1
|
Deng N, Reyes-Uribe L, Fahrmann JF, Thoman WS, Munsell MF, Dennison JB, Murage E, Wu R, Hawk ET, Thirumurthi S, Lynch PM, Dieli-Conwright CM, Lazar AJ, Jindal S, Chu K, Chelvanambi M, Basen-Engquist K, Li Y, Wargo JA, McAllister F, Allison JP, Sharma P, Sinha KM, Hanash S, Gilchrist SC, Vilar E. Exercise Training Reduces the Inflammatory Response and Promotes Intestinal Mucosa-Associated Immunity in Lynch Syndrome. Clin Cancer Res 2023; 29:4361-4372. [PMID: 37724990 PMCID: PMC10618653 DOI: 10.1158/1078-0432.ccr-23-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Lynch syndrome (LS) is a hereditary condition with a high lifetime risk of colorectal and endometrial cancers. Exercise is a non-pharmacologic intervention to reduce cancer risk, though its impact on patients with LS has not been prospectively studied. Here, we evaluated the impact of a 12-month aerobic exercise cycling intervention in the biology of the immune system in LS carriers. PATIENTS AND METHODS To address this, we enrolled 21 patients with LS onto a non-randomized, sequential intervention assignation, clinical trial to assess the effect of a 12-month exercise program that included cycling classes 3 times weekly for 45 minutes versus usual care with a one-time exercise counseling session as control. We analyzed the effects of exercise on cardiorespiratory fitness, circulating, and colorectal-tissue biomarkers using metabolomics, gene expression by bulk mRNA sequencing, and spatial transcriptomics by NanoString GeoMx. RESULTS We observed a significant increase in oxygen consumption (VO2peak) as a primary outcome of the exercise and a decrease in inflammatory markers (prostaglandin E) in colon and blood as the secondary outcomes in the exercise versus usual care group. Gene expression profiling and spatial transcriptomics on available colon biopsies revealed an increase in the colonic mucosa levels of natural killer and CD8+ T cells in the exercise group that were further confirmed by IHC studies. CONCLUSIONS Together these data have important implications for cancer interception in LS, and document for the first-time biological effects of exercise in the immune system of a target organ in patients at-risk for cancer.
Collapse
Affiliation(s)
- Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whittney S. Thoman
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark F. Munsell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T. Hawk
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Selvi Thirumurthi
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M. Lynch
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christina M. Dieli-Conwright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alexander J. Lazar
- Department of Behavioral Science, The University of Texas MD Anderson, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson, Houston, Texas
| | - Sonali Jindal
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
| | - Khoi Chu
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Karen Basen-Engquist
- Department of Behavioral Science, The University of Texas MD Anderson, Houston, Texas
| | - Yisheng Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson, Houston, Texas
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - James P. Allison
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
| | - Padmanee Sharma
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan C. Gilchrist
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cardiology, The University of Texas MD Anderson, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| |
Collapse
|
2
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Ugai T, Haruki K, Väyrynen JP, Borowsky J, Fujiyoshi K, Lau MC, Akimoto N, Zhong R, Kishikawa J, Arima K, Shi SS, Zhao M, Fuchs CS, Zhang X, Giannakis M, Song M, Nan H, Meyerhardt JA, Wang M, Nowak JA, Ogino S. Coffee Intake of Colorectal Cancer Patients and Prognosis According to Histopathologic Lymphocytic Reaction and T-Cell Infiltrates. Mayo Clin Proc 2022; 97:124-133. [PMID: 34996545 PMCID: PMC8820462 DOI: 10.1016/j.mayocp.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 08/19/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
Given previous biologic evidence of immunomodulatory effects of coffee, we hypothesized that the association between coffee intake of colorectal cancer patients and survival differs by immune responses. Using a molecular pathologic epidemiology database of 4465 incident colorectal cancer cases, including 1262 cases with molecular data, in the Nurses' Health Study and the Health Professionals Follow-up Study, we examined the association between coffee intake of colorectal cancer patients and survival in strata of levels of histopathologic lymphocytic reaction and T-cell infiltrates in tumor tissue. We did not observe a significant association of coffee intake with colorectal cancer-specific mortality (multivariable-adjusted hazard ratio [HR] for 1-cup increase of coffee intake per day, 0.93; 95% CI, 0.84 to 1.03). Although statistical significance was not reached at the stringent level (α=.005), the association of coffee intake with colorectal cancer-specific mortality differed by Crohn disease-like lymphoid reaction (Pinteraction=.007). Coffee intake was associated with lower colorectal cancer-specific mortality in patients with high Crohn disease-like reaction (multivariable HR for 1-cup increase of coffee intake per day, 0.55; 95% CI, 0.37 to 0.81; Ptrend=.002) but not in patients with intermediate Crohn disease-like reaction (the corresponding HR, 1.02; 95% CI, 0.72 to 1.44) or negative/low Crohn disease-like reaction (the corresponding HR, 0.95; 95% CI, 0.83 to 1.07). The associations of coffee intake with colorectal cancer-specific mortality did not significantly differ by levels of other lymphocytic reaction or any T-cell subset (Pinteraction>.18). There is suggestive evidence for differential prognostic effects of coffee intake by Crohn disease-like lymphoid reaction in colorectal cancer.