1
|
Koss KM, Son T, Li C, Hao Y, Cao J, Churchward MA, Zhang ZJ, Wertheim JA, Derda R, Todd KG. Toward discovering a novel family of peptides targeting neuroinflammatory states of brain microglia and astrocytes. J Neurochem 2024; 168:3386-3414. [PMID: 37171455 PMCID: PMC10640667 DOI: 10.1111/jnc.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Microglia are immune-derived cells critical to the development and healthy function of the brain and spinal cord, yet are implicated in the active pathology of many neuropsychiatric disorders. A range of functional phenotypes associated with the healthy brain or disease states has been suggested from in vivo work and were modeled in vitro as surveying, reactive, and primed sub-types of primary rat microglia and mixed microglia/astrocytes. It was hypothesized that the biomolecular profile of these cells undergoes a phenotypical change as well, and these functional phenotypes were explored for potential novel peptide binders using a custom 7 amino acid-presenting M13 phage library (SX7) to identify unique peptides that bind differentially to these respective cell types. Surveying glia were untreated, reactive were induced with a lipopolysaccharide treatment, recovery was modeled with a potent anti-inflammatory treatment dexamethasone, and priming was determined by subsequently challenging the cells with interferon gamma. Microglial function was profiled by determining the secretion of cytokines and nitric oxide, and expression of inducible nitric oxide synthase. After incubation with the SX7 phage library, populations of SX7-positive microglia and/or astrocytes were collected using fluorescence-activated cell sorting, SX7 phage was amplified in Escherichia coli culture, and phage DNA was sequenced via next-generation sequencing. Binding validation was done with synthesized peptides via in-cell westerns. Fifty-eight unique peptides were discovered, and their potential functions were assessed using a basic local alignment search tool. Peptides potentially originated from proteins ranging in function from a variety of supportive glial roles, including synapse support and pruning, to inflammatory incitement including cytokine and interleukin activation, and potential regulation in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- K M Koss
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - T Son
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - C Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - Y Hao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - J Cao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biology and Environmental Sciences, Concordia University of Edmonton, Alberta, Edmonton, Canada
| | - Z J Zhang
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - J A Wertheim
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - R Derda
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biomedical Engineering, University of Alberta, Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Fatemi SH, Otte ED, Folsom TD, Eschenlauer AC, Roper RJ, Aman JW, Thuras PD. Early Chronic Fluoxetine Treatment of Ts65Dn Mice Rescues Synaptic Vesicular Deficits and Prevents Aberrant Proteomic Alterations. Genes (Basel) 2024; 15:452. [PMID: 38674386 PMCID: PMC11049293 DOI: 10.3390/genes15040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Elysabeth D. Otte
- Department of Biology, Indiana University, Indianapolis, IN 46202, USA;
| | - Timothy D. Folsom
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Arthur C. Eschenlauer
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA;
| | - Justin W. Aman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Paul D. Thuras
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School and VA Health Care System, One Veterans Drive, Minneapolis, MN 55417, USA
| |
Collapse
|
3
|
Wu Z, Li T, Jiang Z, Zheng J, Gu Y, Liu Y, Liu Y, Xie Z. Human pangenome analysis of sequences missing from the reference genome reveals their widespread evolutionary, phenotypic, and functional roles. Nucleic Acids Res 2024; 52:2212-2230. [PMID: 38364871 PMCID: PMC10954445 DOI: 10.1093/nar/gkae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
Nonreference sequences (NRSs) are DNA sequences present in global populations but absent in the current human reference genome. However, the extent and functional significance of NRSs in the human genomes and populations remains unclear. Here, we de novo assembled 539 genomes from five genetically divergent human populations using long-read sequencing technology, resulting in the identification of 5.1 million NRSs. These were merged into 45284 unique NRSs, with 29.7% being novel discoveries. Among these NRSs, 38.7% were common across the five populations, and 35.6% were population specific. The use of a graph-based pangenome approach allowed for the detection of 565 transcript expression quantitative trait loci on NRSs, with 426 of these being novel findings. Moreover, 26 NRS candidates displayed evidence of adaptive selection within human populations. Genes situated in close proximity to or intersecting with these candidates may be associated with metabolism and type 2 diabetes. Genome-wide association studies revealed 14 NRSs to be significantly associated with eight phenotypes. Additionally, 154 NRSs were found to be in strong linkage disequilibrium with 258 phenotype-associated SNPs in the GWAS catalogue. Our work expands the understanding of human NRSs and provides novel insights into their functions, facilitating evolutionary and biomedical researches.
