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy A Yap
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Deanna M Glassman
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amir A Jazaeri
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jose A Rauh-Hain
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanghoon Lee
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bryan M Fellman
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhenlin Ju
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuexin Liu
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicole D Fleming
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K Sood
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
12
|
Lavacchi D, Fancelli S, Buttitta E, Vannini G, Guidolin A, Winchler C, Caliman E, Vannini A, Giommoni E, Brugia M, Cianchi F, Pillozzi S, Roviello G, Antonuzzo L. Perioperative Tailored Treatments for Gastric Cancer: Times Are Changing. Int J Mol Sci 2023; 24:4877. [PMID: 36902306 PMCID: PMC10003389 DOI: 10.3390/ijms24054877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Resectable gastric or gastroesophageal (G/GEJ) cancer is a heterogeneous disease with no defined molecularly based treatment strategy. Unfortunately, nearly half of patients experience disease recurrence despite standard treatments (neoadjuvant and/or adjuvant chemotherapy/chemoradiotherapy and surgery). In this review, we summarize the evidence of potential tailored approaches in perioperative treatment of G/GEJ cancer, with a special focus on patients with human epidermal growth factor receptor-2(HER2)-positive and microsatellite instability-high (MSI-H) tumors. In patients with resectable MSI-H G/GEJ adenocarcinoma, the ongoing INFINITY trial introduces the concept of non-operative management for patients with complete clinical-pathological-molecular response, and this could be a novel and potential practice changing strategy. Other pathways involving vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), claudin18 isoform 2 (CLDN18.2), and DNA damage repair proteins are also described, with limited evidence until now. Although tailored therapy appears to be a promising strategy for resectable G/GEJ cancer, there are several methodological issues to address: inadequate sample size for pivotal trials, underestimation of subgroup effects, and choice of primary endpoint (tumor-centered vs. patient-centered endpoints). A better optimization of G/GEJ cancer treatment allows maximizing patient outcomes. In the perioperative phase, although caution is mandatory, times are changing and tailored strategies could introduce new treatment concepts. Overall, MSI-H G/GEJ cancer patients possess the characteristics to be the subgroup that could receive the most benefit from a tailored approach.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Sara Fancelli
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Eleonora Buttitta
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Gianmarco Vannini
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Alessia Guidolin
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Costanza Winchler
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Agnese Vannini
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Elisa Giommoni
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Digestive Surgery, Careggi University Hospital, 50134 Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | | | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
13
|
Tsai YL, Chang CJ. Budget Impact Analysis of Comprehensive Genomic Profiling in Advanced Non-Small Cell Lung Cancer in Taiwan. Value Health Reg Issues 2023; 35:48-56. [PMID: 36863067 DOI: 10.1016/j.vhri.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 03/04/2023]
Abstract
OBJECTIVES The concept of precision oncology using genetic testing has become popular for cancer treatment in recent years. This research aimed to evaluate the financial impact of comprehensive genomic profiling (CGP) in patients with advanced non-small cell lung cancer before receiving any systemic treatments, compared with current practice using single-gene testing, in the hope that the findings can inform the National Health Insurance Administration the decision regarding CGP reimbursement. METHODS A budget impact analysis model was developed comparing the sum of gene testing costs, the first-line and subsequent systemic treatment costs, and other medical costs between the current practice of traditional molecular testing and the new test strategy of CGP. The evaluation time horizon is 5 years from the perspective of the National Health Insurance Administration. Outcome endpoints were incremental budget impact and life-year gained. RESULTS This research indicated CGP reimbursement would benefit 1072 to 1318 more patients receiving target therapies than the current practice and consequently had incremental 232 to 1844 life-years gained from 2022 to 2026. The new test strategy also led to higher gene testing cost and systemic treatment cost. Nevertheless, less medical resource utilization and better patient outcome were demonstrated. The incremental budget impact ranged from US dollar 19 to US dollar 27 million in the 5-year period. CONCLUSION This research shows that CGP could pave the way for personalized healthcare with moderate increase of National Health Insurance budget.
Collapse
Affiliation(s)
- Yi-Ling Tsai
- Department of Biomedical Science, Chang Gung University, TaoYuan, Taiwan; Roche Product, Inc, Taipei, Taiwan
| | - Chee Jen Chang
- Department of Biomedical Science, Chang Gung University, TaoYuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, TaoYuan, Taiwan; Research Services Center for Health Information, Chang Gung University, TaoYuan, Taiwan; Clinical Informatics and Medical Statistics Research Center, Chang Gung University, TaoYuan, Taiwan; Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital. TaoYuan, Taiwan.
| |
Collapse
|
14
|
Hu H, Pan Q, Shen J, Yao J, Fu G, Tian F, Yan N, Han W. The diagnosis and treatment for a patient with cancer of unknown primary: A case report. Front Genet 2023; 14:1085549. [PMID: 36741314 PMCID: PMC9894331 DOI: 10.3389/fgene.2023.1085549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Cancer of unknown primary (CUP) is a class of metastatic malignant tumors whose primary location cannot be determined. The diagnosis and treatment of CUP are a considerable challenge for clinicians. Herein, we report a CUP case whose corresponding primary tumor sites were successfully identified, and the patient received proper treatment. Case report: In February 2022, a 74-year-old woman was admitted to the Medical Oncology Department at Sir Run Run Shaw Hospital for new lung and intestinal tumors after more than 9 years of breast cancer surgery. After laparoscopically assisted right hemicolectomy, pathology revealed mucinous adenocarcinoma; the pathological stage was pT2N0M0. Results from needle biopsies of lung masses suggested poorly differentiated cancer, ER (-), PR (-), and HER2 (-), which combined with the clinical history, did not rule out metastatic breast cancer. A surgical pathology sample was needed to determine the origin of the tumor tissue, but the patient's chest structure showed no indications for surgery. Analysis of the tumor's traceable gene expression profile prompted breast cancer, and analysis of next-generation amplification sequencing (NGS) did not obtain a potential drug target. We developed a treatment plan based on comprehensive immunohistochemistry, a gene expression profile, and NGS analysis. The treatment plan was formulated using paclitaxel albumin and capecitabine in combination with radiotherapy. The efficacy evaluation was the partial response (PR) after four cycles of chemotherapy and two cycles combined with radiotherapy. Conclusion: This case highlighted the importance of identifying accurate primary tumor location for patients to benefit from treatment, which will provide a reference for the treatment decisions of CUP tumors in the future.
Collapse
Affiliation(s)
- Hong Hu
- Department of Medical Oncology, Qiantang Campus of Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengjuan Tian
- Department of Radiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Na Yan
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Weidong Han, hanwd@ zju.edu.cn
| |
Collapse
|
15
|
Patterson-Fortin J, D'Andrea AD. Targeting Polymerase Theta (POLθ) for Cancer Therapy. Cancer Treat Res 2023; 186:285-298. [PMID: 37978141 DOI: 10.1007/978-3-031-30065-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polymerase theta (POLθ) is the critical multi-domain enzyme in microhomology-mediated end-joining DNA double-stranded break repair. POLθ is expressed at low levels in normal tissue but is often overexpressed in cancers, especially in DNA repair deficient cancers, such as homologous-recombination cancers, rendering them exquisitely sensitive to POLθ inhibition secondary to synthetic lethality. Development of POLθ inhibitors is an active area of investigation with inhibitors of the N-terminal helicase domain or the C-terminal polymerase domain currently in clinical trial. Here, we review POLθ-mediated microhomology-mediated end-joining, the development of POLθ inhibitors, and the potential clinical uses of POLθ inhibitors.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Center for DNA Damage and Repair, Susan F. Smith Center for Women's Cancers (SFSCWC), The Fuller-American Cancer Society, Dana-Farber Cancer Institute, HIM 243, 450 Brookline Ave., Boston, MA, 02215, USA.
| |
Collapse
|
16
|
Brown BL, Mitra-Majumdar M, Joyce K, Ross M, Pham C, Darrow JJ, Avorn J, Kesselheim AS. Trends in the Quality of Evidence Supporting FDA Drug Approvals: Results from a Literature Review. JOURNAL OF HEALTH POLITICS, POLICY AND LAW 2022; 47:649-672. [PMID: 35867548 DOI: 10.1215/03616878-10041093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CONTEXT New drug approvals in the United States must be supported by substantial evidence from "adequate and well-controlled" trials. The Food and Drug Administration (FDA) has flexibility in how it applies this standard. METHODS The authors conducted a systematic literature review of studies evaluating the design and outcomes of the key trials supporting new drug approvals in the United States. They extracted data on the trial characteristics, endpoint types, and expedited regulatory pathways. FINDINGS Among 48 publications eligible for inclusion, 30 covered trial characteristics, 23 covered surrogate measures, and 30 covered regulatory pathways. Trends point toward less frequent randomization, double-blinding, and active controls, with variation by drug type and indication. Surrogate measures are becoming more common but are not consistently well correlated with clinical outcomes. Drugs approved through expedited regulatory pathways often have less rigorous trial design characteristics. CONCLUSIONS The characteristics of trials used to approve new drugs have evolved over the past two decades along with greater use of expedited regulatory pathways and changes in the nature of drugs being evaluated. While flexibility in regulatory standards is important, policy changes can emphasize high-quality data collection before or after FDA approval.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jerry Avorn
- Brigham and Women's Hospital / Harvard Medical School
| | | |
Collapse
|
17
|
Targeting the untargetable: RB1-deficient tumours are vulnerable to Skp2 ubiquitin ligase inhibition. Br J Cancer 2022; 127:969-975. [PMID: 35752713 PMCID: PMC9470583 DOI: 10.1038/s41416-022-01898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
Proteins that regulate the cell cycle are accumulated and degraded in a coordinated manner during the transition from one cell cycle phase to the next. The rapid loss of a critical protein, for example, to allow the cell to move from G1/G0 to S phase, is often regulated by its ubiquitination and subsequent proteasomal degradation. Protein ubiquitination is mediated by a series of three ligases, of which the E3 ligases provide the specificity for a particular protein substrate. One such E3 ligase is SCFSkp1/Cks1, which has a substrate recruiting subunit called S-phase kinase-associated protein 2 (Skp2). Skp2 regulates cell proliferation, apoptosis, and differentiation, can act as an oncogene, and is overexpressed in human cancer. A primary target of Skp2 is the cyclin-dependent kinase inhibitor p27 (CDKN1b) that regulates the cell cycle at several points. The RB1 tumour suppressor gene regulates Skp2 activity by two mechanisms: by controlling its mRNA expression, and by an effect on Skp2's enzymatic activity. For the latter, the RB1 protein (pRb) directly binds to the substrate-binding site on Skp2, preventing protein substrates from being ubiquitinated and degraded. Inactivating mutations in RB1 are common in human cancer, becoming more frequent in aggressive, metastatic, and drug-resistant tumours. Hence, RB1 mutation leads to the loss of pRb, an unrestrained increase in Skp2 activity, the unregulated decrease in p27, and the loss of cell cycle control. Because RB1 mutations lead to the loss of a functional protein, its direct targeting is not possible. This perspective will discuss evidence validating Skp2 as a therapeutic target in RB1-deficient cancer.