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shan-Shan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT; Department of Medicine, Yale School of Medicine, New Haven, CT; Smilow Cancer Hospital, New Haven, CT
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marios Giannakis
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston; Division of Gastroenterology, Massachusetts General Hospital, Boston
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis; Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Molin Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| |
Collapse
|
4
|
Renman D, Gylling B, Vidman L, Bodén S, Strigård K, Palmqvist R, Harlid S, Gunnarsson U, van Guelpen B. Density of CD3 + and CD8 + Cells in the Microenvironment of Colorectal Cancer according to Prediagnostic Physical Activity. Cancer Epidemiol Biomarkers Prev 2021; 30:2317-2326. [PMID: 34607838 PMCID: PMC9398178 DOI: 10.1158/1055-9965.epi-21-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Physical activity is associated not only with a decreased risk of developing colorectal cancer but also with improved survival. One putative mechanism is the infiltration of immune cells in the tumor microenvironment. Experimental findings suggest that physical activity may mobilize immune cells to the tumor. We hypothesized that higher levels of physical activity prior to colorectal cancer diagnosis are associated with higher densities of tumor-infiltrating T-lymphocytes in colorectal cancer patients. METHODS The study setting was a northern Swedish population-based cohort, including 109,792 participants with prospectively collected health- and lifestyle-related data. For 592 participants who later developed colorectal cancer, archival tumor tissue samples were used to assess the density of CD3+ and CD8+ cytotoxic T cells by IHC. Odds ratios for associations between self-reported, prediagnostic recreational physical activity and immune cell infiltration were estimated by ordinal logistic regression. RESULTS Recreational physical activity >3 times per week was associated with a higher density of CD8+ T cells in the tumor front and center compared with participants reporting no recreational physical activity. Odds ratios were 2.77 (95% CI, 1.21-6.35) and 2.85 (95% CI, 1.28-6.33) for the tumor front and center, respectively, after adjustment for sex, age at diagnosis, and tumor stage. The risk estimates were consistent after additional adjustment for several potential confounders. For CD3, no clear associations were found. CONCLUSIONS Physical activity may promote the infiltration of CD8+ immune cells in the tumor microenvironment of colorectal cancer. IMPACT The study provides some evidence on how physical activity may alter the prognosis in colorectal cancer.
Collapse
Affiliation(s)
- David Renman
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden.,Corresponding Author: David Renman, Department of Surgical and Perioperative Sciences, Umeå University, SE-90185 Umeå, Sweden. Phone: 46-61184149; E-mail:
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Linda Vidman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Karin Strigård
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ulf Gunnarsson
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
ADCK1 activates the β-catenin/TCF signaling pathway to promote the growth and migration of colon cancer cells. Cell Death Dis 2021; 12:354. [PMID: 33824271 PMCID: PMC8024291 DOI: 10.1038/s41419-021-03624-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
As a result of mutations in the upstream components of the Wnt/β-catenin signaling pathway, this cascade is abnormally activated in colon cancer. Hence, identifying the activation mechanism of this pathway is an urgent need for the treatment of colon cancer. Here, we found an increase in ADCK1 (AarF domain-containing kinase 1) expression in clinical specimens of colon cancer and animal models. Upregulation of ADCK1 expression promoted the colony formation and infiltration of cancer cells. Downregulation of ADCK1 expression inhibited the colony formation and infiltration of cancer cells, in vivo tumorigenesis, migration, and organoid formation. Molecular mechanistic studies demonstrated that ADCK1 interacted with TCF4 (T-cell factor 4) to activate the β-catenin/TCF signaling pathway. In conclusion, our research revealed the functions of ADCK1 in the development of colon cancer and provided potential therapeutic targets.