Collapse
Affiliation(s)
- Zhikun Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zehang Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhou Gu
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
- University of Wisconsin-Madison, WI, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Han Y, Huang C, Pan Y, Gu X. Single Cell Sequencing Technology and Its Application in Alzheimer's Disease. J Alzheimers Dis 2024; 97:1033-1050. [PMID: 38217599 DOI: 10.3233/jad-230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Alzheimer's disease (AD) involves degeneration of cells in the brain. Due to insidious onset and slow progression, AD is often not diagnosed until it gets progressed to a more severe stage. The diagnosis and treatment of AD has been a challenge. In recent years, high-throughput sequencing technologies have exhibited advantages in exploring the pathogenesis of diseases. However, the types of cells of the central nervous system are complex and traditional bulk sequencing cannot reflect their heterogeneity. Single-cell sequencing technology enables study at the individual cell level and has an irreplaceable advantage in the study of complex diseases. In recent years, this field has expanded rapidly and several types of single-cell sequencing technologies have emerged, including transcriptomics, epigenomics, genomics and proteomics. This review article provides an overview of these single-cell sequencing technologies and their application in AD.
Collapse
Affiliation(s)
- Yuru Han
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Congying Huang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuhui Pan
- Center for Disease Control and Prevention of Harbin, Harbin, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Wang W, Wang T, Gao Y, Liang G, Pu Y, Zhang J. Model of neural development by differentiating human induced pluripotent stem cells into neural progenitor cells to study the neurodevelopmental toxicity of lead. Food Chem Toxicol 2023; 179:113947. [PMID: 37467947 DOI: 10.1016/j.fct.2023.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Lead (Pb) exposure causes immeasurable damage to multiple human systems, particularly the central nervous system (CNS). In this study, human induced pluripotent stem cells (hiPSCs) were differentiated into neural progenitor cells (NPCs) to investigate the neurotoxic effects of Pb. The hiPSCs were treated with 0, 0.5, 1.0, 2.5, 5.0 and 10.0 μmol/L Pb for 7 days, whereas embryoid bodies (EBs) and NPCs were treated with 0, 0.1, 0.5, and 1.0 μmol/L Pb for 7 days. Pb exposure disrupted the cell cycle and caused apoptosis in hiPSCs, EBs, and NPCs. Besides, Pb inhibited the differentiation of NPCs and EBs. Whole exome sequencing revealed 2509, 2413, and 1984 single nucleotide variants (SNVs) caused by Pb in hiPSCs, EBs, and NPCs, respectively. The common mutation sites in the exon region were mostly nonsynonymous mutations. We identified 18, 19, and 18 common deleterious mutations in hiPSCs, EBs, and NPCs, respectively. Additionally, Online Mendelian Inheritance in Man database analysis revealed 30, 20, and 13 genes related to CNS disorders in hiPSCs, EBs, and NPCs, respectively. Our findings suggest that this in vitro model may supplement animal models and be applied to the study of neurodevelopmental toxicity in the future.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yu Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China; Jiangsu Institute for Sports and Health (JISH), Nanjing, 211100, China.