Collapse
|
18
|
Fountzilas E, Tsimberidou AM, Vo HH, Kurzrock R. Clinical trial design in the era of precision medicine. Genome Med 2022; 14:101. [PMID: 36045401 PMCID: PMC9428375 DOI: 10.1186/s13073-022-01102-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Recent rapid biotechnological breakthroughs have led to the identification of complex and unique molecular features that drive malignancies. Precision medicine has exploited next-generation sequencing and matched targeted therapy/immunotherapy deployment to successfully transform the outlook for several fatal cancers. Tumor and liquid biopsy genomic profiling and transcriptomic, immunomic, and proteomic interrogation can now all be leveraged to optimize therapy. Multiple new trial designs, including basket and umbrella trials, master platform trials, and N-of-1 patient-centric studies, are beginning to supplant standard phase I, II, and III protocols, allowing for accelerated drug evaluation and approval and molecular-based individualized treatment. Furthermore, real-world data, as well as exploitation of digital apps and structured observational registries, and the utilization of machine learning and/or artificial intelligence, may further accelerate knowledge acquisition. Overall, clinical trials have evolved, shifting from tumor type-centered to gene-directed and histology-agnostic trials, with innovative adaptive designs and personalized combination treatment strategies tailored to individual biomarker profiles. Some, but not all, novel trials now demonstrate that matched therapy correlates with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To further improve the precision medicine paradigm, the strategy of matching drugs to patients based on molecular features should be implemented earlier in the disease course, and cancers should have comprehensive multi-omic (genomics, transcriptomics, proteomics, immunomic) tumor profiling. To overcome cancer complexity, moving from drug-centric to patient-centric individualized combination therapy is critical. This review focuses on the design, advantages, limitations, and challenges of a spectrum of clinical trial designs in the era of precision oncology.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Hospital, Thessaloniki, Greece
- European University Cyprus, Limassol, Cyprus
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
19
|
Miller RW, Hutchcraft ML, Weiss HL, Wu J, Wang C, Liu J, Jayswal R, Buchanan M, Anderson A, Allison DB, El Khouli RH, Patel RA, Villano JL, Arnold SM, Kolesar JM. Molecular Tumor Board-Assisted Care in an Advanced Cancer Population: Results of a Phase II Clinical Trial. JCO Precis Oncol 2022; 6:e2100524. [PMID: 36103643 PMCID: PMC9489195 DOI: 10.1200/po.21.00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/04/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Multidisciplinary molecular tumor boards (MTBs) interpret next-generation sequencing reports and help oncologists determine best therapeutic options; however, there is a paucity of data regarding their clinical utility. The purpose of this study was to determine if MTB-directed therapy improves progression-free survival (PFS) over immediately prior therapy in patients with advanced cancer. METHODS This single-arm, prospective phase II clinical trial enrolled patients with advanced cancer with an actionable mutation who received MTB-recommended targeted therapy between January 1, 2017, and October 31, 2020. MTB-recommended both on-label (level 1 evidence) and off-label (evidence levels 2 and 3) therapies. Of the 93 enrolled patients, 43 were treated frontline and 50 received second-line or greater-line therapy. The primary outcome was the probability of patients treated with second-line or greater-line MTB-directed therapy who achieved a PFS ratio ≥ 1.3 (PFS on MTB-directed therapy divided by PFS on the patient's immediately prior therapy). Secondary outcomes included PFS for patients treated frontline and overall survival and adverse effects for the entire study population. RESULTS The most common disease sites were lung (35 of 93, 38%), gynecologic (17 of 93, 18%), GI (16 of 93, 17%), and head and neck (7 of 93, 8%). The Kaplan-Meier estimate of the probability of PFS ratio ≥ 1.3 was 0.59 (95% CI, 0.47 to 0.75) for patients treated with second-line or greater-line MTB-directed therapy. The median PFS was 449 (range 42-1,125) days for patients treated frontline. The median overall survival was 768 (range 22-1,240) days. There were four nontreatment-related deaths. CONCLUSION When treated with MTB-directed therapy, most patients experienced improved PFS compared with immediately prior treatment. MTB-directed targeted therapy may be a strategy to improve outcomes for patients with advanced cancer.
Collapse
Affiliation(s)
- Rachel W. Miller
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, Lexington, KY
| | - Megan L. Hutchcraft
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, Lexington, KY
| | - Heidi L. Weiss
- Shared Resource Facility, University of Kentucky Markey Cancer Center, Lexington, KY
- Division of Cancer Biostatistics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - Jianrong Wu
- Division of Cancer Biostatistics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - Chi Wang
- Shared Resource Facility, University of Kentucky Markey Cancer Center, Lexington, KY
- Division of Cancer Biostatistics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - Jinpeng Liu
- Shared Resource Facility, University of Kentucky Markey Cancer Center, Lexington, KY
| | - Rani Jayswal
- Shared Resource Facility, University of Kentucky Markey Cancer Center, Lexington, KY
- Division of Cancer Biostatistics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - Mikayla Buchanan
- Division of Precision Medicine, University of Kentucky Markey Cancer Center, Lexington, KY
| | - Abigail Anderson
- Division of Precision Medicine, University of Kentucky Markey Cancer Center, Lexington, KY
| | - Derek B. Allison
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | | | - Reema A. Patel
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Cancer Center, Lexington, KY
| | - John L. Villano
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Cancer Center, Lexington, KY
| | - Susanne M. Arnold
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Cancer Center, Lexington, KY
| | - Jill M. Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, Lexington, KY
- Division of Precision Medicine, University of Kentucky Markey Cancer Center, Lexington, KY
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY
| |
Collapse
|
20
|
Čerina D, Matković V, Katić K, Lovasić IB, Šeparović R, Canjko I, Bajić Ž, Vrdoljak E. Comprehensive Genomic Profiling in the Management of Ovarian Cancer—National Results from Croatia. J Pers Med 2022; 12:jpm12071176. [PMID: 35887672 PMCID: PMC9322425 DOI: 10.3390/jpm12071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022] Open
Abstract
Today, in the era of precision medicine, the determination of genomic instability or other potentially targetable mutations, along with BRCA 1 and BRCA 2, is a crucial component of the diagnosis and treatment management of advanced ovarian cancer. Advanced technologies such as next-generation sequencing (NGS) have enabled comprehensive genomic profiling (CGP) analysis to become more feasible for routine use in daily clinical work. Here, we present the results for the first two years of an analysis of patients with advanced ovarian cancer on a national level. The aim was to establish the position of CGP in the daily clinical practice of treating ovarian cancer. We performed a multicenter, retrospective, cross-sectional analysis on the total population of Croatian patients who were newly diagnosed with locally advanced or metastatic ovarian cancer or whose initial disease had progressed from 1 January 2020 to 1 December 2021, and whose tumors underwent CGP analysis. All 86 patients (100%) analyzed with CGP had at least one genomic alteration (GA). The median LOH was 14.6 (IQR 6.8–21.7), with 35 patients (41%) having an LOH ≥ 16. We found BRCA-positive status in 22 patients (26%). Conventional testing, which detects only BRCA mutations, would have opted for therapy with PARP inhibitors in 22 (26%) of our patients. However, CGP revealed the need for PARP inhibitors in 35 patients (41%). The results identified a significantly higher number of women who would achieve a possible benefit from targeted therapy. Hence, we believe that CGP should be a backbone diagnostic tool in the management of ovarian cancer.
Collapse
Affiliation(s)
- Dora Čerina
- Department of Oncology, University Hospital Center Split, School of Medicine, University of Split, 21 000 Split, Croatia;
| | - Višnja Matković
- Department of Gynecologic Oncology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (V.M.); (K.K.)
| | - Kristina Katić
- Department of Gynecologic Oncology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (V.M.); (K.K.)
| | - Ingrid Belac Lovasić
- Department of Radiotherapy and Oncology, University Hospital Center Rijeka, 51 000 Rijeka, Croatia;
| | - Robert Šeparović
- Department of Medical Oncology, Division of Medical Oncology, University Hospital for Tumors, Sestre Milosrdnice University Hospital Center, 10 000 Zagreb, Croatia;
| | - Ivana Canjko
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31 000 Osijek, Croatia;
| | - Žarko Bajić
- Research Unit “Dr. Mirko Grmek”, University Psychiatric Hospital “Sveti Ivan”, Jankomir 11, 10 000 Zagreb, Croatia;
| | - Eduard Vrdoljak
- Department of Oncology, University Hospital Center Split, School of Medicine, University of Split, 21 000 Split, Croatia;
- Correspondence:
| |
Collapse
|
21
|
Personalised selection of experimental treatment in patients with advanced solid cancer is feasible using whole-genome sequencing. Br J Cancer 2022; 127:776-783. [PMID: 35606463 PMCID: PMC9381598 DOI: 10.1038/s41416-022-01841-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biomarker-guided therapy in an experimental setting has been suggested to improve patient outcomes. However, trial-specific pre-screening tests are time and tissue consuming and complicate the personalised treatment of patients eligible for early-phase clinical trials. In this study the feasibility of whole-genome sequencing (WGS) as a one-test-for-all for guided inclusion in early-phase trials was investigated. METHODS Phase I Molecular Tumor Board (MTB) at the Erasmus MC Cancer Institute reviewed patients with advanced cancer without standard-of-care treatment (SOC) options for a 'fresh-frozen' (FF) tumour biopsy for WGS based on clinical-pathological features. Clinical grade WGS was performed by Hartwig Medical Foundation. MTB matched the patient with a trial, if available. RESULTS From September 2019-March 2021, 31 patients with highly diverse tumour types underwent a tumour biopsy for WGS. The median turnaround time (TAT) was 15 days [10-42 days]. At least one actionable event was found in 84% of the patients (26/31). One-third of the patients (11/31) received matched experimental treatment. CONCLUSIONS WGS on fresh FF biopsies is a feasible tool for the selection of personalised experimental therapy in patients with advanced cancer without SOC options. WGS is now possible in an acceptable TAT and thus could fulfil the role of a universal genomic pre-screening test.
