1
|
Shen H, Chen X, Li X, Jia K, Xiao Z, Dai J. Transplantation of adult spinal cord grafts into spinal cord transected rats improves their locomotor function. SCIENCE CHINA-LIFE SCIENCES 2019; 62:725-733. [DOI: 10.1007/s11427-019-9490-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
|
2
|
Ko CC, Tu TH, Wu JC, Huang WC, Cheng H. Acidic Fibroblast Growth Factor in Spinal Cord Injury. Neurospine 2019; 16:728-738. [PMID: 30653905 PMCID: PMC6944993 DOI: 10.14245/ns.1836216.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/26/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI), with an incidence rate of 246 per million person-years among adults in Taiwan, remains a devastating disease in the modern day. Elderly men with lower socioeconomic status have an even higher risk for SCI. Despite advances made in medicine and technology to date, there are few effective treatments for SCI due to limitations in the regenerative capacity of the adult central nervous system. Experiments and clinical trials have explored neuro-regeneration in human SCI, encompassing cell- and molecule-based therapies. Furthermore, strategies have aimed at restoring connections, including autologous peripheral nerve grafts and biomaterial scaffolds that theoretically promote axonal growth. Most molecule-based therapies target the modulation of inhibitory molecules to promote axonal growth, degrade glial scarring obstacles, and stimulate intrinsic regenerative capacity. Among them, acidic fibroblast growth factor (aFGF) has been investigated for nerve repair; it is mitogenic and pluripotent in nature and could enhance axonal growth and mitigate glial scarring. For more than 2 decades, the authors have conducted multiple trials, including human and animal experiments, using aFGF to repair nerve injuries, including central and peripheral nerves. In these trials, aFGF has shown promise for neural regeneration, and in the future, more trials and applications should investigate aFGF as a neurotrophic factor. Focusing on aFGF, the current review aimed to summarize the historical evolution of the utilization of aFGF in SCI and nerve injuries, to present applications and trials, to summarize briefly its possible mechanisms, and to provide future perspectives.
Collapse
Affiliation(s)
- Chin-Chu Ko
- Jhong Jheng Spine & Orthopedic Hospital, Kaohsiung, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Hsi Tu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jau-Ching Wu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Functional improvement in chronic human spinal cord injury: Four years after acidic fibroblast growth factor. Sci Rep 2018; 8:12691. [PMID: 30139947 PMCID: PMC6107496 DOI: 10.1038/s41598-018-31083-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022] Open
Abstract
Few treatments have proven effective for patients with chronic spinal cord injury (SCI). This study aimed to evaluate the efficacy and safety of acidic fibroblast growth factor (aFGF) in human SCI. This was an open-label prospective clinical trial of aFGF with an extended follow-up to 48 months. All patients were treated with aFGF 3 times, including once directly applied to the injured spinal cord during neurolysis surgery, and twice via lumbar punctures at 3- and 6-months post-operation. Every patient was evaluated with standardized measurements of neurological functions. The trial initially enrolled 60 patients (30 cervical and 30 thoracolumbar SCI), but only 46 (21 cervical- and 25 thoracolumbar-SCI) completed the follow-up. The ASIA impairment scales, motor, pin prick, light touch, and FIM motor subtotal scores were all improved in both groups, except that the ASIA scores of light touch only demonstrated tendency of increase in the cervical-SCI group. All patients had a decrease in dependence, and there were no major adverse events or other oncological problems throughout the follow-up. At 48 months, the study demonstrated that aFGF was safe, feasible, and could yield modest functional improvement in chronic SCI patients. Further randomized control investigations are warranted for validation of its optimal dosage.
Collapse
|
4
|
DePaul MA, Lin CY, Silver J, Lee YS. Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Sci Rep 2017; 7:9018. [PMID: 28827771 PMCID: PMC5567101 DOI: 10.1038/s41598-017-09432-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
Eight weeks post contusive spinal cord injury, we built a peripheral nerve graft bridge (PNG) through the cystic cavity and treated the graft/host interface with acidic fibroblast growth factor (aFGF) and chondroitinase ABC (ChABC). This combinatorial strategy remarkably enhanced integration between host astrocytes and graft Schwann cells, allowing for robust growth, especially of catecholaminergic axons, through the graft and back into the distal spinal cord. In the absence of aFGF+ChABC fewer catecholaminergic axons entered the graft, no axons exited, and Schwann cells and astrocytes failed to integrate. In sharp contrast with the acutely bridge-repaired cord, in the chronically repaired cord only low levels of serotonergic axons regenerated into the graft, with no evidence of re-entry back into the spinal cord. The failure of axons to regenerate was strongly correlated with a dramatic increase of SOCS3 expression. While regeneration was more limited overall than at acute stages, our combinatorial strategy in the chronically injured animals prevented a decline in locomotor behavior and bladder physiology outcomes associated with an invasive repair strategy. These results indicate that PNG+aFGF+ChABC treatment of the chronically contused spinal cord can provide a permissive substrate for the regeneration of certain neuronal populations that retain a growth potential over time, and lead to functional improvements.