| |
Collapse
|
6
|
Andrawus M, Sharvit L, Touitou N, Lerrer B, Cohen HY, Atzmon G. Copy number variation as a tool for implementing pregnancy as an aging model. Aging (Albany NY) 2023; 15:7922-7932. [PMID: 37639552 PMCID: PMC10496986 DOI: 10.18632/aging.204936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Copy number variations (CNV) are a major contributor to genome variability and have been linked to aging and other degradable phenotypes such as pregnancy physiology. To demonstrate how pregnancy can be used as a model of aging, we used CNVs from pregnant mice. Candidate CNVs were selected by applying case-control analysis in human centenarians compared with control groups. These CNVs were aligned with the mouse genome and their copy variation was assessed using qRT-PCR in liver and blood tissue samples from pregnant mice throughout pregnancy (baseline; first, second, and third trimester; post-partum). Eight of the ten selected CNVs demonstrated a significant decline/increase trend throughout the pregnancy followed by opposite direction soon after delivery in the liver and blood of the mouse tissues. Furthermore, significant differential expression was detected among the candidate CNVs' close vicinity genes (APA2A, LSS, RBDHF1, PLAAT1, and SCL17A2), but not in the WSCD2 gene. Establishing a genetic link between longevity and pregnancy is a significant step toward implementing the pregnancy process as a model for aging. These results in pregnant mice highlight the mechanism and similarities between pregnancy and aging. Investigating the mechanisms that cause such rejuvenation after labor could change our aging treatment paradigm.
Collapse
Affiliation(s)
- Mariana Andrawus
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | - Noga Touitou
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Batia Lerrer
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Y. Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
7
|
Chandy T. Intervention of next-generation sequencing in diagnosis of Alzheimer's disease: challenges and future prospects. Dement Neuropsychol 2023; 17:e20220025. [PMID: 37577182 PMCID: PMC10417152 DOI: 10.1590/1980-5764-dn-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 08/15/2023] Open
Abstract
Clinical diagnosis of several neurodegenerative disorders based on clinical phenotype is challenging due to its heterogeneous nature and overlapping disease manifestations. Therefore, the identification of underlying genetic mechanisms is of paramount importance for better diagnosis and therapeutic regimens. With the emergence of next-generation sequencing, it becomes easier to identify all gene variants in the genome simultaneously, with a system-wide and unbiased approach. Presently various bioinformatics databases are maintained on discovered gene variants and phenotypic indications are available online. Since individuals are unique in their genome, evaluation based on their genetic makeup helps evolve the diagnosis, counselling, and treatment process at the personal level. This article aims to briefly summarize the utilization of next-generation sequencing in deciphering the genetic causes of Alzheimer's disease and address the limitations of whole genome and exome sequencing.
Collapse
Affiliation(s)
- Tijimol Chandy
- MedGenome Labs Pvt. Ltd., Bangalore-560100, Karnataka, India
| |
Collapse
|
8
|
Yang X, Wang X, Zou Y, Zhang S, Xia M, Fu L, Vollger MR, Chen NC, Taylor DJ, Harvey WT, Logsdon GA, Meng D, Shi J, McCoy RC, Schatz MC, Li W, Eichler EE, Lu Q, Mao Y. Characterization of large-scale genomic differences in the first complete human genome. Genome Biol 2023; 24:157. [PMID: 37403156 PMCID: PMC10320979 DOI: 10.1186/s13059-023-02995-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.