Collapse
|
22
|
Helland Å, Russnes HG, Fagereng GL, Al-Shibli K, Andersson Y, Berg T, Bjørge L, Blix E, Bjerkehagen B, Brabrand S, Cameron MG, Dalhaug A, Dietzel D, Dønnem T, Enerly E, Flobak Å, Fluge S, Gilje B, Gjertsen BT, Grønberg BH, Grønås K, Guren T, Hamre H, Haug Å, Heinrich D, Hjortland GO, Hovig E, Hovland R, Iversen AC, Janssen E, Kyte JA, von der Lippe Gythfeldt H, Lothe R, Lund JÅ, Meza-Zepeda L, Munthe-Kaas MC, Nguyen OTD, Niehusmann P, NilsenPuco HK, Ree AH, Riste TB, Semb K, Steinskog ESS, Stensvold A, Suhrke P, Tennøe Ø, Tjønnfjord GE, Vassbotn LJ, Aas E, Aasebø K, Tasken K, Smeland S. Improving public cancer care by implementing precision medicine in Norway: IMPRESS-Norway. J Transl Med 2022; 20:225. [PMID: 35568909 PMCID: PMC9107632 DOI: 10.1186/s12967-022-03432-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. Methods In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient’s tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like ‘admissible’ monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. Discussion Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public–private collaboration to establish a national infrastructure for precision oncology. Trial registrations EudraCT: 2020-004414-35, registered 02/19/2021; ClinicalTrial.gov: NCT04817956, registered 03/26/2021.
Collapse
Affiliation(s)
- Åslaug Helland
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hege G Russnes
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Gro Live Fagereng
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Thomas Berg
- Department of Pathology, University Hospital in North of Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Line Bjørge
- Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Egil Blix
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Oncology, University Hospital in North of Norway, Tromsø, Norway
| | - Bodil Bjerkehagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Sigmund Brabrand
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Astrid Dalhaug
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Oncology and Palliative Medicine, Nordland Hospital Trust, Bodø, Norway
| | | | - Tom Dønnem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Oncology, University Hospital in North of Norway, Tromsø, Norway
| | - Espen Enerly
- Department of Research, The Cancer Registry of Norway, Oslo, Norway
| | - Åsmund Flobak
- Department of Oncology, The Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | - Bjørn Tore Gjertsen
- Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørn Henning Grønberg
- Department of Oncology, The Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kari Grønås
- Patient Representative, Oslo University Hospital, Oslo, Norway
| | - Tormod Guren
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Hanne Hamre
- Akershus University Hospital, Lørenskog, Norway
| | - Åse Haug
- Haukeland University Hospital, Bergen, Norway
| | | | - Geir Olav Hjortland
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Centre of Bioinformatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Randi Hovland
- Head of Section for Cancergenomics Section for Cancer Genomics, Haukeland University Hospital, Bergen, Norway
| | | | - Emiel Janssen
- Section for Cancergenomics, Department of Pathology, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Jon Amund Kyte
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Ragnhild Lothe
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jo-Åsmund Lund
- Dept of Oncology, Helse Møre and Romsdal Health Trust, Ålesund, Norway.,Dept of Health Sciences, NTNU, Ålesund, Norway
| | - Leonardo Meza-Zepeda
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Hilde Katarina NilsenPuco
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Oncology, Haematology and Palliative Care, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | | | - Karin Semb
- Department of Oncology, Vestfold Hospital Trust, Tønsberg, Norway
| | | | | | - Pål Suhrke
- Department of Pathology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Øyvind Tennøe
- Department of Oncology, Kalnes Hospital, Grålum, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Tønsberg, Norway
| | | | - Eline Aas
- Institute of Health and Society, Department of Health Management and Health Economics, University of Oslo, Oslo, Norway.,Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Kjetil Tasken
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sigbjørn Smeland
- Institute for Cancer Research/Department of Oncology /Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Taskén K, Russnes HEG, Aas E, Bjørge L, Blix ES, Enerly E, Fagereng GL, Flobak Å, Gilje B, Gjertsen BT, Guren TK, Heix J, Hovig E, Hovland R, Lønning PE, Meza-Zepeda LA, Mæhle PM, Nilsen HL, Thoresen SØ, Widerberg K, Smeland S, Helland Å. A national precision cancer medicine implementation initiative for Norway. Nat Med 2022; 28:885-887. [PMID: 35513529 DOI: 10.1038/s41591-022-01777-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hege E G Russnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eline Aas
- Department of Health Management and Health Economics, Institute of Health and Society, University of Oslo, Oslo, Norway.,Division of Health Services, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Egil S Blix
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway.,Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - Espen Enerly
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Gro L Fagereng
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Åsmund Flobak
- The Cancer Clinic, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørnar Gilje
- Department of Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Bjørn T Gjertsen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Haematology Section, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tormod K Guren
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Jutta Heix
- CONNECT Public-Private Partnership, Oslo Cancer Cluster SA, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Randi Hovland
- Section for Cancer Genomics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Per E Lønning
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Per M Mæhle
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Hilde L Nilsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Steinar Ø Thoresen
- CONNECT Public-Private Partnership, Oslo Cancer Cluster SA, Oslo, Norway.,Merck AB NUF, Oslo, Norway
| | - Ketil Widerberg
- CONNECT Public-Private Partnership, Oslo Cancer Cluster SA, Oslo, Norway
| | - Sigbjørn Smeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Milbury CA, Creeden J, Yip WK, Smith DL, Pattani V, Maxwell K, Sawchyn B, Gjoerup O, Meng W, Skoletsky J, Concepcion AD, Tang Y, Bai X, Dewal N, Ma P, Bailey ST, Thornton J, Pavlick DC, Frampton GM, Lieber D, White J, Burns C, Vietz C. Clinical and analytical validation of FoundationOne®CDx, a comprehensive genomic profiling assay for solid tumors. PLoS One 2022; 17:e0264138. [PMID: 35294956 PMCID: PMC8926248 DOI: 10.1371/journal.pone.0264138] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
FoundationOne®CDx (F1CDx) is a United States (US) Food and Drug Administration (FDA)-approved companion diagnostic test to identify patients who may benefit from treatment in accordance with the approved therapeutic product labeling for 28 drug therapies. F1CDx utilizes next-generation sequencing (NGS)-based comprehensive genomic profiling (CGP) technology to examine 324 cancer genes in solid tumors. F1CDx reports known and likely pathogenic short variants (SVs), copy number alterations (CNAs), and select rearrangements, as well as complex biomarkers including tumor mutational burden (TMB) and microsatellite instability (MSI), in addition to genomic loss of heterozygosity (gLOH) in ovarian cancer. CGP services can reduce the complexity of biomarker testing, enabling precision medicine to improve treatment decision-making and outcomes for cancer patients, but only if test results are reliable, accurate, and validated clinically and analytically to the highest standard available. The analyses presented herein demonstrate the extensive analytical and clinical validation supporting the F1CDx initial and subsequent FDA approvals to ensure high sensitivity, specificity, and reliability of the data reported. The analytical validation included several in-depth evaluations of F1CDx assay performance including limit of detection (LoD), limit of blank (LoB), precision, and orthogonal concordance for SVs (including base substitutions [SUBs] and insertions/deletions [INDELs]), CNAs (including amplifications and homozygous deletions), genomic rearrangements, and select complex biomarkers. The assay validation of >30,000 test results comprises a considerable and increasing body of evidence that supports the clinical utility of F1CDx to match patients with solid tumors to targeted therapies or immunotherapies based on their tumor's genomic alterations and biomarkers. F1CDx meets the clinical needs of providers and patients to receive guideline-based biomarker testing, helping them keep pace with a rapidly evolving field of medicine.
Collapse
Affiliation(s)
- Coren A. Milbury
- Department Product Development, Cambridge, MA, United States of America
| | - James Creeden
- Global Medical Affairs, Basel, MA, United States of America
| | - Wai-Ki Yip
- Department Product Development, Cambridge, MA, United States of America
| | - David L. Smith
- Department of Franchise Development, Cambridge, MA, United States of America
| | - Varun Pattani
- Department Product Development, Cambridge, MA, United States of America
| | - Kristi Maxwell
- Department of Health Economic and Outcomes Research & Payer Policy, Reimbursement, Cambridge, MA, United States of America
| | - Bethany Sawchyn
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Ole Gjoerup
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Wei Meng
- Department Product Development, Cambridge, MA, United States of America
| | - Joel Skoletsky
- Department Product Development, Cambridge, MA, United States of America
| | | | - Yanhua Tang
- Department Product Development, Cambridge, MA, United States of America
| | - Xiaobo Bai
- Department Product Development, Cambridge, MA, United States of America
| | - Ninad Dewal
- Department Product Development, Cambridge, MA, United States of America
| | - Pei Ma
- Department Product Development, Cambridge, MA, United States of America
| | - Shannon T. Bailey
- Department Product Development, Cambridge, MA, United States of America
| | - James Thornton
- Department Product Development, Cambridge, MA, United States of America
| | - Dean C. Pavlick
- Department of Cancer Genomics, Cambridge, MA, United States of America
| | | | - Daniel Lieber
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Jared White
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Christine Burns
- Department Product Development, Cambridge, MA, United States of America
| | - Christine Vietz
- Department Product Development, Cambridge, MA, United States of America
| |
Collapse
|
25
|
Szeto C, Kurzrock R, Kato S, Goloubev A, Veerapaneni S, Preble A, Reddy S, Adashek J. Association of differential expression of immunoregulatory molecules and presence of targetable mutations may inform rational design of clinical trials. ESMO Open 2022; 7:100396. [PMID: 35158206 PMCID: PMC8850727 DOI: 10.1016/j.esmoop.2022.100396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) and genomic biomarker-driven targeted therapies have revolutionized the modern oncologic treatment arsenal. The next step has been to combine targeted agents and ICIs. In doing so, some combination regimens may be more logical than others. Patients and methods Whole-exome and whole-transcriptome sequencing were performed on 2739 unselected later-stage clinical cases from 24 solid tumor subtypes in the NantHealth database, and data were also curated from 5746 similarly sequenced patients across 28 solid tumor subtypes in The Cancer Genome Atlas (TCGA). Significant differential expression of 10 immunoregulatory molecules [IRMs (genes)] was analyzed for association with mutant versus wild-type genes. Results Twenty-three significant associations between currently actionable variants and RNA-expressed checkpoint genes were identified in the TCGA cases; 10 were validated in the external cohort of 2739 clinical cases from NantHealth (P values were adjusted using Benjamini–Hochberg multiple hypothesis correction to reduce false-discovery rate). Within the same 5746 TCGA profiles, 2740 TCGA patients were identified as having one or more potentially oncogenic single-nucleotide variant (SNV) mutation within an established 50-gene hotspot panel. Of the 50 genes, SNVs within 15 were found to be significantly associated with differential expression of at least one IRM after adjusting for tissue enrichment; six were confirmed significant associations in an independent set of 2739 clinical cases from NantHealth. Conclusions Logically combining ICIs with targeted therapies may offer unique treatment strategies for patients with cancer. The presence of specific mutations impacts the expression of IRMs, an observation of potential importance for selecting combinations of gene- and immune-targeted therapeutics. Altered actionable genes correlated with specific checkpoint transcripts. Associations between IRMs and altered genes were validated in independent datasets. Combining immune- and gene-targeted drugs based on IRM/gene correlations merits study.