Collapse
Affiliation(s)
- Marc A DePaul
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Jerry Silver
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA.
| |
Collapse
|
5
|
Biscola NP, Cartarozzi LP, Ulian-Benitez S, Barbizan R, Castro MV, Spejo AB, Ferreira RS, Barraviera B, Oliveira ALR. Multiple uses of fibrin sealant for nervous system treatment following injury and disease. J Venom Anim Toxins Incl Trop Dis 2017; 23:13. [PMID: 28293254 PMCID: PMC5348778 DOI: 10.1186/s40409-017-0103-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in turn further decreases the chances of a positive outcome. The possibility of using hemostatic substances that also function as a scaffold, such as the fibrin sealant, reduces surgical time and improve postoperative recovery. To date, several studies have demonstrated that human blood derived fibrin sealant produces positive effects in different interventions, becoming an efficient alternative to suturing. To provide an alternative to homologous fibrin sealants, the Center for the Study of Venoms and Venomous Animals (CEVAP, Brazil) has proposed a new bioproduct composed of certified animal components, including a thrombin-like enzyme obtained from snake venom and bubaline fibrinogen. Thus, the present review brings up to date literature assessment on the use of fibrin sealant for nervous system repair and positions the new heterologous bioproduct from CEVAP as an alternative to the commercial counterparts. In this way, clinical and pre-clinical data are discussed in different topics, ranging from central nervous system to peripheral nervous system applications, specifying positive results as well as future enhancements that are necessary for improving the use of fibrin sealant therapy.
Collapse
Affiliation(s)
- Natalia Perussi Biscola
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Suzana Ulian-Benitez
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil.,Neuro Development Lab, School of Biosciences, University of Birmingham, Birmingham, England UK
| | - Roberta Barbizan
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil.,The School of Medicine at Mucuri (FAMMUC), Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), 39803-371 Teófilo Otoni, MG Brazil
| | - Mateus Vidigal Castro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Aline Barroso Spejo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Benedito Barraviera
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Alexandre Leite Rodrigues Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| |
Collapse
|
6
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
7
|
DePaul MA, Lin CY, Silver J, Lee YS. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice. PLoS One 2015; 10:e0139335. [PMID: 26426529 PMCID: PMC4591338 DOI: 10.1371/journal.pone.0139335] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023] Open
Abstract
The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice's injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure.
Collapse
Affiliation(s)
- Marc A. DePaul
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater 2015; 10:015008. [DOI: 10.1088/1748-6041/10/1/015008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Olson L. Combinatory treatments needed for spinal cord injury. Exp Neurol 2013; 248:309-15. [DOI: 10.1016/j.expneurol.2013.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 01/02/2023]
|
10
|
Nakano N, Nakai Y, Seo TB, Homma T, Yamada Y, Ohta M, Suzuki Y, Nakatani T, Fukushima M, Hayashibe M, Ide C. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats. PLoS One 2013; 8:e73494. [PMID: 24039961 PMCID: PMC3770680 DOI: 10.1371/journal.pone.0073494] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 07/30/2013] [Indexed: 12/18/2022] Open
Abstract
It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs) through the cerebrospinal fluid (CSF) has beneficial effects on acute spinal cord injury (SCI) in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury), and/or chronic (4-week post-injury) SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injected three times (once weekly) into the CSF through the fourth ventricle, beginning at 1, 2 and 4 weeks post-injury. At 4 weeks after initial injection, the average BBB score for locomotor assessment increased from 1.0–3.5 points before injection to 9.0-10.9 points in the BMSC-injection subgroups, while, in the PBS (vehicle)-injection subgroups, it increased only from 0.5–4.0 points before injection to 3.0-5.1 points. Numerous axons associated with Schwann cells extended longitudinally through the connective tissue matrices in the astrocyte-devoid lesion without being blocked at either the rostral or the caudal borders in the BMSC-injection subgroups. A small number of BMSCs were found to survive within the spinal cord lesion in SCI of the 1-week post-injury at 2 days of injection, but none at 7 days. No BMSCs were found in the spinal cord lesion at 2 days or at 7 days in the SCI of the 2-week and the 4-week post-injury groups. In an in vitro experiment, BMSC-injected CSF promoted the survival and the neurite extension of cultured neurons more effectively than did the PBS-injected CSF. These results indicate that BMSCs had beneficial effects on locomotor improvement as well as on axonal regeneration in both subacute and chronic SCI rats, and the results also suggest that BMSCs might function as neurotrophic sources via the CSF.
Collapse
Affiliation(s)
- Norihiko Nakano
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Yoshiyasu Nakai
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Tae-Beom Seo
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Tamami Homma
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Yoshihiro Yamada
- Department of Physical Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Masayoshi Ohta
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Toshio Nakatani
- Emergency and Critical Care Center, Kansai Medical University, Osaka, Japan
| | - Masanori Fukushima
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Miki Hayashibe
- Department of Occupational Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Chizuka Ide
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
- Department of Occupational Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
- * E-mail:
| |
Collapse
|
11
|
Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury. J Neurosci 2013; 33:10591-606. [PMID: 23804083 DOI: 10.1523/jneurosci.1116-12.2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a potential regenerative treatment after severe spinal cord injury.
Collapse
|
12
|
Abstract
Over the past 2 decades, the biological understanding of the mechanisms underlying structural and functional repair of the injured central nervous system has strongly increased. This has resulted in the development of multiple experimental treatment strategies with the collective aim of enhancing and surpassing the limited spontaneous recovery occurring in animal models and ultimately humans suffering from spinal cord or brain injuries. Several of these experimental treatments have revealed beneficial effects in animal models of spinal cord injury. With the exception of neurorehabilitative therapies, however, therapeutic interventions that enhance recovery are currently absent within the clinical realm of spinal cord injury. The present review surveys the prospects and challenges in experimental and clinical spinal cord repair. Major shortcomings in experimental research center on the difficulty of closely modeling human traumatic spinal cord injury in animals, the small number of investigations done on cervical spinal injury and tetraplegia, and the differences in lesion models, species, and functional outcome parameters used between laboratories. The main challenges in the clinical field of spinal cord repair are associated with the standardization and sensitivity of functional outcome measures, the definition of the inclusion/exclusion criteria for patient recruitment in trials, and the accuracy and reliability of an early diagnosis to predict subsequent neurological outcome. Research and clinical networks were recently created with the goal of optimizing animal studies and human trials. Promising clinical trials are currently in progress. The time has come to translate the biologic-mechanistic knowledge from basic science into efficacious treatments able to improve the conditions of humans suffering from spinal cord injury.