Collapse
Affiliation(s)
- Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Zou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Manying Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lianting Fu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Dan Meng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Shi
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Walker CK, Greathouse KM, Tuscher JJ, Dammer EB, Weber AJ, Liu E, Curtis KA, Boros BD, Freeman CD, Seo JV, Ramdas R, Hurst C, Duong DM, Gearing M, Murchison CF, Day JJ, Seyfried NT, Herskowitz JH. Cross-Platform Synaptic Network Analysis of Human Entorhinal Cortex Identifies TWF2 as a Modulator of Dendritic Spine Length. J Neurosci 2023; 43:3764-3785. [PMID: 37055180 PMCID: PMC10198456 DOI: 10.1523/jneurosci.2102-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Proteomic studies using postmortem human brain tissue samples have yielded robust assessments of the aging and neurodegenerative disease(s) proteomes. While these analyses provide lists of molecular alterations in human conditions, like Alzheimer's disease (AD), identifying individual proteins that affect biological processes remains a challenge. To complicate matters, protein targets may be highly understudied and have limited information on their function. To address these hurdles, we sought to establish a blueprint to aid selection and functional validation of targets from proteomic datasets. A cross-platform pipeline was engineered to focus on synaptic processes in the entorhinal cortex (EC) of human patients, including controls, preclinical AD, and AD cases. Label-free quantification mass spectrometry (MS) data (n = 2260 proteins) was generated on synaptosome fractionated tissue from Brodmann area 28 (BA28; n = 58 samples). In parallel, dendritic spine density and morphology was measured in the same individuals. Weighted gene co-expression network analysis was used to construct a network of protein co-expression modules that were correlated with dendritic spine metrics. Module-trait correlations were used to guide unbiased selection of Twinfilin-2 (TWF2), which was the top hub protein of a module that positively correlated with thin spine length. Using CRISPR-dCas9 activation strategies, we demonstrated that boosting endogenous TWF2 protein levels in primary hippocampal neurons increased thin spine length, thus providing experimental validation for the human network analysis. Collectively, this study describes alterations in dendritic spine density and morphology as well as synaptic proteins and phosphorylated tau from the entorhinal cortex of preclinical and advanced stage AD patients.SIGNIFICANCE STATEMENT Proteomic studies can yield vast lists of molecules that are altered under various experimental or disease conditions. Here, we provide a blueprint to facilitate mechanistic validation of protein targets from human brain proteomic datasets. We conducted a proteomic analysis of human entorhinal cortex (EC) samples spanning cognitively normal and Alzheimer's disease (AD) cases with a comparison of dendritic spine morphology in the same samples. Network integration of proteomics with dendritic spine measurements allowed for unbiased discovery of Twinfilin-2 (TWF2) as a regulator of dendritic spine length. A proof-of-concept experiment in cultured neurons demonstrated that altering Twinfilin-2 protein level induced corresponding changes in dendritic spine length, thus providing experimental validation for the computational framework.
Collapse
Affiliation(s)
- Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Evan Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Benjamin D Boros
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Cameron D Freeman
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jung Vin Seo
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Raksha Ramdas
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Charles F Murchison
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
10
|
Nilsson J, Cousins KAQ, Gobom J, Portelius E, Chen-Plotkin A, Shaw LM, Grossman M, Irwin DJ, Trojanowski JQ, Zetterberg H, Blennow K, Brinkmalm A. Cerebrospinal fluid biomarker panel of synaptic dysfunction in Alzheimer's disease and other neurodegenerative disorders. Alzheimers Dement 2023; 19:1775-1784. [PMID: 36239248 PMCID: PMC10102247 DOI: 10.1002/alz.12809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. METHOD Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). RESULTS Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). DISCUSSION Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. HIGHLIGHTS A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
| | - Katheryn AQ Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Johan Gobom
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| |
Collapse
|
11
|
Scaduto P, Lauterborn JC, Cox CD, Fracassi A, Zeppillo T, Gutierrez BA, Keene CD, Crane PK, Mukherjee S, Russell WK, Taglialatela G, Limon A. Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer's disease neuropathologic change. Acta Neuropathol 2023; 145:303-324. [PMID: 36538112 PMCID: PMC9925531 DOI: 10.1007/s00401-022-02526-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Berenice A Gutierrez
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
12
|
A multi-omics machine learning framework in predicting the survival of colorectal cancer patients. Comput Biol Med 2022; 146:105516. [DOI: 10.1016/j.compbiomed.2022.105516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
|
13
|
Tagliatti E, Cortese K. Imaging Endocytosis Dynamics in Health and Disease. MEMBRANES 2022; 12:membranes12040393. [PMID: 35448364 PMCID: PMC9028293 DOI: 10.3390/membranes12040393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake, guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover, it plays an important role in dead cell clearance and defense against external microbes. Finally, endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments. Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been associated with several human conditions such as cancer, neurological disorders, and virus infections, among others. Over the last decades, a lot of research has been focused on developing advanced imaging methods to monitor endocytosis events with high resolution in living cells and tissues. These include fluorescence imaging, electron microscopy, and correlative and super-resolution microscopy. In this review, we outline the major endocytic pathways and briefly discuss how defects in the molecular machinery of these pathways lead to disease. We then discuss the current imaging methodologies used to study endocytosis in different contexts, highlighting strengths and weaknesses.