Collapse
|
26
|
Charo LM, Eskander RN, Sicklick J, Kim KH, Lim HJ, Okamura R, Lee S, Subramanian R, Schwab R, Shatsky R, Plaxe S, Kato S, Kurzrock R. Real-World Data From a Molecular Tumor Board: Improved Outcomes in Breast and Gynecologic Cancers Patients With Precision Medicine. JCO Precis Oncol 2022; 6:e2000508. [PMID: 35005995 PMCID: PMC8769125 DOI: 10.1200/po.20.00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/20/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Next-generation sequencing is increasingly used in gynecologic and breast cancers. Multidisciplinary Molecular Tumor Board (MTB) may guide matched therapy; however, outcome data are limited. We evaluate the effect of the degree of matching of tumors to treatment as well as compliance to MTB recommendations on outcomes. METHODS Overall, 164 patients with consecutive gynecologic and breast cancers presented at MTB were assessed for clinicopathologic data, next-generation sequencing results, MTB recommendations, therapy received, and outcomes. Matching score (MS), defined as percentage of alterations targeted by treatment over total pathogenic alterations, and compliance to MTB recommendations were analyzed in context of oncologic outcomes. RESULTS Altogether, 113 women were evaluable for treatment after MTB; 54% received matched therapy. Patients with MS ≥ 40% had higher overall response rate (30.8% v 7.1%; P = .001), progression-free survival (PFS; hazard ratio [HR] 0.51; 95% CI, 0.31 to 0.85; P = .002), and a trend toward improved overall survival (HR 0.64; 95% CI, 0.34 to 1.25; P = .082) in univariate analysis. The PFS advantage remained significant in multivariate analysis (HR 0.5; 95% CI, 0.3 to 0.8; P = .006). Higher MTB recommendation compliance was significantly associated with improved median PFS (9.0 months for complete; 6.0 months for partial; 4.0 months for no compliance; P = .004) and overall survival (17.1 months complete; 17.8 months partial; 10.8 months none; P = .046). Completely MTB-compliant patients had higher MS (P < .001). In multivariate analysis comparing all versus none MTB compliance, overall response (HR 9.5; 95% CI, 2.6 to 35.0; P = .001) and clinical benefit (HR 8.8; 95% CI, 2.4 to 33.2; P = .001) rates were significantly improved with higher compliance. CONCLUSION Compliance to MTB recommendations resulted in higher degrees of matched therapy and correlates with improved outcomes in patients with gynecologic and breast cancers.
Collapse
Affiliation(s)
- Lindsey M. Charo
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Ramez N. Eskander
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Jason Sicklick
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
- Division of Surgical Oncology, Department of Surgery, UC San Diego Moores Cancer Center, San Diego, CA
| | - Ki Hwan Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Hyo Jeong Lim
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, South Korea
| | - Ryosuke Okamura
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
| | - Rupa Subramanian
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
| | - Richard Schwab
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
| | - Rebecca Shatsky
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
| | - Steven Plaxe
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA
| |
Collapse
|
27
|
Patel YP, Husereau D, Leighl NB, Melosky B, Nam J. Health and Budget Impact of Liquid-Biopsy-Based Comprehensive Genomic Profile (CGP) Testing in Tissue-Limited Advanced Non-Small Cell Lung Cancer (aNSCLC) Patients. Curr Oncol 2021; 28:5278-5294. [PMID: 34940080 PMCID: PMC8700634 DOI: 10.3390/curroncol28060441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVES: Molecular genetic testing using tissue biopsies can be challenging for patients due to unfavorable tumor sites, the invasive nature of a tissue biopsy, and the added time of booking a repeat biopsy (re-biopsy). Centers in Canada have found insufficient tissue rates to be approximately 10%, and even among successful biopsies, insufficient DNA in tissue samples is approximately 16%, triggering the lengthy process of re-biopsies. Using aNSCLC as an example, this study sought to characterize the health and budget impact of alternative liquid-biopsy(LBx)-based comprehensive genomic profile (CGP) testing in tissue-limited patients (TL-LBx-CGP) from a Canadian publicly funded healthcare perspective. MATERIAL AND METHODS: An economic model was developed to estimate the incremental cost and life-years gained as a population associated with adopting TL-LBx-CGP. The eligible patient population was modeled using a top-down epidemiological approach based on the published literature and expert clinician input. Treatment allocation was modeled based on biomarker prevalence in the published literature, and the availability of funded therapies. Costs included molecular testing, as well as drug, administrative, and supportive costs, and relevant health data included median overall survival and median progression-free survival data. RESULTS: Incorporation of TL-LBx-CGP demonstrated an overall impact of $14.7 million with 168 life-years gained to the Canadian publicly funded healthcare system in the 3-year time horizon.
Collapse
Affiliation(s)
- Yuti P. Patel
- Hoffmann-La Roche Ltd., Mississauga, ON L5N 5M8, Canada
- Correspondence:
| | - Donald Husereau
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, ON K1G 5Z3, Canada;
| | | | - Barbara Melosky
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada;
| | - Julian Nam
- Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Bldg 1/Floor 12, CH-4070 Basel, Switzerland;
| |
Collapse
|
28
|
Butyrate and Metformin Affect Energy Metabolism Independently of the Metabolic Phenotype in the Tumor Therapy Model. Biomolecules 2021; 11:biom11121831. [PMID: 34944475 PMCID: PMC8699353 DOI: 10.3390/biom11121831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The BALB/c cell transformation assay (BALB-CTA) considers inter- and intra-tumor heterogeneities and affords the possibility of a direct comparison between untransformed and malignant cells. In the present study, we established monoclonal cell lines that originate from the BALB-CTA and mimic heterogeneous tumor cell populations, in order to investigate phenotype-specific effects of the anti-diabetic drug metformin and the short-chain fatty acid butyrate. Growth inhibitory effects were measured with a ViCell XR cell counter. The BALB/c tumor therapy model (BALB-TTM) was performed, and the extracellular glucose level was measured in the medium supernatant. Using a Seahorse Analyzer, the metabolic phenotypes of four selected clones were characterized, and effects on energy metabolism were investigated. Anti-carcinogenic effects and reduced glucose uptake after butyrate application were observed in the BALB-TTM. Metabolic characterization of the cell clones revealed three different phenotypes. Surprisingly, treatment with metformin or butyrate induced opposite metabolic shifts with similar patterns in all cell clones tested. In conclusion, the BALB-TTM is a relevant model for mechanistic cancer research, and the generation of monoclonal cell lines offers a novel possibility to investigate specific drug effects in a heterogeneous tumor cell population. The results indicate that induced alterations in energy metabolism seem to be independent of the original metabolic phenotype.
Collapse
|
29
|
Conroy JM, Pabla S, Glenn ST, Seager RJ, Van Roey E, Gao S, Burgher B, Andreas J, Giamo V, Mallon M, Lee YH, DePietro P, Nesline M, Wang Y, Lenzo FL, Klein R, Zhang S. A scalable high-throughput targeted next-generation sequencing assay for comprehensive genomic profiling of solid tumors. PLoS One 2021; 16:e0260089. [PMID: 34855780 PMCID: PMC8639101 DOI: 10.1371/journal.pone.0260089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Timely and accurate identification of molecular alterations in solid tumors is essential for proper management of patients with advanced cancers. This has created a need for rapid, scalable comprehensive genomic profiling (CGP) systems that detect an increasing number of therapeutically-relevant variant types and molecular signatures. In this study, we assessed the analytical performance of the TruSight Oncology 500 High-Throughput assay for detection of somatic alterations from formalin-fixed paraffin-embedded tissue specimens. In parallel, we developed supporting software and automated sample preparation systems designed to process up to 70 clinical samples in a single NovaSeq 6000TM sequencing run with a turnaround time of <7 days from specimen receipt to report. The results demonstrate that the scalable assay accurately and reproducibly detects small variants, copy number alterations, microsatellite instability (MSI) and tumor mutational burden (TMB) from 40ng DNA, and multiple gene fusions, including known and unknown partners and splice variants from 20ng RNA. 717 tumor samples and reference materials with previously known alterations in 96 cancer-related genes were sequenced to evaluate assay performance. All variant classes were reliably detected at consistent and reportable variant allele percentages with >99% overall accuracy and precision. Our results demonstrate that the high-throughput CGP assay is a reliable method for accurate detection of molecular alterations in support of precision therapeutics in oncology. The supporting systems and scalable workflow allow for efficient interpretation and prompt reporting of hundreds of patient cancer genomes per week with excellent analytical performance.
Collapse
Affiliation(s)
- Jeffrey M. Conroy
- Research and Development, OmniSeq Inc., Buffalo, New York, United States of America
- Research Support Services, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Sarabjot Pabla
- Bioinformatics, OmniSeq Inc., Buffalo, New York, United States of America
| | - Sean T. Glenn
- Research and Development, OmniSeq Inc., Buffalo, New York, United States of America
- Laboratory Operations, OmniSeq Inc., Buffalo, New York, United States of America
- HemePath Molecular, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - R. J. Seager
- Bioinformatics, OmniSeq Inc., Buffalo, New York, United States of America
| | - Erik Van Roey
- Bioinformatics, OmniSeq Inc., Buffalo, New York, United States of America
| | - Shuang Gao
- Bioinformatics, OmniSeq Inc., Buffalo, New York, United States of America
| | - Blake Burgher
- Research and Development, OmniSeq Inc., Buffalo, New York, United States of America
| | - Jonathan Andreas
- Research and Development, OmniSeq Inc., Buffalo, New York, United States of America
| | - Vincent Giamo
- Research and Development, OmniSeq Inc., Buffalo, New York, United States of America
| | - Melissa Mallon
- Research and Development, OmniSeq Inc., Buffalo, New York, United States of America
| | - Yong Hee Lee
- Clinical Evidence Development, OmniSeq Inc., Buffalo, New York, United States of America
| | - Paul DePietro
- Clinical Evidence Development, OmniSeq Inc., Buffalo, New York, United States of America
| | - Mary Nesline
- Clinical Evidence Development, OmniSeq Inc., Buffalo, New York, United States of America
| | - Yirong Wang
- Information Technology, OmniSeq Inc., Buffalo, New York, United States of America
| | - Felicia L. Lenzo
- Research and Development, OmniSeq Inc., Buffalo, New York, United States of America
| | - Roger Klein
- Medical Affairs, OmniSeq Inc., Buffalo, New York, United States of America
| | - Shengle Zhang
- Laboratory Operations, OmniSeq Inc., Buffalo, New York, United States of America
| |
Collapse
|
30
|
Otsuka Y, Kaneko M, Narukawa M. Factors associated with successful phase III trials for solid tumors: A systematic review. Contemp Clin Trials Commun 2021; 24:100855. [PMID: 34841122 PMCID: PMC8606338 DOI: 10.1016/j.conctc.2021.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/11/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background It is known that the success rates of phase III trials for solid cancers are low. The aim of this study was to investigate factors related to trial design and operation that were associated with the probability of the success of phase III trials for solid cancers based on the latest comprehensive data. Methods Relevant clinical trials, started between September 2007 and December 2017, were retrieved from ClinicalTrials.gov. Then, variables related to the selected trials such as types of primary endpoint and duration of trial enrollment were collected from the literature and ClinicalTrials.gov. Based on the collected data, a multivariate logistic regression analysis was conducted to find factors associated with the successful results. Results Four hundred phase III trials were found eligible for the study. Unsuccessful trials were 207 and successful trials were 193. As a result of multivariate logistic regression analysis, factors that presented a statistically significant relationship were primary endpoint (Odds ratio [OR]: 2.79 [95% CI: 1.59–4.89]), control arm (OR: 3.06 [95% CI: 1.39–6.73]), start year of trial (OR: 3.28 [95% CI: 1.87–5.77]), and duration of trial enrollment (OR: 0.77 [95% CI: 0.60–0.99]). Conclusion Type of primary endpoints (time-to-event endpoints other than overall survival), control arm (treatments with lower evidence level, placebo or best supportive care), and duration of trial enrollment (faster enrollment speed) were associated with phase III trial success.