Collapse
Affiliation(s)
- Linard Filli
- Brain Research Institute, University Zurich and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
13
|
It takes two to tango: activation of cortex and lumbosacral circuitry restores locomotion in spinal cord injury. World Neurosurg 2012; 78:380-3. [PMID: 22960539 DOI: 10.1016/j.wneu.2012.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Abstract
STUDY DESIGN Review. OBJECTIVES To examine the state of research in central nervous system (CNS) regeneration and to suggest an alternative to the sterile research at the lesion site. SETTING Worldwide. METHODS A search of publications using 'PubMed' and a search of the historical literature relevant to CNS regeneration, biological models, the neurone theory, collateral sprouting, spinal shock and the central pattern generator. RESULTS There is no evidence for CNS regeneration. CONCLUSION A century of research focussed on the lesion site has been unproductive. An alternative field of research must be developed and the best candidate is the undamaged CNS.
Collapse
Affiliation(s)
- L S Illis
- Willow Pond House, Lymore Valley, Hampshire, UK.
| |
Collapse
|
15
|
Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacol Ther 2011; 132:57-71. [DOI: 10.1016/j.pharmthera.2011.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 12/26/2022]
|
16
|
Huang WC, Kuo HS, Tsai MJ, Ma H, Chiu CW, Huang MC, Yang LH, Chang PT, Lin YL, Kuo WC, Lee MJ, Liu JC, Cheng H. Adeno-associated virus-mediated human acidic fibroblast growth factor expression promotes functional recovery of spinal cord-contused rats. J Gene Med 2011; 13:283-9. [PMID: 21557400 DOI: 10.1002/jgm.1568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Following spinal cord injury, the delivery of neurotrophic factors to the injured spinal cord has been shown to promote axonal regeneration and functional recovery. In previous studies, we showed that acidic fibroblast growth factor (aFGF) is a potent neurotrophic factor that promotes the regeneration of axotomized spinal cord or dorsal root ganglion neurones. METHODS We constructed a recombinant adeno-associated virus (AAV) vector to express human aFGF and evaluated aFGF expression and function in AAV-aFGF-infected PC12 cells. We analyzed AAV-green fluorescent protein (GFP) tropism and AAV-mediated aFGF expression in contused spinal cords. Animals received behavioural testing to evaluate the functional recovery. RESULTS Overexpression of aFGF was shown in AAV-aFGF-infected PC12 cells in a dose-dependent manner. Concurrently, neurite extension and cell number were significantly increased in AAV-aFGF infected cells. AAV-mediated GFP expression persisted for at least 5 weeks in contused spinal cords, and the most prominently transduced cells were neurones. Contusive injury reduced endogenous aFGF expression in spinal cords. Overexpression of aFGF was demonstrated in AAV-aFGF transduced spinal cords compared to AAV-GFP transduced spinal cords at 3 and 14 days post-injury. Evaluation of motor function revealed that the improvement of AAV-aFGF-treated rats was prominent. Both AAV-aFGF- and recombinant human aFGF-treated rats revealed significantly better recovery at 5 weeks post-injury, compared to vehicle- and AAV-GFP-treated rats. CONCLUSIONS These data suggest that supplement of aFGF improve the functional recovery of spinal cord-contused rats and that AAV-aFGF-mediated gene transfer could be a clinically feasible therapeutic approach for patients after nervous system injuries.
Collapse
Affiliation(s)
- Wen-Cheng Huang
- Centre for Neural Regeneration, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu JC, Huang WC, Chen YC, Tu TH, Tsai YA, Huang SF, Huang HC, Cheng H. Acidic fibroblast growth factor for repair of human spinal cord injury: a clinical trial. J Neurosurg Spine 2011; 15:216-27. [PMID: 21663406 DOI: 10.3171/2011.4.spine10404] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The study aimed to verify the safety and feasibility of applying acidic fibroblast growth factor (aFGF) with fibrin glue in combination with surgical neurolysis for nonacute spinal cord injury. METHODS This open-label, prospective, uncontrolled human clinical trial recruited 60 patients with spinal cord injuries (30 cervical and 30 thoracolumbar). The mean patient age was 36.5 ± 15.33 (mean ± SD) years, and the male/female ratio was 3:1. The mean time from injury to treatment was 25.7 ± 26.58 months, and the cause of injury included motor vehicle accident (26 patients [43.3%]), fall from a height (17 patients [28.3%]), sports (4 patients [6.7%]), and other (13 patients [21.7%]). Application of aFGF with fibrin glue and duraplasty was performed via laminectomy, and an adjuvant booster of combined aFGF and fibrin glue (2 ml) was given at 3 and 6 months postsurgery via lumbar puncture. Outcome measurements included the American Spinal Injury Association (ASIA) motor scores, sensory scores, impairment scales, and neurological levels. Examination of functional independence measures, visual analog scale, MR imaging, electrophysiological and urodynamic studies, hematology and biochemistry tests, tumor markers, and serum inflammatory cytokines were all conducted. All adverse events were monitored and reported. Exclusions were based on refusal, unrelated adverse events, or failure to participate in the planned rehabilitation. RESULTS Forty-nine patients (26 with cervical and 23 with thoracolumbar injuries) completed the 24-month trial. Compared with preoperative conditions, the 24-month postoperative ASIA motor scores improved significantly in the cervical group (from 27.6 ± 15.55 to 37.0 ± 19.93, p < 0.001) and thoracolumbar group (from 56.8 ± 9.21 to 60.7 ± 10.10, p < 0.001). The ASIA sensory scores also demonstrated