Collapse
Affiliation(s)
- Erica Tagliatti
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Milano, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Correspondence: (E.T.); (K.C.)
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
- Correspondence: (E.T.); (K.C.)
| |
Collapse
|
14
|
Pérez RF, Alba-Linares JJ, Tejedor JR, Fernández AF, Calero M, Román-Domínguez A, Borrás C, Viña J, Ávila J, Medina M, Fraga MF. Blood DNA methylation patterns in older adults with evolving dementia. J Gerontol A Biol Sci Med Sci 2022; 77:1743-1749. [PMID: 35299244 PMCID: PMC9434456 DOI: 10.1093/gerona/glac068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/14/2022] Open
Abstract
Dementia and cognitive disorders are major aging-associated pathologies. The prevalence and severity of these conditions are influenced by both genetic and environmental factors. Reflecting this, epigenetic alterations have been associated with each of these processes, especially at the level of DNA methylation, and such changes may help explain the observed interindividual variability in the development of the 2 pathologies. However, the importance of epigenetic alterations in explaining their etiology is unclear because little is known about the timing of when they appear. Here, using Illumina MethylationEPIC arrays, we have longitudinally analyzed the peripheral blood methylomes of cognitively healthy older adults (>70 year), some of whom went on to develop dementia while others stayed healthy. We have characterized 34 individuals at the prediagnosis stage and at a 4-year follow-up in the postdiagnosis stage (total n = 68). Our results show multiple DNA methylation alterations linked to dementia status, particularly at the level of differentially methylated regions. These loci are associated with several dementia-related genes, including PON1, AP2A2, MAGI2, POT1, ITGAX, PACSIN1, SLC2A8, and EIF4E. We also provide validation of the previously reported epigenetic alteration of HOXB6 and PM20D1. Importantly, we show that most of these regions are already altered in the prediagnosis stage of individuals who go on to develop dementia. In conclusion, our observations suggest that dementia-associated epigenetic patterns that have specific biological features are already present before diagnosis, and thus may be important in the design of epigenetic biomarkers for disease detection based on peripheral tissues.
Collapse
Affiliation(s)
- Raúl Fernández Pérez
- Cancer Epigenetics and Nanomedicine Laboratory. Nanomaterials and Nanotechnology Research Center (CINN-CSIC). Health Research Institute of Asturias (ISPA-FINBA). Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain. Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII)
| | - Juan José Alba-Linares
- Cancer Epigenetics and Nanomedicine Laboratory. Nanomaterials and Nanotechnology Research Center (CINN-CSIC). Health Research Institute of Asturias (ISPA-FINBA). Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain. Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII)
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory. Nanomaterials and Nanotechnology Research Center (CINN-CSIC). Health Research Institute of Asturias (ISPA-FINBA). Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain. Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII)
| | - Agustín Fernández Fernández
- Cancer Epigenetics and Nanomedicine Laboratory. Nanomaterials and Nanotechnology Research Center (CINN-CSIC). Health Research Institute of Asturias (ISPA-FINBA). Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain. Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII)
| | - Miguel Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES-ISCIII, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES-ISCIII, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES-ISCIII, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Jesús Ávila
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CBMSO) CSIC-UAM, Madrid, Spain
| | - Miguel Medina
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Mario Fernández Fraga
- Cancer Epigenetics and Nanomedicine Laboratory. Nanomaterials and Nanotechnology Research Center (CINN-CSIC). Health Research Institute of Asturias (ISPA-FINBA). Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain. Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII)
| |
Collapse
|
15
|