Collapse
Affiliation(s)
- Yasushi Otsuka
- Department of Clinical Medicine (Pharmaceutical Medicine), Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan.,Research & Development Division, Alexion Pharma GK, Ebisu First Square 1-18-4 Ebisu, Shibuya-ku, Tokyo, 150-0013, Japan
| | - Masayuki Kaneko
- Department of Clinical Medicine (Pharmaceutical Medicine), Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Mamoru Narukawa
- Department of Clinical Medicine (Pharmaceutical Medicine), Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
31
|
Kato S, Weipert C, Gumas S, Okamura R, Lee S, Sicklick JK, Saam J, Kurzrock R. Therapeutic Actionability of Circulating Cell-Free DNA Alterations in Carcinoma of Unknown Primary. JCO Precis Oncol 2021; 5:PO.21.00011. [PMID: 34778692 PMCID: PMC8585281 DOI: 10.1200/po.21.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer of unknown primary (CUP) is a metastatic disease with unidentifiable primary tumor. Somatic alterations can be assessed noninvasively via liquid biopsies interrogating cell-free DNA (cfDNA). METHODS We evaluated 1,931 patients with CUP with a cfDNA next-generation sequencing panel (73-74 genes). RESULTS Overall, 1,739 patients (90%) had ≥ 1 cfDNA alteration. We then explored alteration actionability (per the levels of evidence from the OncoKB database); 825 patients (47.4% of 1,739) had level 1, level 2, or resistance/R1 alterations. Among 40 clinically annotated patients with CUP who had cfDNA evaluated, higher degrees of matching treatment to alterations (Matching Score > 50% v ≤ 50%) was the only variable predicting improved outcome: longer median progression-free survival (10.4 v 2.5 months; P = .002), overall survival (13.4 v 5.7 months; P = .07, trend), and higher clinical benefit rate (stable disease ≥ 6 months/partial response/complete response; 83% v 25%; P = .003). CONCLUSION In summary, cfDNA frequently reveals strong level-of-evidence actionable alterations in CUP, and high degrees of matching to therapy correlates with better outcomes.
Collapse
Affiliation(s)
- Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, La Jolla, CA
| | | | - Sophia Gumas
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Ryosuke Okamura
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, La Jolla, CA.,Department of Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Suzanna Lee
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, La Jolla, CA.,Department of Surgery, Division of Surgical Oncology, UC San Diego School of Medicine, San Diego, CA
| | | | | |
Collapse
|
32
|
Čerina D, Matković V, Katić K, Lovasić IB, Šeparović R, Canjko I, Jakšić B, Fröbe A, Pleština S, Bajić Ž, Vrdoljak E. Precision Oncology in Metastatic Uterine Cancer; Croatian First-Year Experience of the Comprehensive Genomic Profiling in Everyday Clinical Practice. Pathol Oncol Res 2021; 27:1609963. [PMID: 34646088 PMCID: PMC8504363 DOI: 10.3389/pore.2021.1609963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023]
Abstract
Comprehensive genomic profiling (CGP) is gradually becoming an inevitable part of the everyday oncology clinical practice. The interpretation and optimal implementation of the results is one of the hot topics of modern-day oncology. According to the recent findings, uterine cancer harbors a high level of gene alterations but is still insufficiently explored. The primary goal of this project was to assess the proportion of patients with targetable mutations. Also, the aim was to define and emphasize potential opportunities as well as the problems we have faced in the first year of testing on the national level. We performed a multicentric, retrospective, nested cross-sectional analysis on the total population of Croatian patients with advanced/metastatic uterine cancer where the tumor CGP was performed during 2020. CGP of the tumor tissue of 32 patients revealed clinically relevant genomic alterations (CRGA) in 27 patients (84%) with a median of 3 (IQR 1-4) CRGA per patient. The most common CRGAs were those of phosphatide-inositol-3 kinases (PIK3) in 22 patients (69%), with 13/22 (59%) of those patients harboring PIK3CA mutation. The next most common CGRAs were ARID1A and PTEN mutations in 13 (41%) and 11 (34%) patients, respectively. Microsatellite status was determined as stable in 21 patients (66%) and highly unstable in 10 patients (31%). A high tumor mutational burden (≥10Muts/Mb) was reported in 12 patients (38%). CGP analysis reported some kind of targeted therapy for 28 patients (88%). CGP determined clinically relevant genomic alterations in the significant majority of patients with metastatic uterine cancer, defining it as a rich ground for further positioning and development of precision oncology.
Collapse
Affiliation(s)
- Dora Čerina
- Department of Oncology, School of Medicine, University Hospital Center Split, University of Split, Split, Croatia
| | - Višnja Matković
- Department of Gynecologic Oncology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Kristina Katić
- Department of Gynecologic Oncology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ingrid Belac Lovasić
- Department of Radiotherapy and Oncology, University Hospital Center Rijeka, Rijeka, Croatia
| | - Robert Šeparović
- Department of Medical Oncology, Division of Medical Oncology, University Hospital for Tumors, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Canjko
- Department of Radiotherapy Oncology, University Hospital Center Osijek, Osijek, Croatia
| | - Blanka Jakšić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Stjepko Pleština
- Department of Oncology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Žarko Bajić
- Research Unit "Dr. Mirko Grmek", University Psychiatric Hospital "Sveti Ivan", Zagreb, Croatia
| | - Eduard Vrdoljak
- Department of Oncology, School of Medicine, University Hospital Center Split, University of Split, Split, Croatia
| |
Collapse
|
33
|
Horak P, Leichsenring J, Goldschmid H, Kreutzfeldt S, Kazdal D, Teleanu V, Endris V, Gieldon L, Allgäuer M, Volckmar AL, Dikow N, Renner M, Kirchner M, Penzel R, Ploeger C, Brandt R, Seker-Cin H, Budczies J, Heilig CE, Neumann O, Schaaf CP, Schirmacher P, Fröhling S, Stenzinger A. Assigning evidence to actionability: An introduction to variant interpretation in precision cancer medicine. Genes Chromosomes Cancer 2021; 61:303-313. [PMID: 34331337 DOI: 10.1002/gcc.22987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022] Open
Abstract
Modern concepts in precision cancer medicine are based on increasingly complex genomic analyses and require standardized criteria for the functional evaluation and reporting of detected genomic alterations in order to assess their clinical relevance. In this article, we propose and address the necessary steps in systematic variant evaluation consisting of bioinformatic analysis, functional annotation and clinical interpretation, focusing on the latter two aspects. We discuss the role and clinical application of current variant classification systems and point out their scope and limitations. Finally, we highlight the significance of the molecular tumor board as a platform for clinical decision-making based on genomic analyses.
Collapse
Affiliation(s)
- Peter Horak
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Jonas Leichsenring
- Institut für Pathologie, Zytologie und molekulare Diagnostik, Regiomed Klinikum Coburg, Coburg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Goldschmid
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Kreutzfeldt
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Veronica Teleanu
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Gieldon
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Marcus Renner
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Penzel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolin Ploeger
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Regine Brandt
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Huriye Seker-Cin
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Budczies
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Christoph E Heilig
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Peter Schirmacher
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Albrecht Stenzinger
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| |
Collapse
|
34
|
Yada S. Bayesian adaptive design of early-phase clinical trials for precision medicine based on cancer biomarkers. Int J Biostat 2021; 18:109-125. [PMID: 34114385 DOI: 10.1515/ijb-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/25/2021] [Indexed: 11/15/2022]
Abstract
Cancer tissue samples obtained via biopsy or surgery were examined for specific gene mutations by genetic testing to inform treatment. Precision medicine, which considers not only the cancer type and location, but also the genetic information, environment, and lifestyle of each patient, can be applied for disease prevention and treatment in individual patients. The number of patient-specific characteristics, including biomarkers, has been increasing with time; these characteristics are highly correlated with outcomes. The number of patients at the beginning of early-phase clinical trials is often limited. Moreover, it is challenging to estimate parameters of models that include baseline characteristics as covariates such as biomarkers. To overcome these issues and promote personalized medicine, we propose a dose-finding method that considers patient background characteristics, including biomarkers, using a model for phase I/II oncology trials. We built a Bayesian neural network with input variables of dose, biomarkers, and interactions between dose and biomarkers and output variables of efficacy outcomes for each patient. We trained the neural network to select the optimal dose based on all background characteristics of a patient. Simulation analysis showed that the probability of selecting the desirable dose was higher using the proposed method than that using the naïve method.
Collapse
Affiliation(s)
- Shinjo Yada
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto606-8501, Japan
| |
Collapse
|
35
|
Horak P, Heining C, Kreutzfeldt S, Hutter B, Mock A, Hullein J, Frohlich M, Uhrig S, Jahn A, Rump A, Gieldon L, Mohrmann L, Hanf D, Teleanu V, Heilig CE, Lipka DB, Allgauer M, Ruhnke L, Lassmann A, Endris V, Neumann O, Penzel R, Beck K, Richter D, Winter U, Wolf S, Pfutze K, Georg C, Meissburger B, Buchhalter I, Augustin M, Aulitzky WE, Hohenberger P, Kroiss M, Schirmacher P, Schlenk RF, Keilholz U, Klauschen F, Folprecht G, Bauer S, Siveke JT, Brandts CH, Kindler T, Boerries M, Illert AL, von Bubnoff N, Jost PJ, Spiekermann K, Bitzer M, Schulze-Osthoff K, von Kalle C, Klink B, Brors B, Stenzinger A, Schrock E, Hubschmann D, Weichert W, Glimm H, Frohling S. Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers. Cancer Discov 2021; 11:2780-2795. [PMID: 34112699 DOI: 10.1158/2159-8290.cd-21-0126] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
The clinical relevance of comprehensive molecular analysis in rare cancers is not established. We analyzed the molecular profiles and clinical outcomes of 1,310 patients (rare cancers, 75.5%) enrolled in a prospective observational study by the German Cancer Consortium that applies whole-genome/exome and RNA sequencing to inform the care of adults with incurable cancers. Based on 472 single and six composite biomarkers, a cross-institutional molecular tumor board provided evidence-based management recommendations, including diagnostic reevaluation, genetic counseling, and experimental treatment, in 88% of cases. Recommended therapies were administered in 362 of 1,138 patients (31.8%) and resulted in significantly improved overall response and disease control rates (23.9% and 55.3%) compared to previous therapies, translating into a progression-free survival ratio >1.3 in 35.7% of patients. These data demonstrate the benefit of molecular stratification in rare cancers and represent a resource that may promote clinical trial access and drug approvals in this underserved patient population.
