1
|
Williams GK, Akkermans J, Lawson M, Syta P, Staelens S, Adhikari MH, Morton AJ, Nitzsche B, Boltze J, Christou C, Bertoglio D, Ahamed M. Imaging Glucose Metabolism and Dopaminergic Dysfunction in Sheep ( Ovis aries) Brain Using Positron Emission Tomography Imaging Reveals Abnormalities in OVT73 Huntington's Disease Sheep. ACS Chem Neurosci 2024; 15:4082-4091. [PMID: 39420554 DOI: 10.1021/acschemneuro.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease that causes cognitive, movement, behavioral, and sleep disturbances, which over time result in progressive disability and eventually death. Clinical translation of novel therapeutics and imaging probes could be accelerated by additional testing in well-characterized large animal models of HD. The major goal of our preliminary cross-sectional study is to demonstrate the feasibility and utility of the unique transgenic sheep model of HD (OVT73) in positron emission tomography (PET) imaging. PET imaging studies were performed in healthy merino sheep (6 year old, n = 3) and OVT73 HD sheep (5.5 year old, n = 3, and 11 year old, n = 3). Region-of-interest and brain atlas labels were defined for regional analyses by using a sheep brain template. [18F]fluorodeoxyglucose ([18F]FDG) was employed to compare the regional brain glucose metabolism and variations in FDG uptake between control and HD sheep. We also used [18F]fluoro-3,4-dihydroxyphenylalanine ([18F]FDOPA) to compare the extent of striatal dysfunction and evaluated the binding potential (BPND) in key brain regions between the groups. Compared with healthy controls and 11 year old HD sheep, the 5.5 year old HD sheep exhibited significantly increased [18F]FDG uptake in several cortical and subcortical brain regions (P < 0.05-0.01). No difference in [18F]FDG uptake was observed between healthy controls and 11 year old HD sheep. Analysis of the [18F]FDOPA BPND parametric maps revealed clusters of reduced binding potential in the 5.5 year old and 11 year old HD sheep compared to the 6 year old control sheep. In this first-of-its-kind study, we showed the usefulness and validity of HD sheep model in imaging cerebral glucose metabolism and dopamine uptake using PET imaging. The identification of discrete patterns of metabolic abnormality using [18F]FDG and decline of [18F]FDOPA uptake may provide a useful means of quantifying early HD-related changes in these models, particularly in the transition from presymptomatic to early symptomatic phases of HD.
Collapse
Affiliation(s)
- Georgia K Williams
- Preclinical, Imaging, and Research Laboratories (PIRL), South Australian Health and Medical Research Institute (SAHMRI), Gilles Plains, Adelaide 5086, Australia
- National Imaging Facility, SAHMRI, Adelaide 5000, Australia
| | - Jordy Akkermans
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2160, Belgium
- μNeuro Center for Excellence, University of Antwerp, Antwerp 2160, Belgium
| | - Matt Lawson
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, South Australia
| | - Patryk Syta
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, South Australia
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2160, Belgium
- μNeuro Center for Excellence, University of Antwerp, Antwerp 2160, Belgium
| | - Mohit H Adhikari
- μNeuro Center for Excellence, University of Antwerp, Antwerp 2160, Belgium
- Bio-Imaging Lab, University of Antwerp, Antwerp 2160, Belgium
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, U.K
| | - Björn Nitzsche
- Department of Nuclear Medicine, University Hospital Leipzig, Stephanstr. 11, Leipzig 04103, Germany
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, University of Leipzig, An den Tierkliniken 43, Leipzig 04103, Germany
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Chris Christou
- Preclinical, Imaging, and Research Laboratories (PIRL), South Australian Health and Medical Research Institute (SAHMRI), Gilles Plains, Adelaide 5086, Australia
- National Imaging Facility, SAHMRI, Adelaide 5000, Australia
| | - Daniele Bertoglio
- μNeuro Center for Excellence, University of Antwerp, Antwerp 2160, Belgium
- Bio-Imaging Lab, University of Antwerp, Antwerp 2160, Belgium
| | - Muneer Ahamed
- Preclinical, Imaging, and Research Laboratories (PIRL), South Australian Health and Medical Research Institute (SAHMRI), Gilles Plains, Adelaide 5086, Australia
- National Imaging Facility, SAHMRI, Adelaide 5000, Australia
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, South Australia
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
| |
Collapse
|
2
|
Behroozi M, Graïc JM, Gerussi T. Beyond the surface: how ex-vivo diffusion-weighted imaging reveals large animal brain microstructure and connectivity. Front Neurosci 2024; 18:1411982. [PMID: 38988768 PMCID: PMC11233460 DOI: 10.3389/fnins.2024.1411982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Diffusion-weighted Imaging (DWI) is an effective and state-of-the-art neuroimaging method that non-invasively reveals the microstructure and connectivity of tissues. Recently, novel applications of the DWI technique in studying large brains through ex-vivo imaging enabled researchers to gain insights into the complex neural architecture in different species such as those of Perissodactyla (e.g., horses and rhinos), Artiodactyla (e.g., bovids, swines, and cetaceans), and Carnivora (e.g., felids, canids, and pinnipeds). Classical in-vivo tract-tracing methods are usually considered unsuitable for ethical and practical reasons, in large animals or protected species. Ex-vivo DWI-based tractography offers the chance to examine the microstructure and connectivity of formalin-fixed tissues with scan times and precision that is not feasible in-vivo. This paper explores DWI's application to ex-vivo brains of large animals, highlighting the unique insights it offers into the structure of sometimes phylogenetically different neural networks, the connectivity of white matter tracts, and comparative evolutionary adaptations. Here, we also summarize the challenges, concerns, and perspectives of ex-vivo DWI that will shape the future of the field in large brains.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Weiss AR, Liguore WA, Brandon K, Wang X, Liu Z, Kroenke CD, McBride JL. Alterations of fractional anisotropy throughout cortico-basal ganglia gray matter in a macaque model of Huntington's Disease. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100090. [PMID: 37397804 PMCID: PMC10313883 DOI: 10.1016/j.crneur.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