significant improvement in light touch and pinprick in both groups: from 55.8 ± 24.89 to 59.8 ± 26.47 (p = 0.049) and 56.3 ± 23.36 to 62.3 ± 24.87 (p = 0.003), respectively, in the cervical group and from 75.7 ± 15.65 to 79.2 ± 15.81 (p < 0.001) and 78.2 ± 14.72 to 82.7 ± 16.60 (p < 0.001), respectively, in the thoracolumbar group. At 24-month follow-up, the ASIA impairment scale improved significantly in both groups (30% cervical [p = 0.011] and 30% thoracolumbar [p = 0.003]). There was also significant improvement in neurological level in the cervical (from 5.17 ± 1.60 to 6.27 ± 3.27, p = 0.022) and thoracolumbar (from 18.03 ± 4.19 to 18.67 ± 3.96, p = 0.001) groups. The average sum of motor items in functional independence measure also had significant improvement in both groups (p < 0.05). The walking/wheelchair locomotion subscale showed increased percentages of patients who were ambulatory (from 3.4% to 13.8% and from 17.9% to 35.7% in the cervical and thoracolumbar groups, respectively). There were no related adverse events. CONCLUSIONS The use of aFGF for spinal cord injury was safe and feasible in the present trial. There were significant improvements in ASIA motor and sensory scale scores, ASIA impairment scales, neurological levels, and functional independence measure at 24 months after treatment. Further large-scale, randomized, and controlled investigations are warranted to evaluate the efficacy and long-term results.
Collapse
Affiliation(s)
- Jau-Ching Wu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wang S, Dong H, Zeng YS. Bone Marrow Mesenchymal Stem Cells and Electroacupuncture Downregulate the Inhibitor Molecules and Promote the Axonal Regeneration in the Transected Spinal Cord of Rats. Cell Transplant 2011; 20:475-91. [DOI: 10.3727/096368910x528102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our previous study has reported that electroacupuncture (EA) promotes survival, differentiation of bone marrow mesenchymal stem cells (MSCs), and functional improvement in spinal cord-transected rats. In this study, we further investigated the structural bases of this functional improvement and the potential mechanisms of axonal regeneration in injured spinal cord after MSCs and EA treatment. Five experimental groups, 1) sham control (Sham-control); 2) operated control (Op-control); 3) electroacupuncture treatment (EA); 4) MSCs transplantation (MSCs), and 5) MSCs transplantation combined with electroacupuncture (MSCs + EA), were designed for this study. Western blots and immunohistochemical staining were used to assess the fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs) proteins expression. Basso, Beattie, Bresnahan (BBB) locomotion test, cortical motor evoked potentials (MEPs), and anterograde and retrograde tracing were utilized to assess cortical-spinal neuronal projection regeneration and functional recovery. In the MSCs + EA group, increased labeling descending corticospinal tract (CST) projections into the lesion site showed significantly improved BBB scales and enhanced motor evoked potentials after 10 weeks of MSCs transplant and EA treatment. The structural and functional recovery after MSCs + EA treatment may be due to downregulated GFAP and CSPGs protein expression, which prevented axonal degeneration as well as improved axonal regeneration.
Collapse
Affiliation(s)
- Ying Ding
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing Yan
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wen Ruan
- Department of Acupuncture of the first Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Qing Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jie Li
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Si-Fan Huang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu-Jiao Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shirlene Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Shan Zeng
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Åberg J, Eriksson O, Spens E, Nordblom J, Mattsson P, Sjödahl J, Svensson M, Engqvist H. Calcium sulfate spinal cord scaffold: a study on degradation and fibroblast growth factor 1 loading and release. J Biomater Appl 2010; 26:667-85. [PMID: 20624845 DOI: 10.1177/0885328210373670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, there is no regenerative strategy for the spinal cord that is part of clinical standard of core. Current paths usually include combinations of scaffold materials and active molecules. In a recent study, a permanent dental resin scaffold for treatment of spinal cord injury was designed. The results from studies on rats were promising. However, for potential clinical use, a biodegradable scaffold material that facilitates drug delivery and the regeneration of the spinal cord needs to be developed. Also a biodegradable material is expected to allow a better evaluation of the efficacy of the surgical method. In this article, the suitability of hardened calcium sulfate cement (CSC) for use as degradable spinal cord scaffolds is investigated in bench studies and in vitro studies. Compressive strength, degradation and microstructure, and the loading capability of heparin-activated fibroblast growth factor 1 (FGF1) via soaking were evaluated. The CSC could easily be injected into the scaffold mold and the obtained scaffolds had sufficient strength to endure the loads applied during surgery. When hardened, the CSC formed a porous microstructure suitable for loading of active substances. It was shown that 10 min of FGF1 soaking was enough to obtain a sustained active FGF1 release for 20-35 days. The results showed that CSC is a promising material for spinal cord scaffold fabrication, since it is biodegradable, has sufficient strength, and allows loading and controlled release of active FGF1.