Collapse
Affiliation(s)
- Peter Horak
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg
| | - Christoph Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden
| | | | - Barbara Hutter
- Division of Applied Bioinformatics, German Cancer Research Center
| | | | | | - Martina Frohlich
- Computational Oncology, Molecular Diagnostics Program, German Cancer Research Center
| | - Sebastian Uhrig
- Division of Applied Bioinformatics, German Cancer Research Center
| | - Arne Jahn
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technical University Dresden
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus
| | - Laura Gieldon
- Heidelberg University Hospital, Institute of Human Genetics
| | - Lino Mohrmann
- Translational Medical Oncology, National Center for Tumor Diseases Dresden
| | - Dorothea Hanf
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden
| | - Veronica Teleanu
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg
| | - Christoph E Heilig
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics; Division Translational Medical Oncology, German Cancer Research Center
| | | | - Leo Ruhnke
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden
| | - Andreas Lassmann
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg
| | | | - Olaf Neumann
- Department of General Pathology, University Hospital Heidelberg
| | | | - Katja Beck
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg
| | | | - Ulrike Winter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, German Cancer Research Center
| | - Katrin Pfutze
- Center for Personalized Medicine, National Center for Tumor Diseases
| | - Christina Georg
- Department of Translational Oncology, National Center for Tumor Diseases
| | - Bettina Meissburger
- Sample Processing Laboratory, Molecular Diagnostics Program, German Cancer Research Center
| | - Ivo Buchhalter
- Omics IT and Data Management Core Facility, German Cancer Research Center
| | - Marinela Augustin
- Department of Hematology and Oncology, Paracelsus Medical University, Nuremberg
| | | | | | - Matthias Kroiss
- Comprehensive Cancer Center Mainfranken, University of Würzburg
| | | | - Richard F Schlenk
- NCT Clinical Trials Center, Heidelberg University Hospital and German Cancer Research Center
| | | | | | - Gunnar Folprecht
- University Cancer Center / Medical Department I, University Hospital Carl Gustav Carus
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany; DKTK partner site Essen and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jens Thomas Siveke
- West German Cancer Center, University Hospital Essen, Bridge Institute of Experimental Tumor Therapy
| | - Christian H Brandts
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University
| | - Thomas Kindler
- Third Department of Medicine, University Medical Center of the Johannes Gutenberg University
| | - Melanie Boerries
- Medical Center - University Freiburg, Institute of Medical Bioinformatics and Systems Medicine
| | - Anna L Illert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Campus Lübeck
| | | | | | | | | | | | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden
| | - Benedikt Brors
- Department of Applied Bioinformatics, German Cancer Research Center
| | | | - Evelin Schrock
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technical University Dresden
| | | | - Wilko Weichert
- Institute of General Pathology and Pathological Anatomy, Technical University of Munich
| | - Hanno Glimm
- Department of Translational Oncology, NCT National Center for Tumor Diseases
| | - Stefan Frohling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg
| |
Collapse
|
36
|
Hibino Y, Ito M, Satake T, Kondo S. Clinical benefits of precision medicine in treating solid cancers: European Society of Medical Oncology-Magnitude of Clinical Benefit Scale score-based analysis. ESMO Open 2021; 6:100187. [PMID: 34118770 PMCID: PMC8207218 DOI: 10.1016/j.esmoop.2021.100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background Precision and matched cancer medicine has the potential to complement the existing biomarker approaches in cancer treatment. However, despite their promising potential, certain negative results have highlighted their limitations in molecular biology-driven treatment strategies. This study aimed to evaluate the clinical benefits of precision therapies. Materials and methods Three reviewers independently identified and assessed precision and matched cancer treatment studies published between January 2015 and December 2020. Clinical benefits of the treatments included in our cohort were assessed using two established frameworks; the European Society of Medical Oncology-Magnitude of Clinical Benefit Scale version 1.1 (ESMO-MCBS) and the American Society of Clinical Oncology Value Framework. Results Of the 290 eligible studies, 130 were for lung cancer, 51 for solid tumors, 24 for melanoma, and 24 for breast cancer. The common targets were: epidermal growth factor receptor (N = 66), serine/threonine-protein kinase B-Raf (N = 40), anaplastic lymphoma kinase (ALK) (N = 34), breast cancer protein (N = 26), phosphatidylinositol-3 kinase/protein kinase B/phosphatase and tensin homolog (PI3K/AKT/PTEN) pathway (N = 19), receptor tyrosine-protein kinase erbB-2 (HER2) (N = 19), mitogen-activated protein kinase (RAS/RAF/MAPK) pathway (N = 18), programmed death-ligand 1 (N = 12), fibroblast growth factor receptor (N = 8), and others (N = 43). The ESMO-MCBS scales ranged from 0 to 4. Based on the clinical benefit values, tumor mutational burden/mismatch repair-deficient/microsatellite instability-high for immunotherapy, anaplastic lymphoma kinase, and neurotrophic receptor tyrosine kinase therapeutic targets were considered high, whereas RAS/RAF/MAPK and PI3K/AKT/PTEN were considered low. Additionally, we found a significant difference between each average score (P < 0.001). Conclusions This study showed that precision and matched cancer therapies require further improvement. This is consistent with the views of the tumor board and of clinicians that precision strategies need to be revised to improve their therapeutic effects. Of the 290 eligible studies, 130 were for lung cancer, 51 for solid tumors, 24 for melanoma, and 24 for breast cancer. Precision strategies need to be revised to improve their therapeutic effects. Therapeutic targets need to be narrowed down to improve the efficacy of precision medicine in the clinical setting.
Collapse
Affiliation(s)
- Y Hibino
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - M Ito
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - T Satake
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - S Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan; Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan; Outpatient Treatment Center, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
37
|
Osarogiagbon RU, Vega DM, Fashoyin-Aje L, Wedam S, Ison G, Atienza S, De Porre P, Biswas T, Holloway JN, Hong DS, Wempe MM, Schilsky RL, Kim ES, Wade JL. Modernizing Clinical Trial Eligibility Criteria: Recommendations of the ASCO-Friends of Cancer Research Prior Therapies Work Group. Clin Cancer Res 2021; 27:2408-2415. [PMID: 33563637 PMCID: PMC8170959 DOI: 10.1158/1078-0432.ccr-20-3854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/25/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Restrictive eligibility criteria induce differences between clinical trial and "real-world" treatment populations. Restrictions based on prior therapies are common; minimizing them when appropriate may increase patient participation in clinical trials. EXPERIMENTAL DESIGN A multi-stakeholder working group developed a conceptual framework to guide evaluation of prevailing practices with respect to using prior treatment as selection criteria for clinical trials. The working group made recommendations to minimize restrictions based on prior therapies within the boundaries of scientific validity, patient centeredness, distributive justice, and beneficence. RECOMMENDATIONS (i) Patients are eligible for clinical trials regardless of the number or type of prior therapies and without requiring a specific therapy prior to enrollment unless a scientific or clinically based rationale is provided as justification. (ii) Prior therapy (either limits on number and type of prior therapies or requirements for specific therapies before enrollment) could be used to determine eligibility in the following cases: a) the agents being studied target a specific mechanism or pathway that could potentially interact with a prior therapy; b) the study design requires that all patients begin protocol-specified treatment at the same point in the disease trajectory; and c) in randomized clinical studies, if the therapy in the control arm is not appropriate for the patient due to previous therapies received. (iii) Trial designers should consider conducting evaluation separately from the primary endpoint analysis for participants who have received prior therapies. CONCLUSIONS Clinical trial sponsors and regulators should thoughtfully reexamine the use of prior therapy exposure as selection criteria to maximize clinical trial participation.See related commentary by Giantonio, p. 2369.
Collapse
Affiliation(s)
| | | | | | - Suparna Wedam
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Gwynn Ison
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Sol Atienza
- Advocate Aurora Health, Milwaukee, Wisconsin
| | | | - Tithi Biswas
- University Hospitals Seidman Cancer Center, Cleveland, Ohio
| | | | | | | | | | - Edward S Kim
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - James L Wade
- Cancer Care Specialists of Central Illinois, Decatur, Illinois
| |
Collapse
|
38
|
Abstract
The deployment of molecular biomarkers that are indicative of sensitivity to tumor-targeted or immune-targeted cancer therapies improves the outcome of individual patients and increases the chances of successful drug approval. However, for many lethal malignancies, the majority of clinical trials are conducted with patients who do not have biomarkers and hence they miss the target.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexey Goloubev
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA.
| |
Collapse
|
39
|
Shylasree TS, Richa B, Lavanya G, Gulia S. Molecular Signatures of Gynecological Cancers: Clinicians Perspective. Indian J Surg Oncol 2021; 12:103-110. [PMID: 33994735 PMCID: PMC8119522 DOI: 10.1007/s13193-020-01271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022] Open
Abstract
Large-scale molecular profiling and DNA sequencing has revolutionized cancer research. Precision medicine is a rapidly developing area in cancer care but it is not uniformly applied across different tumor types. Biomarker-based therapy is associated with improved outcomes, both in terms of progression-free survival and overall survival. Comprehensive genomic profiling (CGP) uses next-generation sequencing to analyze the complete coding sequence of hundreds of genes from a small amount of tissue. Genes included in these assays are those associated with cancer development or have diagnostic, prognostic, familial, or therapeutic implications Genomic profiling is emerging as a clinically viable tool to personalize patient's treatment. This article discusses how the insights gained through CGP can impact treatment plan in common gynecological cancers.