Wang M, Song WM, Ming C, Wang Q, Zhou X, Xu P, Krek A, Yoon Y, Ho L, Orr ME, Yuan GC, Zhang B. Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease: review, recommendation, implementation and application. Mol Neurodegener 2022; 17:17. [PMID: 35236372 PMCID: PMC8889402 DOI: 10.1186/s13024-022-00517-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. Extensive clinical and genomic studies have revealed biomarkers, risk factors, pathways, and targets of AD in the past decade. However, the exact molecular basis of AD development and progression remains elusive. The emerging single-cell sequencing technology can potentially provide cell-level insights into the disease. Here we systematically review the state-of-the-art bioinformatics approaches to analyze single-cell sequencing data and their applications to AD in 14 major directions, including 1) quality control and normalization, 2) dimension reduction and feature extraction, 3) cell clustering analysis, 4) cell type inference and annotation, 5) differential expression, 6) trajectory inference, 7) copy number variation analysis, 8) integration of single-cell multi-omics, 9) epigenomic analysis, 10) gene network inference, 11) prioritization of cell subpopulations, 12) integrative analysis of human and mouse sc-RNA-seq data, 13) spatial transcriptomics, and 14) comparison of single cell AD mouse model studies and single cell human AD studies. We also address challenges in using human postmortem and mouse tissues and outline future developments in single cell sequencing data analysis. Importantly, we have implemented our recommended workflow for each major analytic direction and applied them to a large single nucleus RNA-sequencing (snRNA-seq) dataset in AD. Key analytic results are reported while the scripts and the data are shared with the research community through GitHub. In summary, this comprehensive review provides insights into various approaches to analyze single cell sequencing data and offers specific guidelines for study design and a variety of analytic directions. The review and the accompanied software tools will serve as a valuable resource for studying cellular and molecular mechanisms of AD, other diseases, or biological systems at the single cell level.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Yonejung Yoon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Miranda E. Orr
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| |
Collapse
|
16
|
Srinivasan S, Gal J, Bachstetter A, Nelson PT. Alpha adaptins show isoform-specific association with neurofibrillary tangles in Alzheimer's disease. Neuropathol Appl Neurobiol 2022; 48:e12776. [PMID: 34820873 PMCID: PMC8810620 DOI: 10.1111/nan.12776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
AIMS The heterotetrameric assembly protein complex 2 (AP-2) is a central hub for clathrin-dependent endocytosis. The AP-2 α-adaptin subunit has two major isoforms, encoded by two separate genes: AP2A1 and AP2A2. Endocytosis has been implicated in the pathogenesis of neurodegenerative disease, and recent studies linked α-adaptins (gene variants, splicing defects and altered expression) with late-onset Alzheimer's disease (LOAD) risk. Here, we used multiple antibodies to investigate α-adaptin isoforms and their localization in human brains. METHODS The specificities of 10 different α-adaptin antibodies were evaluated using immunoblots after human AP2A1 and AP2A2 plasmid transfection in cultured cells. Additional immunoblot analyses were then performed on protein homogenates from control and LOAD subjects. Formalin-fixed, paraffin-embedded brain sections from control and LOAD subjects were immunohistochemically stained, and immunofluorescence experiments were performed for quantitation of colocalisation with digital image analysis. RESULTS Eight of the 10 evaluated antibodies recognised transfected α-adaptin proteins on immunoblots. The α-adaptin subspecies were relatively uniformly expressed in five different human brain regions. The α-adaptins were present in the detergent-insoluble fraction from cognitively impaired, but less so in control, brains. Immunohistochemical analyses showed colocalisation of AP2A1 with tau pathology in LOAD brains. By contrast, AP2A2 colocalised with microglial cells. CONCLUSIONS These observations provide evidence of isoform-specific changes of α-adaptins in the brains of LOAD subjects. Antibodies that were verified to recognise AP2A1, but not AP2A2, labelled neurofibrillary tangles of LOAD patients. The findings extend our understanding of AP-2 proteins in the human brain in healthy and diseased states.