Collapse
Affiliation(s)
- Jonas Åberg
- Technical sciences, Applied Materials Science, Uppsala University Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hackett JM, Dang TT, Tsai EC, Cao X. Electrospun Biocomposite Polycaprolactone/Collagen Tubes as Scaffolds for Neural Stem Cell Differentiation. MATERIALS 2010. [PMCID: PMC5521760 DOI: 10.3390/ma3063714] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Studies using cellular therapies, scaffolds, and tubular structured implants have been carried out with the goal to restore functional recovery after spinal cord injury (SCI). None of these therapeutic strategies, by themselves, have been shown to be sufficient to achieve complete restoration of function. To reverse the devastating effects of SCI, an interdisciplinary approach that combines materials science and engineering, stem cell biology, and neurosurgery is being carried out. We are currently investigating a scaffold that has the ability to deliver growth factors for the proliferation and differentiation of endogenous stem cells. Neural stem cells (NSCs) derived from mice are being used to assess the efficacy of the release of growth factors from the scaffold in vitro. The fabrication of the tubular implant allows a porous scaffold to be formed, which aids in the release of growth factors added to the scaffold.
Collapse
Affiliation(s)
- Joanne M. Hackett
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada; E-Mail: (T.T.D.)
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +46-(0)13-22 1849; Fax: +46-(0)13-22 4273
| | - ThucNhi T. Dang
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada; E-Mail: (T.T.D.)
| | - Eve C. Tsai
- Ottawa Hospital Research Institute, 725 Parkdale Avenue, Ottawa, Ontario, K1Y 4E9, Canada; E-Mail: (E.C.T.)
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, K1N 6N5, Canada; E-Mail: (X.C.)
| |
Collapse
|
21
|
Lee YS, Zdunowski S, Edgerton VR, Roy RR, Zhong H, Hsiao I, Lin VW. Improvement of gait patterns in step-trained, complete spinal cord-transected rats treated with a peripheral nerve graft and acidic fibroblast growth factor. Exp Neurol 2010; 224:429-37. [PMID: 20488178 DOI: 10.1016/j.expneurol.2010.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 02/06/2023]
Abstract
The effects of peripheral nerve grafts (PNG) and acidic fibroblast growth factor (alpha FGF) combined with step training on the locomotor performance of complete spinal cord-transected (ST, T8) adult rats were studied. Rats were assigned randomly to five groups (N=10 per group): sham control (laminectomy only), ST only, ST-step-trained, repaired (ST with PNG and alpha FGF treatment), or repaired-step-trained. Step-trained rats were stepped bipedally on a treadmill 20 min/day, 5 days/week for 6 months. Bipolar intramuscular EMG electrodes were implanted in the soleus and tibialis anterior (TA) muscles of ST-step-trained (n=3) and repaired-step-trained (n=2) rats. Gait analysis was conducted at 3 and 6 months after surgery. Stepping analysis was completed on the best continuous 10-s period of stepping performed in a 2-min trial. Significantly better stepping (number of steps, stance duration, swing duration, maximum step length, and maximum step height) was observed in the repaired and repaired-step-trained than in the ST and ST-step-trained rats. Mean EMG amplitudes in both the soleus and TA were significantly higher and the patterns of activation of flexors and extensors more reciprocal in the repaired-step-trained than ST-step-trained rats. 5-HT fibers were present in the lumbar area of repaired but not ST rats. Thus, PNG plus alpha FGF treatment resulted in a clear improvement in locomotor performance with or without step training. Furthermore, the number of 5-HT fibers observed below the lesion was related directly to stepping performance. These observations indicate that the improved stepping performance in Repaired rats may be due to newly formed supraspinal control via regeneration.
Collapse
Affiliation(s)
- Yu-Shang Lee
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Nomura H, Baladie B, Katayama Y, Morshead CM, Shoichet MS, Tator CH. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury. Neurosurgery 2009; 63:127-41; discussion 141-3. [PMID: 18728578 DOI: 10.1227/01.neu.0000335080.47352.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We describe a new strategy to promote axonal regeneration after subacute or chronic spinal cord injury consisting of intramedullary implantation of chitosan guidance channels containing peripheral nerve (PN) grafts. METHODS Chitosan channels filled with PN grafts harvested from green fluorescent protein rats were implanted in the cavity 1 week (subacute) or 4 weeks (chronic) after 50-g clip injury at T8 and were compared with similarly injured animals implanted with either unfilled channels or no channels. Functional recovery was measured weekly for 12 weeks by open-field locomotion, after which histological examination was performed. RESULTS The implanted channels with PN grafts contained a thick tissue bridge containing as many as 35,000 myelinated axons in both the subacute and chronic spinal cord injury groups, with the greatest number of axons in the channels containing PN grafts implanted subacutely. There were numerous green fluorescent protein-positive donor Schwann cells in the tissue bridges in all animals with PN grafts. Moreover, these Schwann cells had high functional capacity in terms of myelination of the axons in the channels. In addition, PN-filled chitosan channels showed excellent biocompatibility with the adjacent neural tissue and no obvious signs of degradation and minimal tissue reaction at 14 weeks after implantation. In control animals that had unfilled chitosan channels implanted, there was minimal axonal regeneration in the channels; in control animals without channels, there were large cavities in the spinal cords, and the bridges contained only a small number of axons and Schwann cells. Despite the large numbers of axons in the chitosan channel-PN graft group, there was no significant difference in functional recovery between treatment and control groups. CONCLUSION Intramedullary implantation of chitosan guidance channels containing PN grafts in the cavity after subacute spinal cord injury resulted in a thicker bridge containing a larger number of myelinated axons compared with chitosan channels alone. A chitosan channel containing PN grafts is a promising strategy for spinal cord repair.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS. Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 2008; 3:e3336. [PMID: 18852872 PMCID: PMC2566594 DOI: 10.1371/journal.pone.0003336] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 09/09/2008] [Indexed: 12/14/2022] Open
Abstract
Background Human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton's jelly of the umbilical cord can be easily obtained and processed compared with embryonic or bone marrow stem cells. These cells may be a valuable source in the repair of spinal cord injury. Methodology/Principal Findings We examine the effects of HUMSC transplantation after complete spinal cord transection in rats. Approximately 5×105 HUMSCs were transplanted into the lesion site. Three groups of rats were implanted with either untreated HUMSCs (referred to as the stem cell group), or HUMSCs treated with neuronal conditioned medium (NCM) for either three days or six days (referred to as NCM-3 and NCM-6 days, respectively). The control group received no HUMSCs in the transected spinal cord. Three weeks after transplantation, significant improvements in locomotion were observed in all the three groups receiving HUMSCs (stem cell, NCM-3 and NCM-6 days groups). This recovery was accompanied by increased numbers of regenerated axons in the corticospinal tract and neurofilament-positive fibers around the lesion site. There were fewer microglia and reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the stem cell group than in the control group. Transplanted HUMSCs survived for 16 weeks and produced large amounts of human neutrophil-activating protein-2, neurotrophin-3, basic fibroblast growth factor, glucocorticoid induced tumor necrosis factor receptor, and vascular endothelial growth factor receptor 3 in the host spinal cord, which may help spinal cord repair. Conclusions/Significance Transplantation of HUMSCs is beneficial to wound healing after spinal cord injury in rats.