Collapse
Affiliation(s)
- TS Shylasree
- Department of Gynecological Oncology, Tata Memorial Hospital, Homibaba National Institute, Dr. E Borges Road, Parel, Mumbai, 400 012 India
| | - Bansal Richa
- Department of Gynecological Oncology, Tata Memorial Hospital, Homibaba National Institute, Dr. E Borges Road, Parel, Mumbai, 400 012 India
| | - Gurram Lavanya
- Department of Gynecological Oncology, Tata Memorial Hospital, Homibaba National Institute, Dr. E Borges Road, Parel, Mumbai, 400 012 India
| | - Seema Gulia
- Department of Gynecological Oncology, Tata Memorial Hospital, Homibaba National Institute, Dr. E Borges Road, Parel, Mumbai, 400 012 India
| |
Collapse
|
40
|
Pharmacogenomic Biomarkers in US FDA-Approved Drug Labels (2000-2020). J Pers Med 2021; 11:jpm11030179. [PMID: 33806453 PMCID: PMC8000585 DOI: 10.3390/jpm11030179] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Pharmacogenomics (PGx) is a key subset of precision medicine that relates genomic variation to individual response to pharmacotherapy. We assessed longitudinal trends in US FDA approval of new drugs labeled with PGx information. Drug labels containing PGx information were obtained from Drugs@FDA and guidelines from PharmGKB were used to compare the actionability of PGx information in drug labels across therapeutic areas. The annual proportion of new drug approvals with PGx labeling has increased by nearly threefold from 10.3% (n = 3) in 2000 to 28.2% (n = 11) in 2020. Inclusion of PGx information in drug labels has increased for all clinical areas over the last two decades but most prominently for cancer therapies, which comprise the largest proportion (75.5%) of biomarker–drug pairs for which PGx testing is required. Clinically actionable information was more frequently observed in biomarker–drug pairs associated with cancer drugs compared to those for other therapeutic areas (n = 92 (59.7%) vs. n = 62 (40.3%), p < 0.0051). These results suggest that further evidence is needed to support the clinical adoption of pharmacogenomics in non-cancer therapeutic areas.
Collapse
|
41
|
Jardim DL, Millis SZ, Ross JS, Woo MS, Ali SM, Kurzrock R. Cyclin Pathway Genomic Alterations Across 190,247 Solid Tumors: Leveraging Large-Scale Data to Inform Therapeutic Directions. Oncologist 2021; 26:e78-e89. [PMID: 32885893 PMCID: PMC7794175 DOI: 10.1634/theoncologist.2020-0509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We describe the landscape of cyclin and interactive gene pathway alterations in 190,247 solid tumors. METHODS Using comprehensive genomic profiling (315 genes, >500× coverage), samples were analyzed for alterations in activating/sensitizing cyclin genes (CDK4 amplification, CDK6 amplification, CCND1, CCND2, CCND3, CDKN2B [loss], CDKN2A [loss], SMARCB1), hormone genes (estrogen receptor 1 [ESR1], androgen receptor [AR]), and co-alterations in genes leading to cyclin inhibitor therapeutic resistance (RB1 and CCNE1). RESULTS Alterations in at least one cyclin activating/sensitizing gene occurred in 24% of malignancies. Tumors that frequently harbored at least one cyclin alteration were brain gliomas (47.1%), esophageal (40.3%) and bladder cancer (37.9%), and mesotheliomas (37.9%). The most frequent alterations included CDKN2A (13.9%) and CDKN2B loss (12.5%). Examples of unique patterns of alterations included CCND1 amplification in breast cancer (17.3%); CDK4 alterations in sarcomas (12%); CCND2 in testicular cancer (23.4%), and SMARCB1 mutations in kidney cancer (3% overall, 90% in malignant rhabdoid tumors). Alterations in resistance genes RB1 and CCNE1 affected 7.2% and 3.6% of samples. Co-occurrence analysis demonstrated a lower likelihood of concomitant versus isolated alterations in cyclin activating/sensitizing and resistance genes (odds ratio [OR], 0.35; p < .001), except in colorectal, cervical, and small intestine cancers. AR and cyclin activating/sensitizing alterations in prostate cancer co-occurred more frequently (vs. AR alterations and wild-type cyclin activating/sensitizing alterations) (OR, 1.79; p < .001) as did ESR1 and cyclin activating/sensitizing alterations in breast (OR, 1.62; p < .001) and cervical cancer (OR, 4.08; p = .04) (vs. ESR1 and cyclin wild-type activating/sensitizing alterations). CONCLUSION Cyclin pathway alterations vary according to tumor type/histology, informing opportunities for targeted therapy, including for rare cancers. IMPLICATIONS FOR PRACTICE Cyclin pathway genomic abnormalities are frequent in human solid tumors, with substantial variation according to tumor site and histology. Opportunities for targeted therapy emerge with comprehensive profiling of this pathway.
Collapse
Affiliation(s)
- Denis L. Jardim
- Department of Clinical Oncology, Hospital Sirio LibanesSão PauloBrazil
| | | | | | | | | | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
42
|
Adashek JJ, Subbiah V, Kurzrock R. From Tissue-Agnostic to N-of-One Therapies: (R)Evolution of the Precision Paradigm. Trends Cancer 2021; 7:15-28. [DOI: 10.1016/j.trecan.2020.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
|
43
|
ASH2L drives proliferation and sensitivity to bleomycin and other genotoxins in Hodgkin's lymphoma and testicular cancer cells. Cell Death Dis 2020; 11:1019. [PMID: 33257682 PMCID: PMC7705021 DOI: 10.1038/s41419-020-03231-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
It is of clinical importance to identify biomarkers predicting the efficacy of DNA damaging drugs (genotoxins) so that nonresponders are not unduly exposed to the deleterious effects of otherwise inefficient drugs. Here, we initially focused on the bleomycin genotoxin because of the limited information about the genes implicated in the sensitivity or resistance to this compound. Using a whole-genome CRISPR/Cas9 gene knockout approach, we identified ASH2L, a core component of the H3K4 methyl transferase complex, as a protein required for bleomycin sensitivity in L1236 Hodgkin lymphoma. Knocking down ASH2L in these cells and in the NT2D1 testicular cancer cell line rendered them resistant to bleomycin, etoposide, and cisplatin but did not affect their sensitivity toward ATM or ATR inhibitors. ASH2L knockdown decreased cell proliferation and facilitated DNA repair via homologous recombination and nonhomologous end-joining mechanisms. Data from the Tumor Cancer Genome Atlas indicate that patients with testicular cancer carrying alterations in the ASH2L gene are more likely to relapse than patients with unaltered ASH2L genes. The cell models we have used are derived from cancers currently treated either partially (Hodgkin’s lymphoma), or entirely (testicular cancer) with genotoxins. For such cancers, ASH2L levels could be used as a biomarker to predict the response to genotoxins. In situations where tumors are expressing low levels of ASH2L, which may allow them to resist genotoxic treatment, the use of ATR or ATM inhibitors may be more efficacious as our data indicate that ASH2L knockdown does not affect sensitivity to these inhibitors.
Collapse
|
44
|
Kato S, Kim KH, Lim HJ, Boichard A, Nikanjam M, Weihe E, Kuo DJ, Eskander RN, Goodman A, Galanina N, Fanta PT, Schwab RB, Shatsky R, Plaxe SC, Sharabi A, Stites E, Adashek JJ, Okamura R, Lee S, Lippman SM, Sicklick JK, Kurzrock R. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy. Nat Commun 2020; 11:4965. [PMID: 33009371 PMCID: PMC7532150 DOI: 10.1038/s41467-020-18613-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
Next-generation sequencing (NGS) can identify novel cancer targets. However, interpreting the molecular findings and accessing drugs/clinical trials is challenging. Furthermore, many tumors show resistance to monotherapies. To implement a precision strategy, we initiated a multidisciplinary (basic/translational/clinical investigators, bioinformaticians, geneticists, and physicians from multiple specialties) molecular tumor board (MTB), which included a project manager to facilitate obtaining clinical-grade biomarkers (blood/tissue NGS, specific immunohistochemistry/RNA expression including for immune-biomarkers, per physician discretion) and medication-acquisition specialists/clinical trial coordinators/navigators to assist with medication access. The MTB comprehensively reviewed patient characteristics to develop N-of-One treatments implemented by the treating physician's direction under the auspices of a master protocol. Overall, 265/429 therapy-evaluable patients (62%) were matched to ≥1 recommended drug. Eighty-six patients (20%) matched to all drugs recommended by MTB, including combinatorial approaches, while 38% received physician's choice regimen, generally with unmatched approach/low degree of matching. Our results show that patients who receive MTB-recommended regimens (versus physician choice) have significantly longer progression-free (PFS) and overall survival (OS), and are better matched to therapy. High (≥50%) versus low (<50%) Matching Score therapy (roughly reflecting therapy matched to ≥50% versus <50% of alterations) independently correlates with longer PFS (hazard ratio [HR], 0.63; 95% confidence interval [CI], 0.50-0.80; P < 0.001) and OS (HR, 0.67; 95% CI, 0.50-0.90; P = 0.007) and higher stable disease ≥6 months/partial/complete remission rate (52.1% versus 30.4% P < 0.001) (all multivariate). In conclusion, patients who receive MTB-based therapy are better matched to their genomic alterations, and the degree of matching is an independent predictor of improved oncologic outcomes including survival.
Collapse
Affiliation(s)
- Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA.
| | - Ki Hwan Kim
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| | - Hyo Jeong Lim
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Amelie Boichard
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Mina Nikanjam
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Elizabeth Weihe
- Department of Radiology, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Dennis J Kuo
- Division of Pediatric Hematology-Oncology, Rady Children's Hospital-San Diego, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Ramez N Eskander
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Aaron Goodman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Natalie Galanina
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Paul T Fanta
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Richard B Schwab
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Rebecca Shatsky
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Steven C Plaxe
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Andrew Sharabi
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
- Department of Radiation Medicine and Applied Sciences, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Edward Stites
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ryosuke Okamura
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Scott M Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy and Division of Surgical Oncology, Department of Surgery, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
45
|
Charo LM, Eskander RN, Okamura R, Patel SP, Nikanjam M, Lanman RB, Piccioni DE, Kato S, McHale MT, Kurzrock R. Clinical implications of plasma circulating tumor DNA in gynecologic cancer patients. Mol Oncol 2020; 15:67-79. [PMID: 32881280 PMCID: PMC7782073 DOI: 10.1002/1878-0261.12791] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Molecular characterization of cancers is important in dictating prognostic factors and directing therapy. Next‐generation sequencing of plasma circulating tumor DNA (ctDNA) offers less invasive, more convenient collection, and a more real‐time representation of a tumor and its molecular heterogeneity than tissue. However, little is known about the clinical implications of ctDNA assessment in gynecologic cancer. We describe the molecular landscape identified on ctDNA, ctDNA concordance with tissue‐based analysis, and factors associated with overall survival (OS) in gynecologic cancer patients with ctDNA analysis. We reviewed clinicopathologic and genomic information for 105 consecutive gynecologic cancer patients with ctDNA analysis, including 78 with tissue‐based sequencing, enrolled in the Profile‐Related Evidence Determining Individualized Cancer Therapy (NCT02478931) trial at the University of California San Diego Moores Cancer Center starting July 2014. Tumors included ovarian (47.6%), uterine (35.2%), cervical (12.4%), vulvovaginal (2.9%), and unknown gynecologic primary (1.9%). Most ovarian and uterine cancers (86%) were high grade. 34% (N = 17) of ovarian cancers had BRCA alterations, and 22% (N = 11) were platinum sensitive. Patients received median 2 (range 0–13) lines of therapy prior to ctDNA collection. Most (75.2%) had at least one characterized alteration on ctDNA analysis, and the majority had unique genomic profiles on ctDNA. Most common alterations were TP53 (N = 59, 56.2% of patients), PIK3CA (N = 26, 24.8%), KRAS (N = 14, 13.3%), BRAF (N = 10, 9.5%), ERBB2 (N = 8, 7.6%), and MYC (N = 8, 7.6%). Higher ctDNA maximum mutation allele frequency was associated with worse OS [hazard ratio (HR): 1.91, P = 0.03], while therapy matched to ctDNA alterations (N = 33 patients) was independently associated with improved OS (HR: 0.34, P = 0.007) compared to unmatched therapy (N = 28 patients) in multivariate analysis. Tissue and ctDNA genomic results showed high concordance unaffected by temporal or spatial factors. This study provides evidence for the utility of ctDNA in determining outcome and individualizing cancer therapy in patients with gynecologic cancer.