Collapse
|
6
|
Klassen O, König A, von Haehling S, Braulke F. [Cardiovascular fitness in oncology : Exercise and sport]. Internist (Berl) 2020; 61:1140-1150. [PMID: 33025125 DOI: 10.1007/s00108-020-00882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Malignant diseases lead to a decline in physical performance in a large number of patients. This includes a reduction of the musculoskeletal system, restrictions in cardiovascular fitness and psychogenically influenced syndromes such as fatigue and asthenia. It is not yet clear to what extent physical training can counteract these limitations or undesirable side effects and how this training needs to be designed in the individual situation. AIM OF THIS ARTICLE The aim of this article is to find out whether physical training can be performed in cancer patients, how this training should be designed and which physical disorders can be influenced favorably. MATERIALS AND METHODS In this review, the currently available work on this topic was evaluated and classified with regard to its feasibility and effects in cancer patients. RESULTS AND DISCUSSION Physical training can be performed without complications in most patients even under treatment for the underlying malignant disease. It has a positive effect on physical performance, cardiovascular function, the perception of one's own cancer and overall well-being. Ideally, physical training for cancer patients should include a mixture of strength and endurance training. It should be carried out regularly and its intensity should be slowly increased. The type of physical activity should be adapted to the individual needs of the patient, take into account the particularities of the malignant disease and exclude any risk to the patient. CONCLUSION In summary, a physical training program to accompany cancer therapy should be offered to virtually all patients with malignant disease.
Collapse
Affiliation(s)
- O Klassen
- Institut für Sportwissenschaften, Arbeitsbereich Trainings- und Bewegungswissenschaft, Georg-August-Universität Göttingen, Sprangerweg 2, 37075, Göttingen, Deutschland.
| | - A König
- Klinik für Gastroenterologie, gastrointestinale Onkologie und Endokrinologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - S von Haehling
- Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen, Deutschland.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Göttingen, Göttingen, Deutschland
| | - F Braulke
- Klinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| |
Collapse
|
7
|
Immune Landscape in Tumor Microenvironment: Implications for Biomarker Development and Immunotherapy. Int J Mol Sci 2020; 21:ijms21155521. [PMID: 32752264 PMCID: PMC7432816 DOI: 10.3390/ijms21155521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Integration of the tumor microenvironment as a fundamental part of the tumorigenic process has undoubtedly revolutionized our understanding of cancer biology. Increasing evidence indicates that neoplastic cells establish a dependency relationship with normal resident cells in the affected tissue and, furthermore, develop the ability to recruit new accessory cells that aid tumor development. In addition to normal stromal and tumor cells, this tumor ecosystem includes an infiltrated immune component that establishes complex interactions that have a critical effect during the natural history of the tumor. The process by which immune cells modulate tumor progression is known as immunoediting, a dynamic process that creates a selective pressure that finally leads to the generation of immune-resistant cells and the inability of the immune system to eradicate the tumor. In this context, the cellular and functional characterization of the immune compartment within the tumor microenvironment will help to understand tumor progression and, ultimately, will serve to create novel prognostic tools and improve patient stratification for cancer treatment. Here we review the impact of the immune system on tumor development, focusing particularly on its clinical implications and the current technologies used to analyze immune cell diversity within the tumor.
Collapse
|
8
|
Fujiyoshi K, Chen Y, Haruki K, Ugai T, Kishikawa J, Hamada T, Liu L, Arima K, Borowsky J, Väyrynen JP, Zhao M, Lau MC, Gu S, Shi S, Akimoto N, Twombly TS, Drew DA, Song M, Chan AT, Giovannucci EL, Meyerhardt JA, Fuchs CS, Nishihara R, Lennerz JK, Giannakis M, Nowak JA, Zhang X, Wu K, Ogino S. Smoking Status at Diagnosis and Colorectal Cancer Prognosis According to Tumor Lymphocytic Reaction. JNCI Cancer Spectr 2020; 4:pkaa040. [PMID: 32923934 PMCID: PMC7477375 DOI: 10.1093/jncics/pkaa040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Background Smoking has been associated with worse colorectal cancer patient survival and may potentially suppress the immune response in the tumor microenvironment. We hypothesized that the prognostic association of smoking behavior at colorectal cancer diagnosis might differ by lymphocytic reaction patterns in cancer tissue. Methods Using 1474 colon and rectal cancer patients within 2 large prospective cohort studies (Nurses' Health Study and Health Professionals Follow-up Study), we characterized 4 patterns of histopathologic lymphocytic reaction, including tumor-infiltrating lymphocytes (TILs), intratumoral periglandular reaction, peritumoral lymphocytic reaction, and Crohn's-like lymphoid reaction. Using covariate data of 4420 incident colorectal cancer patients in total, an inverse probability weighted multivariable Cox proportional hazards regression model was conducted to adjust for selection bias due to tissue availability and potential confounders, including tumor differentiation, disease stage, microsatellite instability status, CpG island methylator phenotype, long interspersed nucleotide element-1 methylation, and KRAS, BRAF, and PIK3CA mutations. Results The prognostic association of smoking status at diagnosis differed by TIL status. Compared with never smokers, the multivariable-adjusted colorectal cancer-specific mortality hazard ratio for current smokers was 1.50 (95% confidence interval = 1.10 to 2.06) in tumors with negative or low TIL and 0.43 (95% confidence interval = 0.16 to 1.12) in tumors with intermediate or high TIL (2-sided P interaction = .009). No statistically significant interactions were observed in the other patterns of lymphocytic reaction. Conclusions The association of smoking status at diagnosis with colorectal cancer mortality may be stronger for carcinomas with negative or low TIL, suggesting a potential interplay of smoking and lymphocytic reaction in the colorectal cancer microenvironment.