Collapse
Affiliation(s)
- Sukanya Srinivasan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536
| | - Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, 40536
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, 40536
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536
- Department of Pathology, University of Kentucky, Lexington, KY, 40536
| |
Collapse
|
17
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Moulton MJ, Barish S, Ralhan I, Chang J, Goodman LD, Harland JG, Marcogliese PC, Johansson JO, Ioannou MS, Bellen HJ. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease-associated genes. Proc Natl Acad Sci U S A 2021; 118:e2112095118. [PMID: 34949639 PMCID: PMC8719885 DOI: 10.1073/pnas.2112095118] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP Our data also show that ROS enhances Aβ42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Jake G Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | | | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030;
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
19
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Nilsson J, Gobom J, Sjödin S, Brinkmalm G, Ashton NJ, Svensson J, Johansson P, Portelius E, Zetterberg H, Blennow K, Brinkmalm A. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12179. [PMID: 33969172 PMCID: PMC8087978 DOI: 10.1002/dad2.12179] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Synaptic dysfunction and degeneration is one of the earliest events in Alzheimer's disease (AD) and the best correlate of cognitive decline. Thus, identification and validation of biomarkers reflecting synaptic degeneration to be used as prognostic biomarkers are greatly needed. METHOD Solid-phase extraction and parallel reaction monitoring mass spectrometry were used to quantify 17 synaptic proteins in CSF, in two cross-sectional studies including AD (n = 52) and controls (n = 37). RESULTS Increased concentrations of beta-synuclein, gamma-synuclein, neurogranin, phosphatidylethanolamine-binding protein 1, and 14-3-3 proteins were observed in AD patients compared to controls, while neuronal pentraxin-2 and neuronal pentraxin receptor were decreased. DISCUSSION We have established a method with a novel panel of synaptic proteins as biomarkers of synaptic dysfunction. The results indicate that several of the proteins included in the panel may serve as synaptic biomarkers for AD.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Johan Gobom
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Simon Sjödin
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Nicholas J. Ashton
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of MedicineThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Per Johansson
- Department of Internal Medicine and Clinical Nutrition, Institute of MedicineThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Clinical SciencesLund UniversityLundSweden
| | - Erik Portelius
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Ann Brinkmalm
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
21
|
Hark TJ, Rao NR, Castillon C, Basta T, Smukowski S, Bao H, Upadhyay A, Bomba-Warczak E, Nomura T, O'Toole ET, Morgan GP, Ali L, Saito T, Guillermier C, Saido TC, Steinhauser ML, Stowell MHB, Chapman ER, Contractor A, Savas JN. Pulse-Chase Proteomics of the App Knockin Mouse Models of Alzheimer's Disease Reveals that Synaptic Dysfunction Originates in Presynaptic Terminals. Cell Syst 2020; 12:141-158.e9. [PMID: 33326751 DOI: 10.1016/j.cels.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Compromised protein homeostasis underlies accumulation of plaques and tangles in Alzheimer's disease (AD). To observe protein turnover at early stages of amyloid beta (Aβ) proteotoxicity, we performed pulse-chase proteomics on mouse brains in three genetic models of AD that knock in alleles of amyloid precursor protein (APP) prior to the accumulation of plaques and during disease progression. At initial stages of Aβ accumulation, the turnover of proteins associated with presynaptic terminals is selectively impaired. Presynaptic proteins with impaired turnover, particularly synaptic vesicle (SV)-associated proteins, have elevated levels, misfold in both a plaque-dependent and -independent manner, and interact with APP and Aβ. Concurrent with elevated levels of SV-associated proteins, we found an enlargement of the SV pool as well as enhancement of presynaptic potentiation. Together, our findings reveal that the presynaptic terminal is particularly vulnerable and represents a critical site for manifestation of initial AD etiology. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Timothy J Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nalini R Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charlotte Castillon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tamara Basta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Samuel Smukowski
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Huan Bao
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshihiro Nomura
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Garry P Morgan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Laith Ali
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Takashi Saito
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi 467-8601, Japan
| | - Christelle Guillermier
- Center for NanoImaging, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02138, USA
| | - Takaomi C Saido
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Matthew L Steinhauser
- Center for NanoImaging, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02138, USA; Department of Medicine, Divisions of Genetics and Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA; Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Edwin R Chapman
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|