Collapse
Affiliation(s)
- Chang-Ching Yang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Miau-Hwa Ko
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Shao-Yun Hsu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Henrich Cheng
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taiwan, Republic of China
- Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (HC); (Y-SF)
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
- * E-mail: (HC); (Y-SF)
| |
Collapse
|
24
|
Nomura H, Baladie B, Katayama Y, Morshead CM, Shoichet MS, Tator CH. DELAYED IMPLANTATION OF INTRAMEDULLARY CHITOSAN CHANNELS CONTAINING NERVE GRAFTS PROMOTES EXTENSIVE AXONAL REGENERATION AFTER SPINAL CORD INJURY. Neurosurgery 2008. [DOI: 10.1227/01.neu.0000316443.88403.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Nomura H, Zahir T, Kim H, Katayama Y, Kulbatski I, Morshead CM, Shoichet MS, Tator CH. Extramedullary Chitosan Channels Promote Survival of Transplanted Neural Stem and Progenitor Cells and Create a Tissue Bridge After Complete Spinal Cord Transection. Tissue Eng Part A 2008; 14:649-65. [DOI: 10.1089/tea.2007.0180] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroshi Nomura
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Tasneem Zahir
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Howard Kim
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Iris Kulbatski
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Cindi M. Morshead
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Charles H. Tator
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Fehlings MG. Repair of the chronically injured human spinal cord. J Neurosurg Spine 2008; 8:205-6; discussion 206-7. [PMID: 18312070 DOI: 10.3171/spi/2008/8/3/205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Wu JC, Huang WC, Tsai YA, Chen YC, Cheng H. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary Phase I clinical study. J Neurosurg Spine 2008; 8:208-14. [DOI: 10.3171/spi/2008/8/3/208] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Object
The aim of this study was to assess functional outcomes of nerve repair using acidic fibroblast growth factor (FGF) in patients with cervical spinal cord injury (SCI).
Methods
Nine patients who had cervical SCI for longer than 5 months were included in pre- and postoperative assessments of their neurological function. The assessments included evaluating activities of daily living, associated functional ability, and degree of spasticity, motor power, sensation, and pain perception. After the first set of assessments, the authors repaired the injured segment of the spinal cord using a total laminectomy followed by the application of fibrin glue containing acidic FGF. Clinical evaluations were conducted 1, 2, 3, 4, 5, and 6 months after the surgery. Preoperative versus postoperative differences in injury severity and grading of key muscle power and sensory points were calculated using the Wilcoxon signed-rank test.
Results
The preoperative degree of injury severity, as measured using the American Spinal Injury Association (ASIA) scoring system, showed that preoperative motor (52.4 ± 25.9 vs 68.6 ± 21.5), pinprick (61.0 ± 34.9 vs 71.6 ± 31.0), and light touch scores (57.3 ± 33.9 vs 71.9 ± 30.2) were significantly lower than the respective postoperative scores measured 6 months after surgery (p = 0.005, 0.012, and 0.008, respectively).
Conclusions
Based on the significant difference in ASIA motor and sensory scale scores between the preoperative status and the 6-month postoperative follow-up, this novel nerve repair strategy of using acidic FGF may have a role in the repair of human cervical SCI. Modest nerve regeneration occurred in all 9 patients after this procedure without any observed adverse effects. This repair strategy thus deserves further investigation, clinical consideration, and refinement.