We recently generated a nonhuman primate (NHP) model of the neurodegenerative disorder Huntington's disease (HD) using adeno-associated viral vectors to express a fragment of mutant HTT protein (mHTT) throughout the cortico-basal ganglia circuit. Previous work by our group established that mHTT-treated NHPs exhibit progressive motor and cognitive phenotypes which are accompanied by mild volumetric reductions of cortical-basal ganglia structures and reduced fractional anisotropy (FA) in the white matter fiber pathways interconnecting these regions, mirroring findings observed in early-stage HD patients. Given the mild structural atrophy observed in cortical and sub-cortical gray matter regions characterized in this model using tensor-based morphometry, the current study sought to query potential microstructural alterations in the same gray matter regions using diffusion tensor imaging (DTI), to define early biomarkers of neurodegenerative processes in this model. Here, we report that mHTT-treated NHPs exhibit significant microstructural changes in several cortical and subcortical brain regions that comprise the cortico-basal ganglia circuit; with increased FA in the putamen and globus pallidus and decreased FA in the caudate nucleus and several cortical regions. DTI measures also correlated with motor and cognitive deficits such that animals with increased basal ganglia FA, and decreased cortical FA, had more severe motor and cognitive impairment. These data highlight the functional implications of microstructural changes in the cortico-basal ganglia circuit in early-stage HD.
Collapse
Affiliation(s)
- Alison R. Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
| | - William A. Liguore
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
| | - Kristin Brandon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
| | - Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239
| | - Zheng Liu
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239
| | - Christopher D. Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA, 97239
| | - Jodi L. McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA, 97239
| |
Collapse
|
4
|
Tillet Y. Magnetic Resonance Imaging, a New Tool for Neuroendocrine Research in Sheep. Neuroendocrinology 2023; 113:208-215. [PMID: 35051936 DOI: 10.1159/000522087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
Magnetic resonance imaging (MRI) brain analysis is used in rodents and for clinical investigation in humans, and it becomes also possible now for large animal models studies. Specific facilities are available with clinical scanners and benefit to neuroendocrine investigations in sheep. Sheep has a large gyrencephalic brain and its organization is very similar to primates and human, and among physiological regulations, oestrous cycle of the ewes is similar to women. Therefore, this animal is a good model for preclinical researches using MRI, as illustrated with steroids impact on the brain. New data were obtained concerning the effect of sexual steroids on neuronal networks involved in the control of reproduction and in the influence of sexual steroids on cognition. In addition to the importance of such data for understanding the role of these hormones on brain functions, they give new insights to consider the sheep as a powerful model for preclinical studies in the field of neuroendocrinology. These points are discussed in this short review.
Collapse
Affiliation(s)
- Yves Tillet
- CNRS UMR 7247, IFCE, INRAE, University of Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
5
|
Sorby-Adams AJ, Schneider WT, Goncalves RP, Knolle F, Morton AJ. Measuring executive function in sheep (Ovis aries) using visual stimuli in a semi-automated operant system. J Neurosci Methods 2020; 351:109009. [PMID: 33340554 DOI: 10.1016/j.jneumeth.2020.109009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cognitive impairment is a distinguishing feature of many neurodegenerative diseases. The intra-dimensional (ID) extra-dimensional (ED) attentional set shift task is part of a clinical battery of tests used to evaluate executive function in Huntington's and Alzheimer's disease patients. The IDED task, however, has not translated well to pre-clinical rodent models of neurological disease. NEW METHOD The ability to perform executive tasks coupled with a long lifespan makes sheep (Ovis aries) an ideal species for modelling cognitive decline in progressive neurodegenerative conditions. We describe the methodology for testing the performance of sheep in the IDED task using a semi-automated system in which visual stimuli are presented as coloured letters on computer screens. RESULTS During each stage of IDED testing, all sheep (n = 12) learned successfully to discriminate between different colours and letters. Sheep were quick to learn the rules of acquisition at each stage. They required significantly more trials to reach criterion (p < 0.05) and made more errors (p < 0.05) following stimulus reversal, with the exception of the ED shift (p > 0.05). COMPARISON WITH EXISTING METHOD(S) Previous research shows that sheep can perform IDED set shifting in a walk-through maze using solid objects with two changeable dimensions (colour and shape) as the stimuli. Presenting the stimuli on computer screens provides better validity, greater task flexibility and higher throughput than the walk-through maze. CONCLUSION All sheep completed each stage of the task, with a range of abilities expected in an outbred population. The IDED task described is ideally suited as a quantifiable and clinically translatable measure of executive function in sheep.
Collapse
Affiliation(s)
- A J Sorby-Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - W T Schneider
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - R P Goncalves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - F Knolle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Neurology, Klinikum recht der Isar, Technical University Munich, Munich, Germany
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| |
Collapse
|