Collapse
Affiliation(s)
- Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Surgery, Kurume University, Kurume, Fukuoka, Japan
| | - Yang Chen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Liu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Borowsky
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Simeng Gu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
9
|
Exercise shapes redox signaling in cancer. Redox Biol 2020; 35:101439. [PMID: 31974046 PMCID: PMC7284915 DOI: 10.1016/j.redox.2020.101439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/05/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
In this paper of the special issue dedicated for the Olympics 2020, we put the light on an exciting facet of exercise-oncology, which may still be unknown to some audience. Accumulating convincing evidences show that exercise reduces cancer progression and recurrence mainly in colon and breast cancer patients. Interestingly, the positive effects of exercise on cancer outcomes were mainly observed when patients practiced vigorous exercise of 6 METs or more. At the molecular level, experimental studies highlighted that regular vigorous exercise could reduce tumor growth by driving changes in immune system, metabolism, hormones, systemic inflammation, angiogenesis and redox status. In the present review, we describe the main redox-sensitive mechanisms mediated by exercise. These redox mechanisms are of particular therapeutic interest as they may explain the emerging preclinical findings proving that the association of vigorous exercise with chemotherapy or radiotherapy improves the anti-cancer responses of both interventions. Clinical and preclinical studies converge to support the practice of exercise as an adjuvant therapy that improves cancer outcomes. The understanding of the underpinning molecular mechanisms of exercise in cancer can open new avenues to improve cancer care in patients.
Collapse
|
10
|
Hamada T, Nowak JA, Milner DA, Song M, Ogino S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J Pathol 2019; 247:615-628. [PMID: 30632609 PMCID: PMC6509405 DOI: 10.1002/path.5236] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
Molecular pathological epidemiology (MPE) is an integrative transdisciplinary field that addresses heterogeneous effects of exogenous and endogenous factors (collectively termed 'exposures'), including microorganisms, on disease occurrence and consequences, utilising molecular pathological signatures of the disease. In parallel with the paradigm of precision medicine, findings from MPE research can provide aetiological insights into tailored strategies of disease prevention and treatment. Due to the availability of molecular pathological tests on tumours, the MPE approach has been utilised predominantly in research on cancers including breast, lung, prostate, and colorectal carcinomas. Mounting evidence indicates that the microbiome (inclusive of viruses, bacteria, fungi, and parasites) plays an important role in a variety of human diseases including neoplasms. An alteration of the microbiome may be not only a cause of neoplasia but also an informative biomarker that indicates or mediates the association of an epidemiological exposure with health conditions and outcomes. To adequately educate and train investigators in this emerging area, we herein propose the integration of microbiology into the MPE model (termed 'microbiology-MPE'), which could improve our understanding of the complex interactions of environment, tumour cells, the immune system, and microbes in the tumour microenvironment during the carcinogenic process. Using this approach, we can examine how lifestyle factors, dietary patterns, medications, environmental exposures, and germline genetics influence cancer development and progression through impacting the microbial communities in the human body. Further integration of other disciplines (e.g. pharmacology, immunology, nutrition) into microbiology-MPE would expand this developing research frontier. With the advent of high-throughput next-generation sequencing technologies, researchers now have increasing access to large-scale metagenomics as well as other omics data (e.g. genomics, epigenomics, proteomics, and metabolomics) in population-based research. The integrative field of microbiology-MPE will open new opportunities for personalised medicine and public health. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jonathan A Nowak
- Department of Pathology Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|