Collapse
Affiliation(s)
- Jau-Ching Wu
- 1Department of Neurosurgery and
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 5School of Medicine and
| | - Wen-Cheng Huang
- 1Department of Neurosurgery and
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 5School of Medicine and
| | - Yun-An Tsai
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 3Departments of Physical Medicine and Rehabilitation and
- 5School of Medicine and
| | - Yu-Chun Chen
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 4Family Medicine, Taipei Veterans General Hospital; and
- 5School of Medicine and
| | - Henrich Cheng
- 1Department of Neurosurgery and
- 2Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital
- 6Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
28
|
Vavrek R, Pearse DD, Fouad K. Neuronal Populations Capable of Regeneration following a Combined Treatment in Rats with Spinal Cord Transection. J Neurotrauma 2007; 24:1667-73. [DOI: 10.1089/neu.2007.0290] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Romana Vavrek
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Damien D. Pearse
- Miami Project to Cure Paralysis and Neurological Surgery, University of Miami School of Medicine, Miami, Florida
| | - Karim Fouad
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
29
|
Lee YS, Lin CY, Caiozzo VJ, Robertson RT, Yu J, Lin VW. Repair of spinal cord transection and its effects on muscle mass and myosin heavy chain isoform phenotype. J Appl Physiol (1985) 2007; 103:1808-14. [PMID: 17717118 DOI: 10.1152/japplphysiol.00588.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of significant advances have been developed for treating spinal cord injury during the past two decades. The combination of peripheral nerve grafts and acidic fibroblast growth factor (hereafter referred to as PNG) has been shown to partially restore hindlimb function. However, very little is known about the effects of such treatments in restoring normal muscle phenotype. The primary goal of the current study was to test the hypothesis that PNG would completely or partially restore 1) muscle mass and muscle fiber cross-sectional area and 2) the slow myosin heavy chain phenotype of the soleus muscle. To test this hypothesis, we assigned female Sprague-Dawley rats to three groups: 1) sham control, 2) spinal cord transection (Tx), and 3) spinal cord transection plus PNG (Tx+PNG). Six months following spinal cord transection, the open-field test was performed to assess locomotor function, and then the soleus muscles were harvested and analyzed. SDS-PAGE for single muscle fiber was used to evaluate the myosin heavy chain (MHC) isoform expression pattern following the injury and treatment. Immunohistochemistry was used to identify serotonin (5-HT) fibers in the spinal cord. Compared with the Tx group, the Tx+PNG group showed 1) significantly improved Basso, Beattie, and Bresnahan scores (hindlimb locomotion test), 2) less muscle atrophy, 3) a higher percentage of slow type I fibers, and 4) 5-HT fibers distal to the lesion site. We conclude that the combined treatment of PNG is partially effective in restoring the muscle mass and slow phenotype of the soleus muscle in a T-8 spinal cord-transected rat model.
Collapse
MESH Headings
- Animals
- Body Weight
- Disease Models, Animal
- Female
- Fibroblast Growth Factor 1/pharmacology
- Fibroblast Growth Factor 1/therapeutic use
- Intercostal Nerves/transplantation
- Motor Activity/drug effects
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myosin Heavy Chains/metabolism
- Nerve Regeneration/drug effects
- Organ Size
- Phenotype
- Protein Isoforms/metabolism
- Rats
- Rats, Sprague-Dawley
- Recovery of Function
- Serotonin/metabolism
- Spinal Cord Injuries/drug therapy
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Spinal Cord Injuries/physiopathology
- Spinal Cord Injuries/surgery
- Time Factors
Collapse
Affiliation(s)
- Yu-Shang Lee
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Erschbamer M, Pernold K, Olson L. Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury. J Neurosci 2007; 27:6428-35. [PMID: 17567803 PMCID: PMC6672443 DOI: 10.1523/jneurosci.1037-07.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lack of axon regeneration in the adult CNS has been attributed partly to myelin inhibitors and the properties of astrocytes. After spinal cord injury, proliferating astrocytes not only represent a physical barrier to regenerating axons but also express and secrete molecules that inhibit nerve growth, including chondroitin sulfate proteoglycans (CSPGs). Epidermal growth factor receptor (EGFR) activation triggers astrocytes into becoming reactive astrocytes, and EGFR ligands stimulate the secretion of CSPGs as well as the formation of cribriform astrocyte arrangements that contribute to the formation of glial scars. Recently, it was shown that EGFR inhibitors promote nerve regeneration in vitro and in vivo. Blocking a novel Nogo receptor interacting mechanism and/or effects of EGFR inhibition on astrocytes may underlie these effects. Here we show that rats subjected to weight-drop spinal cord injury can be effectively treated by direct delivery of a potent EGFR inhibitor to the injured area, leading to significantly better functional and structural outcome. Motor and sensory functions are improved and bladder function is restored. The robust effects and the fact that other EGFR inhibitors are in clinical use in cancer treatments make these drugs particularly attractive candidates for clinical trials in spinal cord injury.
Collapse
Affiliation(s)
- Matthias Erschbamer
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Kuo HS, Tsai MJ, Huang MC, Huang WC, Lee MJ, Kuo WC, You LH, Szeto KC, Tsai IL, Chang WC, Chiu CW, Ma H, Chak KF, Cheng H. The combination of peripheral nerve grafts and acidic fibroblast growth factor enhances arginase I and polyamine spermine expression in transected rat spinal cords. Biochem Biophys Res Commun 2007; 357:1-7. [PMID: 17418108 DOI: 10.1016/j.bbrc.2007.02.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/27/2007] [Indexed: 11/23/2022]
Abstract
Treatment with a combination of peripheral nerve grafts and acidic fibroblast growth factor improves hind limb locomotor function after spinal cord transection. This study examined the effect of treatment on expression of arginase I (Arg I) and polyamines. Arg I expression was low in the spinal cords of normal rats but increased following spinal injury. Only fully repaired spinal cords expressed higher Arg I levels 6-14 days following repair. In 10-day repaired spinal cords, high Arg I immunoreactivity was detected in motoneurons and alternatively activated macrophages in the graft area and graft-stump edges, and high levels of the polyamine spermine were expressed by macrophages within the intercostal nerve graft. Thus, in addition to enhancing the expression of Arg I and spermine in repaired spinal cords, our treatment may recruit activated macrophages and create a more favorable environment for axonal regrowth.