Collapse
Affiliation(s)
- Lindsey M Charo
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Ramez N Eskander
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Ryosuke Okamura
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Sandip P Patel
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Mina Nikanjam
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | | | - David E Piccioni
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Michael T McHale
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
46
|
Mateo L, Duran-Frigola M, Gris-Oliver A, Palafox M, Scaltriti M, Razavi P, Chandarlapaty S, Arribas J, Bellet M, Serra V, Aloy P. Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns. Genome Med 2020; 12:78. [PMID: 32907621 PMCID: PMC7488324 DOI: 10.1186/s13073-020-00774-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Identification of actionable genomic vulnerabilities is key to precision oncology. Utilizing a large-scale drug screening in patient-derived xenografts, we uncover driver gene alteration connections, derive driver co-occurrence (DCO) networks, and relate these to drug sensitivity. Our collection of 53 drug-response predictors attains an average balanced accuracy of 58% in a cross-validation setting, rising to 66% for a subset of high-confidence predictions. We experimentally validated 12 out of 14 predictions in mice and adapted our strategy to obtain drug-response models from patients’ progression-free survival data. Our strategy reveals links between oncogenic alterations, increasing the clinical impact of genomic profiling.
Collapse
Affiliation(s)
- Lidia Mateo
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain
| | - Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.,Department of Pathology, MSKCC, New York, NY, 10065, USA
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.,Breast Medicine Service, Department of Medicine, MSKCC and Weill-Cornell Medical College, New York, NY, 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.,Breast Medicine Service, Department of Medicine, MSKCC and Weill-Cornell Medical College, New York, NY, 10065, USA
| | - Joaquin Arribas
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,CIBERONC, Barcelona, Spain
| | - Meritxell Bellet
- Breast Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.,Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.,CIBERONC, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
47
|
Adashek JJ, Arroyo-Martinez Y, Menta AK, Kurzrock R, Kato S. Therapeutic Implications of Epidermal Growth Factor Receptor (EGFR) in the Treatment of Metastatic Gastric/GEJ Cancer. Front Oncol 2020; 10:1312. [PMID: 32850413 PMCID: PMC7418523 DOI: 10.3389/fonc.2020.01312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer remains third leading cause of global cancer mortality and is the fifth most common type of cancer in the United States. A select number of gastric cancers harbor alterations in EGFR and/or have amplification/overexpression in the HER2; 2-35 and 9-38%, respectively. The advent of next-generation sequencing of tissue and circulating tumor DNA has allowed for the massive expansion of targeted therapeutics to be employed in many settings. There have been a handful of trials using EGFR inhibitors with modest outcomes. Using novel strategies to target multiple co-mutations as well as identifying immunoregulatory molecule expression patterns will potentially drive future trials and improve gastric cancer patient outcomes.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, United States
| | - Yadis Arroyo-Martinez
- Department of Internal Medicine, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, United States
| | | | - Razelle Kurzrock
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Shumei Kato
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
48
|
Salgia R, Mambetsariev I, Pharaon R, Fricke J, Baroz AR, Hozo I, Chen C, Koczywas M, Massarelli E, Reckamp K, Djulbegovic B. Evaluation of Omics-Based Strategies for the Management of Advanced Lung Cancer. JCO Oncol Pract 2020; 17:e257-e265. [PMID: 32639928 DOI: 10.1200/op.20.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Omic-informed therapy is being used more frequently for patients with non-small-cell lung cancer (NSCLC) being treated on the basis of evidence-based decision-making. However, there is a lack of a standardized framework to evaluate those decisions and understand the association between omics-based management strategies and survival among patients. Therefore, we compared outcomes between patients with lung adenocarcinoma who received omics-driven targeted therapy versus patients who received standard therapeutic options. PATIENTS AND METHODS This was a retrospective study of patients with advanced NSCLC adenocarcinoma (N = 798) at City of Hope who received genomic sequencing at the behest of their treating oncologists. A thoracic oncology registry was used as a clinicogenomic database to track patient outcomes. RESULTS Of 798 individuals with advanced NSCLC (median age, 65 years [range, 22-99 years]; 60% white; 50% with a history of smoking), 662 patients (83%) had molecular testing and 439 (55%) received targeted therapy on the basis of the omic-data. A fast-and-frugal decision tree (FFT) model was developed to evaluate the impact of omics-based strategy on decision-making, progression-free survival (PFS), and overall survival (OS). We calculated that the overall positive predictive value of the entire FFT strategy for predicting decisions regarding the use of tyrosine kinase inhibitor-based targeted therapy was 88% and the negative predictive value was 96%. In an adjusted Cox regression analysis, there was a significant correlation with survival benefit with the FFT omics-driven therapeutic strategy for both PFS (hazard ratio [HR], 0.56; 95% CI, 0.42 to 0.74; P < .001) and OS (HR, 0.51; 95% CI, 0.36 to 0.71; P < .001) as compared with standard therapeutic options. CONCLUSION Among patients with advanced NSCLC who received care in the academic oncology setting, omics-driven therapy decisions directly informed treatment in patients and was correlated with better OS and PFS.
Collapse
Affiliation(s)
- Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | - Angel Ray Baroz
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | - Iztok Hozo
- Department of Mathematics, Indiana University Northwest, Gary, IN
| | - Chen Chen
- Applied AI and Data Science, City of Hope, Duarte, CA
| | - Marianna Koczywas
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | - Karen Reckamp
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA.,Division of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Benjamin Djulbegovic
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| |
Collapse
|
49
|
Kato S, Okamura R, Sicklick JK, Daniels GA, Hong DS, Goodman A, Weihe E, Lee S, Khalid N, Collier R, Mareboina M, Riviere P, Whitchurch TJ, Fanta PT, Lippman SM, Kurzrock R. Prognostic implications of RAS alterations in diverse malignancies and impact of targeted therapies. Int J Cancer 2020; 146:3450-3460. [PMID: 31782524 DOI: 10.1002/ijc.32813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 02/03/2023]
Abstract
RAS alterations are often found in difficult-to-treat malignancies and are considered "undruggable." To better understand the clinical correlates and coaltered genes of RAS alterations, we used targeted next-generation sequencing (NGS) to analyze 1,937 patients with diverse cancers. Overall, 20.9% of cancers (405/1,937) harbored RAS alterations. Most RAS-altered cases had genomic coalterations (95.3%, median: 3, range: 0-51), often involving genes implicated in oncogenic signals: PI3K pathway (31.4% of 405 cases), cell cycle (31.1%), tyrosine kinase families (21.5%) and MAPK signaling (18.3%). Patients with RAS-altered versus wild-type RAS malignancies had significantly worse overall survival (OS; p = 0.02 [multivariate]), with KRAS alterations, in particular, showing shorter survival. Moreover, coalterations in both RAS and PI3K signaling or cell-cycle-associated genes correlated with worse OS (p = 0.004 and p < 0.0001, respectively [multivariate]). Among RAS-altered patients, MEK inhibitors alone did not impact progression-free survival (PFS), while matched targeted therapy against non-MAPK pathway coalterations alone showed a trend toward longer PFS (vs. patients who received unmatched therapy) (HR: 0.79, 95% CI: 0.61-1.03, p = 0.07). Three of nine patients (33%) given tailored combination therapies targeting both MAPK and non-MAPK pathways achieved objective responses. In conclusion, RAS alterations correlated with poor survival across cancers. The majority of RAS alterations were accompanied by coalterations impacting other oncogenic pathways. MEK inhibitors alone were ineffective against RAS-altered cancers while matched targeted therapy against coalterations alone correlated with a trend toward improved PFS. A subset of the small number of patients given MEK inhibitors plus tailored non-MAPK-targeting agents showed responses, suggesting that customized combinations warrant further investigation.
Collapse
Affiliation(s)
- Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Ryosuke Okamura
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy and Division of Surgical Oncology, Department of Surgery, UC San Diego Moores Cancer Center, La Jolla, California
| | - Gregory A Daniels
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aaron Goodman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Elizabeth Weihe
- Department of Radiology, UC San Diego Moores Cancer Center, La Jolla, California
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Noor Khalid
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Rachel Collier
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Manvita Mareboina
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Paul Riviere
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Theresa J Whitchurch
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Paul T Fanta
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Scott M Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, California
| |
Collapse
|
50
|
Adashek JJ, Kato S, Parulkar R, Szeto CW, Sanborn JZ, Vaske CJ, Benz SC, Reddy SK, Kurzrock R. Transcriptomic silencing as a potential mechanism of treatment resistance. JCI Insight 2020; 5:134824. [PMID: 32493840 DOI: 10.1172/jci.insight.134824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing (NGS) has not revealed all the mechanisms underlying resistance to genomically matched drugs. Here, we performed in 1417 tumors whole-exome tumor (somatic)/normal (germline) NGS and whole-transcriptome sequencing, the latter focusing on a clinically oriented 50-gene panel in order to examine transcriptomic silencing of putative driver alterations. In this large-scale study, approximately 13% of the somatic single nucleotide variants (SNVs) were unexpectedly not expressed as RNA; 23% of patients had ≥1 nonexpressed SNV. SNV-bearing genes consistently transcribed were TP53, PIK3CA, and KRAS; those with lower transcription rates were ALK, CSF1R, ERBB4, FLT3, GNAS, HNF1A, KDR, PDGFRA, RET, and SMO. We also determined the frequency of tumor mutations being germline, rather than somatic, in these and an additional 462 tumors with tumor/normal exomes; 33.8% of germline SNVs within the gene panel were rare (not found after filtering through variant information domains) and at risk of being falsely reported as somatic. Both the frequency of silenced variant transcription and the risk of falsely identifying germline mutations as somatic/tumor related are important phenomena. Therefore, transcriptomics is a critical adjunct to genomics when interrogating patient tumors for actionable alterations, because, without expression of the target aberrations, there will likely be therapeutic resistance.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California, San Diego, Moores Cancer Center, La Jolla, California, USA
| | | | | | | | | | | | | | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California, San Diego, Moores Cancer Center, La Jolla, California, USA
| |
Collapse
|