Collapse
Affiliation(s)
- Huai-Sheng Kuo
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wu KLH, Hsu C, Chan JYH. Impairment of the mitochondrial respiratory enzyme activity triggers sequential activation of apoptosis-inducing factor-dependent and caspase-dependent signaling pathways to induce apoptosis after spinal cord injury. J Neurochem 2007; 101:1552-66. [PMID: 17298387 DOI: 10.1111/j.1471-4159.2006.04445.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mitochondrion participates in caspase-independent or caspase-dependent apoptotic pathways through the release of apoptosis-inducing factor or cytochrome c. Whether both mitochondrial apoptotic cascades are triggered in the injured spinal cord remains unknown. Here, we demonstrated that neurons, astrocytes and microglia in spinal segments proximal to a complete spinal cord transection underwent two phases of apoptotic cell death. The early phase of high-molecular weight (HMW) DNA fragmentation was associated with nuclear translocation of apoptosis-inducing factor, reduction in mitochondrial respiratory chain enzyme activity and decrease in cellular ATP concentration. The delayed phase of low-molecular weight (LMW) DNA fragmentation was accompanied by cytosolic release of cytochrome c, activation of caspases 9 and 3, and resumption of mitochondrial respiratory functions and ATP contents. Microinfusion of coenzyme Q(10), an electron carrier in mitochondrial respiratory chain, into the epicenter of the transected spinal cord attenuated both phases of induced apoptosis, and reversed the elicited mitochondrial dysfunction, bioenergetic failure, and activation of apoptosis-inducing factor, cytochrome c, or caspases 9 and 3. We conclude that mitochondrial dysfunction after spinal cord transection represents the initiating cellular events that trigger the sequential activation of apoptosis-inducing factor-dependent and caspase-dependent signaling cascades, leading to apoptotic cell death in the injured spinal cord.
Collapse
Affiliation(s)
- Kay L H Wu
- Graduate Institute of Medicine, Kaohsiung Medical University, and Department of Medical Edcuation and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | |
Collapse
|
33
|
Abstract
This special report traces the path of spinal cord injury (SCI) from ancient times through the present and provides an optimistic overview of promising clinical trials and avenues of basic research. The spinal cord injuries of Lord Admiral Sir Horatio Nelson, President James A. Garfield, and General George Patton provide an interesting perspective on the evolution of the standard of care for SCI. The author details the contributions of a wide spectrum of professionals in the United States, Europe, and Australia, as well as the roles of various government and professional organizations, legislation, and overall advances in surgery, anesthesia, trauma care, imaging, pharmacology, and infection control, in the advancement of care for the individual with SCI.
Collapse
Affiliation(s)
- William H Donovan
- The Institute for Rehabilitation and Research, Houston, Texas, Houston, Texas, USA.
| |
Collapse
|
34
|
Tsai EC, Dalton PD, Shoichet MS, Tator CH. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 2006; 27:519-33. [PMID: 16099035 DOI: 10.1016/j.biomaterials.2005.07.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 07/12/2005] [Indexed: 01/28/2023]
Abstract
We have previously shown that a novel synthetic hydrogel channel composed of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (pHEMA-MMA) is biocompatible and supports axonal regeneration after spinal cord injury. Our goal was to improve the number and type of regenerated axons within the spinal cord through the addition of different matrices and growth factors incorporated within the lumen of the channel. After complete spinal cord transection at T8, pHEMA-MMA channels, having an elastic modulus of 263+/-13 kPa were implanted into adult Sprague Dawley rats. The channels were then filled with one of the following matrices: collagen, fibrin, Matrigel, methylcellulose, or smaller pHEMA-MMA tubes placed within a larger pHEMA-MMA channel (called tubes within channels, TWC). We also supplemented selected matrices (collagen and fibrin) with neurotrophic factors, fibroblast growth factor-1 (FGF-1) and neurotrophin-3 (NT-3). After channel implantation, fibrin glue was applied to the cord-channel interface, and a duraplasty was performed with an expanded polytetrafluoroethylene (ePTFE) membrane. Controls included animals that had either complete spinal cord transection and implantation of unfilled pHEMA-MMA channels or complete spinal cord transection. Regeneration was assessed by retrograde axonal tracing with Fluoro-Gold, and immunohistochemistry with NF-200 (for total axon counts) and calcitonin gene related peptide (CGRP, for sensory axon counts) after 8 weeks survival. Fibrin, Matrigel, methylcellulose, collagen with FGF-1, collagen with NT-3, fibrin with FGF-1, and fibrin with NT-3 increased the total axon density within the channel (ANOVA, p<0.05) compared to unfilled channel controls. Only fibrin with FGF-1 decreased the sensory axon density compared to unfilled channel controls (ANOVA, p<0.05). Fibrin promoted the greatest axonal regeneration from reticular neurons, and methylcellulose promoted the greatest regeneration from vestibular and red nucleus neurons. With Matrigel, there was no axonal regeneration from brainstem motor neurons. The addition of FGF-1 increased the axonal regeneration of vestibular neurons, and the addition of NT-3 decreased the total number of axons regenerating from brainstem neurons. The fibrin and TWC showed a consistent improvement in locomotor function at both 7 and 8 weeks. Thus, the present study shows that the presence and type of matrix contained within synthetic hydrogel guidance channels affects the quantity and origin of axons that regenerate after complete spinal cord transection, and can improve functional recovery. Determining the optimum matrices and growth factors for insertion into these guidance channels will improve regeneration of the injured spinal cord.
Collapse
Affiliation(s)
- Eve C Tsai
- Toronto Western Hospital Research Institute and Krembil Neuroscience Centre, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | | | | | | |
Collapse
|